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Abstract
Mixture models are widely used to represent data as coming from separate components, but

choosing the right number of mixture components can be a hard task. The Dirichlet process
(DP) [9] has been introduced by Ferguson (1973) [4] as a convenient prior on probability
distributions for nonparametric Bayesian problems, and has become popular in the machine
learning community for dealing with Bayesian models with a potentially unbounded number
of parameters. A key example is the Dirichlet process mixture model, which extends standard
finite mixture models to an infinite number of mixture components, and which has been made
practical thanks to the development of suitable Markov chain Monte Carlo (MCMC) and
variational inference methods. We provide some background on the Dirichlet process and
DP mixtures, and describe algorithms for variational inference and Gibbs sampling, showing
the benefits of the variational method for this class of models, based on [2]. We apply the
algorithms to text document modeling by deriving versions of the algorithms for DP mixtures
with multinomial mixture components, and present results of our experiments.

1 Introduction
The Dirichlet process (DP) was introduced by Ferguson (1973) [4] as a prior on probability distri-
butions (a measure on measures) for dealing with nonparametric problems in the Bayesian setting.
The DP is discrete with probability one and can be written as an infinite sum of atomic distributions
in what’s called the stick-breaking representation [8], which makes it very suitable for defining infi-
nite mixture models. Thanks to this computationally tractable representation, the DP has gained
popularity in machine learning for dealing with nonparametric Bayesian models such as DP mixture
models [7], and other extensions like the Hierarchical Dirichlet Process [10].

MCMC sampling algorithms have been extensively applied to Bayesian inference problems
thanks to their flexibility, and they have been successfully developed for Dirichlet process mix-
ture models, mainly through collapsed Gibbs sampling or blocked Gibbs sampling [5]. Later, Blei
and Jordan [2] have developed a variational inference algorithm based on the stick-breaking repre-
sentation of the DP. Variational inference generally performs slightly worse than sampling methods
due to an approximation bias, but runs faster. However, Blei and Jordan show that for DP mixtures
the variational algorithm gives almost as good results in the case of DP mixtures, in addition to
being faster than sampling methods, and is particularly well suited for large scale problems.
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We start by providing some theoretical background on the DP and DP mixture models. In
section 4, we derive variational and Gibbs sampling-based inference algorithms for DP mixtures
in the case where the distributions on the parameters are in the exponential family. In section 5,
we define a DP mixture model for modeling text documents from a corpus as a DP mixture of
multinomial distributions. We then derive the appropriate variational inference and Gibbs sampling
algorithms and show experimental results on a corpus of news articles from the Associated Press.

2 The Dirichlet Process
Let G0 be a probability distribution on Θ, and α > 0. A random measure G is distributed
according to a Dirichlet process [4] with base measure G0 and concentration parameter α, written
G ∼ DP (α,G0), if for every partition A1, . . . , Ak of Θ,

(G(A1), . . . , G(Ak)) ∼ Dir(αG0(A1), . . . , αG0(Ak)), (1)

Let G ∼ DP (α,G0) be such a random measure and (A1, . . . , Ak) a partition of Θ. If η ∼ G,
then the vector (IA1(η), . . . , IAk

(η)) = (δη(A1), . . . , δη(Ak)) (where I is the indicator function
and δ denotes the Dirac delta measure) is distributed according to a multinomial with parame-
ter (G(A1), . . . , G(Ak)). If η1, . . . , ηn are independent samples from G, because of the conjugacy
between the Dirichlet and the multinomial distributions, we have:

(G(A1), . . . , G(Ak))|η1, . . . , ηn ∼ Dir(αG0(A1) +
n∑
i=1

δηi(A1), . . . , αG0(Ak) +
n∑
i=1

δηi(Ak)). (2)

Since this is true for all partitions, the posterior distribution on G is also a DP, and takes the form:

G|η1, . . . , ηn ∼ DP (α+ n,
1

α+ n
(αG0 +

n∑
i=1

δηi
)) (3)

Pólya urn scheme and Chinese Restaurant Process

The predictive distribution of a new observation ηn+1 is obtained by integrating out the random
measure G, and is given by the base measure of the posterior:

ηn+1|η1, . . . , ηn ∼
1

α+ n
(αG0 +

n∑
i=1

δηi
). (4)

There are two analogies which are useful in describing the generation process of new samples. The
Pólya urn scheme [1] considers each distinct ηi ∈ Θ as a different ball color, and puts previously
seen balls in an urn. When a new ball is chosen, its color is picked according to the following
rule: with probability α

α+n , pick a new color according to G0 (the first ball color is always chosen
this way), and with probability n

α+n , choose the color of a random ball in the urn. The ball is
then painted with the picked color and put in the urn. In the Chinese Restaurant Process (CRP)
metaphor, we denote by {η∗1 , . . . , η∗K} the distinct values of ηi (the tables of customers in a chinese
restaurant), and by {n1, . . . , nK} their frequencies ni = |{j : ηj = η∗i }| (the number of customers
at each table). The predictive distribution becomes:

ηn+1|η1, . . . , ηn ∼
1

α+ n
(αG0 +

K∑
i=1

niδη∗
i
), (5)
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and the metaphor is the following: when a new customers enters the restaurant, he picks an existing
table with probability proportional to the number of customers at that table, or a new table with
probability proportional to α.

Stick-breaking representation

As suggested by the previous analogies, the values taken by the ηi will be discrete, and Sethura-
man [8] has shown that the DP can be defined with an explicit discrete representation, given by
the stick-breaking construction, which can be a useful alternative to the characterization given by 1.
The construction of G ∼ DP (α,G0) is as follows: let Vi ∼ Beta(1, α) and η∗i ∼ G0 for i = 1, 2, . . . ,
G is given by the stick-breaking representation:

πi(v) = vi

i−1∏
j=1

(1− vj) (6)

G =
∞∑
i=1

πi(v)δη∗
i
, (7)

where the stick lengths πi(v) are given by repeatedly breaking a stick of initial length 1 at points
given by the vi. It is clear from this representation that G can be used to represent infinite mixtures,
where the mixture components are the atoms η∗i of G, and the mixture proportions are given by
πi(v).

3 Dirichlet Process Mixtures
A typical finite Bayesian mixture model can be described by the following generative process:

π|α ∼ Dir(α)
η∗k|G0 ∼ G0, k = 1, . . . ,K
Zn|π ∼Mult(π)
Xn|zn ∼ p(·|η∗zn

),

where α is the parameter for a Dirichlet prior on π and G0 is the prior on ηk. Alternatively, if we
write G =

∑K
k=1 πkδη∗

k
, the generation of each data point Xn can be written as:

ηn|G ∼ G
Xn|ηn ∼ p(·|ηn).

This leads to a natural generalization to an infinite mixture model, by changing the prior on G to
be a DP:

G|α,G0 ∼ DP (α,G0)
ηn|G ∼ G
Xn|ηn ∼ p(·|ηn).

This is called a Dirichlet process mixture model, and is represented as a graphical model in Figure 1a.
Equivalently, the DP mixture model can be modeled using the stick-breaking representation of the
DP, leading to the following generative process, illustrated in Figure 1b:
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Figure 1: Graphical model representation of an exponential family DP mixture. Nodes
denote random variables, edges denote possible dependence, and plates denote replica-
tion.

The stick-breaking construction for the DP mixture is depicted as a graphical model
in Figure 1. The conditional distributions of Vk and Zn are as described above. The
distribution of Xn conditional on Zn and {η∗

1 , η∗
2 , . . .} is

p(xn | zn, η∗
1 , η∗

2 , . . .) =

∞∏

i=1

(
h(xn) exp{η∗

i
T xn − a(η∗

i )}
)1[zn=i]

,

where a(η∗
i ) is the appropriate cumulant function and we assume for simplicity that x

is the sufficient statistic for the natural parameter η.

The vector of sufficient statistics of the corresponding conjugate family is (η∗T ,−a(η∗))T .
The base distribution is

p(η∗ |λ) = h(η∗) exp{λT
1 η∗ + λ2(−a(η∗)) − a(λ)}, (7)

where we decompose the hyperparameter λ such that λ1 contains the first dim(η∗)
components and λ2 is a scalar.

3 Variational inference for DP mixtures

There is no direct way to compute the posterior distribution under a DP mixture prior.
Approximate inference methods are required for DP mixtures and Markov chain Monte
Carlo (MCMC) sampling methods have become the methodology of choice (MacEachern
1994; Escobar and West 1995; MacEachern 1998; Neal 2000; Ishwaran and James 2001).

Variational inference provides an alternative, deterministic methodology for approx-
imating likelihoods and posteriors (Wainwright and Jordan 2003). Consider a model
with hyperparameters θ, latent variables W = {W1, . . . ,WM}, and observations x =
{x1, . . . , xN}. The posterior distribution of the latent variables is:

p(w |x, θ) = exp{log p(x,w | θ) − log p(x | θ)}. (8)

(b)

Figure 1: Two different graphical model representations for the Dirichlet process mixture model.
The one on the right is based on the stick-breaking representation. Source: [2].

1. For i = 1, 2, . . . , draw Vi|α ∼ Beta(1, α)

2. For i = 1, 2, . . . , draw η∗i |G0 ∼ G0

3. For every data point n:

(a) Choose Zn|v ∼Mult(π(v))
(b) Draw Xn|zn ∼ p(·|η∗zn

)

We will limit ourselves to exponential family distributions for observed data, and the base
measure of the DP will be the conjugate prior. Thus, we consider p(xn|zn = i) = h(xn) exp(η∗>i xn−
a(η∗i )), where a is the log-partition function, so that:

p(xn|zn, η∗1 , η∗2 , . . . ) =
∞∏
i=1

(
h(xn) exp(η∗>i xn − a(η∗i ))

)I(zn=i)
. (8)

We takeG0 to be in the corresponding conjugate family: p(η∗|λ) = h(η∗) exp(λ>1 η∗−λ2a(η∗)−a(λ)),
where the sufficient statistics are given by the vector (η∗>,−a(η∗))>, and λ = (λ>1 , λ2)>.

4 Inference in DP mixtures
In order to perform exact inference in the DP mixture, one would need to compute the full posterior
of the latent parameters W = {(Vi)i, (η∗i )i, (Zn)n} given the observations x = (xn)n. This typically
requires computing the marginal likelihood p(x|α, λ), since

p(W|x, α, λ) = p(W,x|α, λ)
p(x|α, λ) , (9)
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and the marginal likelihood is intractable to compute since it requires a complicated integral on the
parameters w.

This problem can be circumvented by approximating the posterior, which is usually done in
two possible ways. The first is to use MCMC sampling algorithms to construct a Markov chain
whose stationary distribution is the posterior, so that samples from this chain will eventually be
distributed according to the posterior and will permit to approximated it. The other way is to use
variational inference [6, 11], which defines a simpler distribution q on the latent variables W, and
optimizes its parameters so as to minimize the KL divergence between q and the targeted posterior.
We will look at how to apply these methods to DP mixture models, based on [2].

4.1 Variational Inference
The goal of variational inference [6, 11] is to approximate an intractable target distribution p
(the posterior in our case) with a simpler distribution qν , called the variational distribution, by
minimizing the KL divergence D(qν ||p) between qν and p with respect to the variational parameters
ν. This turns the problem of approximating the posterior into an optimization problem. The KL
divergence we want to minimize takes the following form:

D(qν ||p(·|x, α, λ)) = Eq[log qν(W)]− Eq[log p(W,x|α, λ)] + log p(x|w, α, λ). (10)

Since D(qν ||p(·|x, α, λ)) is non-negative, an alternative formulation is that of maximizing the
right hand side of the following equation, which is a lower bound on the marginal log likelihood
(sometimes called evidence lower bound):

log p(x|α, λ) ≥ Eq[log p(W,x|α, λ)]− Eq[log qν(W)]. (11)

For our DP mixture model, this bound becomes:

log p(x|α, λ) ≥ Eq[log p(V|α)] + Eq[log p(η∗|λ)]

+
N∑
n=1

(Eq[log p(Zn|V)] + Eq[log p(xn|Zn)]) (12)

− Eq[log qν(V,η∗,Z)]

In the mean-field variational inference setting, the variational distribution is taken to be fully
factorized, as a product of distributions on each parameter. We consider these distributions to be
in the exponential family, and of the same nature as the corresponding conditional distribution in
the full model. To allow this representation, we limit ourselves to a truncated stick-breaking repre-
sentation by fixing T and constraining q(vT = 1) = 1, so that the mixture proportions {πt(v)}t>T
are equal to zero with probability one. The variational distribution takes the form:

q(v,η∗, z) =
T−1∏
t=1

qγt(vt)
T∏
t=1

qτt(η∗t )
N∏
n=1

qφn(zn), (13)

where qγt
(vt) are beta distributions, qτt

(η∗t ) are exponential family distributions with natural
parameter τt and qφn

(zn) are multinomials. Note that even though we consider a truncated vari-
ational distribution, there is no such constraint on the distribution of the full model, hence the
algorithm will still try to approximate the full, infinite stick-breaking representation.
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We now derive expressions for the terms in the lower bound on the log marginal likelihood from
Equation 12:

Eq[log p(V|α)] =
∑T−1
t=1 (α− 1)Eq[log(1− Vt)]− (T − 1)(log Γ(α)− log Γ(1 + α))

Eq[log p(η∗|λ)] =
∑T
t=1(log h(η∗t ) + λ>1 Eq[η∗t ]− λ2Eq[a(η∗t )])− Ta(λ)

Eq[log p(Zn|V)] = Eq

[
log
( ∞∏
i=1

V
I(Zn=i)
i (1− Vi)I(Zn>1)

)]
=
∑T
i=1q(zn = t)Eq[log Vt] + q(zn > t)Eq[log(1− Vt)]

Eq[log p(xn|Zn)] =
∑T
t=1q(zn = t)

(
log h(xn) + Eq[η∗t ]>xn − a(η∗t )

)
Eq[log qγt

(Vt)] = (γt,1 − 1)Eq[log Vt] + (γt,2 − 1)Eq[log(1− Vt)]− (log Γ(γt,1) + log Γ(γt,2)− log Γ(γt,1 + γt,2))
Eq[log qτt

(η∗t )] = log h(η∗t ) + τ>t,1Eq[η∗t ]− τt,2Eq[a(η∗t )]− a(τt)
Eq[log qφn

(Zn)] = φ>n log φn.

The summations in Eq[log p(Zn|V)] and Eq[log p(xn|Zn)]) can be truncated at t = T since
q(zn = t) = q(zn > t) = 0 for t > T . We have

q(zn = t) = φn,t

q(zn > t) =
∑T
i=t+iφn,i

Eq[log Vt] = Ψ(γt,1)−Ψ(γt,1 + γt, 2)
Eq[log(1− Vt)] = Ψ(γt,2)−Ψ(γt,1 + γt, 2).

The last two equalities come from the well-known fact that the expectation of the sufficient statistics
in the exponential family is equal to the gradient of the log partition function. Ψ is the digamma
function, which appears when taking the derivative of the log normalizer in the beta distribution.

Coordinate ascent algorithm

We can now maximize the lower bound from Equation 12 with a coordinate ascent algorithm by
computing the gradient with respect to each parameter and setting it to zero. The derivation is
straightforward and leads to the following update rules:

γt,1 = 1 +
∑
nφn,t

γt,2 = α+
∑
n

∑T
i=t+1φn,i

τt,1 = λ1 +
∑
nφn,txn

τt,2 = λ2 +
∑
nφn,t

φn,t ∝ exp(Sn,t),

where the φn,t are normalized to have
∑
t φn,t = 1, and where

Sn,t = Eq[log Vt] +
T−1∑
i=1

Eq[log(1− Vi)] + Eq[η∗t ]>xn − Eq[a(η∗t )].
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Once the parameters have been learnt, we can use them to approximate the posterior. For
example, the predictive distribution can be approximated in the following way:

p(xN+1|x, α, λ) =
∫ ( ∞∑

t=1
πt(v)p(xN+1|η∗t )dP (v,η∗|x, λ, α)

)

≈
T∑
t=1

Eq[πt(v)]Eq[p(xN+1|η∗t )], (14)

where the sum becomes truncated and we have Eq[πt(v)p(xN+1|η∗t )] = Eq[πt(v)]Eq[p(xN+1|η∗t )]
thanks to the factorized form of q.

4.2 Gibbs Sampling
The two main MCMC sampling algorithms for DP mixtures are collapsed Gibbs sampling and
blocked Gibbs sampling. The former use the Pólya urn scheme to iteratively sample cluster as-
signements of each observation Cn from the following conditional distribution:

p(cn = k|x, c−n, λ, α) ∝ p(xn|x−n, c−n, cn = k, λ)p(cn = k|c−n, α). (15)
In contrast, blocked Gibbs sampling uses the stick-breaking representation and samples in turn

each block of parameters Z, V and η conditionned on the other two blocks. The resulting algorithm
looks quite similar to variational inference, and we describe it for multinomial components in sec-
tion 5. With similar parameterization, the predictive distribution is obtained by computing Monte
Carlo expectations using a set of B samples of the parameters from the chain after convergence:

p(xN+1|x, α, λ) ≈
T∑
t=1

E[πk(V )|γ1, . . . , γT ]E[p(xN+1|τt)], (16)

where p(xN+1|τt) is the marginal likelihood of a Dirichlet-Multinomial model, given by B(τt +
xN+1)/B(τt), where B is the multinomial beta function, the normalization constant of a Dirichlet
distribution.

5 Document clustering with DP mixtures
We consider the problem of clustering text documents. We use a bag of words representation for
each document and assume it is sampled from a DP mixture model, where the mixture components
are multinomial distributions with parameters θt on the size of the vocabulary M , and the base
measure is a Dirichlet with parameter λ on the M -dimensional simplex, so that it is conjugate to
the multinomial.

In the algorithms, we consider the natural parameters of the multinomials, ηt = log θt, and
define the corresponding variational distributions qτt

(ηt) to be Dirichlet with parameter τt. The
coordinate ascent algorithm for variational inference becomes:

γt,1 = 1 +
∑
nφn,t

γt,2 = α+
∑
n

∑T
i=t+1φn,i

τt = λ+
∑
nφn,txn

φn,t ∝ exp(Sn,t),
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with

Sn,t = Eq[log Vt] +
T−1∑
i=1

Eq[log(1− Vi)] + Eq[ηt]>xn,

where we have Eq[ηt,m] = Eq[log θt,m] = Ψ(τt,m) − Ψ(
∑
m τt,m) for every word m in the vocabu-

lary. The multinomial parameters θt,m can be recovered from exp(ηt,m) by normalizing with the
constraint

∑
m θt,m = 1.

A similar parameterization can be obtained for blocked Gibbs sampling, giving the following
sampling scheme:

1. For t ∈ {1, . . . , T}, independently sample ηt ∼ Dir(τt), where

τt = λ+
∑
nI(zn = k)xn

2. For n ∈ {1, . . . , N}, independently sample zn from

p(zn = t|v,η,x) ∝ πt(v)p(xn|ηt) ∝ πt(v)
∏
m η

xn,m

t,m

3. For t ∈ {1, . . . , T}, independantly sample vt ∼ p(vt|z) = Beta(γt,1, γt,2), where

γt,1 = 1 +
∑N
n=1I(zn = t)

γt,2 = α+
∑T
i=t+1

∑N
n=1 I(zn = i)

6 Experiments
We ran our algorithms on a corpus of news articles from the Associated Press1. The dataset
contains 2246 documents with a vocabulary of 10473 words. The variational inference algorithm
converged in about 1 second after 10 iterations, where convergence was assessed by looking at the
lower bound on the log marginal likelihood. We set the scaling parameter α to one, the parameter
of the Dirichlet base measure to (1, . . . , 1)> and the truncation level T to 100. Figure 2 shows some
examples of the obtained multinomial clusters after 50 iterations, where the words on the top have
higher probability.

We compared variational inference and blocked Gibbs sampling by using 200 documents for
inference and computing the mean held out log-probability on 100 different documents (mean over
the held out set of the logarithm of the predictive probability, given by Equations 14 and 16). We
focused on blocked Gibbs sampling since it has computational benefits compared to the collapsed
Gibbs sampler, where variables are updated one at a time. Table 1 shows results of running time
(on a Macbook Pro) and held out log probability (averaged over a few rounds) for T = 100 and
the same parameters α and λ. Part of the reason for the faster iteration time is that variational
inference can fully exploit vectorized computations, while this cannot be done in MATLAB for
Gibbs sampling, but most of the additional cost in Gibbs sampling is due to the sampling itself. We
ran both algorithms for 15 iterations, which is enough for variational inference to reach convergence,
and in the case of Gibbs sampling we didn’t observe any improvements in held out probability by
letting the chain run longer: the clusters assignments remain practically the same after the first
few iterations. More accurate diagnostics can be used to assess statistical convergence of the chain
(see [2]).

1Available at http://www.cs.princeton.edu/~blei/lda-c/ap.tgz
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Time Mean held out log probability
Variational inference 0.6 seconds (0.04s/iteration) −1661.04
Blocked Gibbs sampling 60 seconds (4.1s/iteration) −1617.27

Table 1: Comparison of running time and average held out log probability for variational inference
and blocked Gibbs sampling.

7 Discussion and Conclusion
We have seen how the DP makes it possible to define mixture models with an unbounded number
of mixture components that increases with the number of observed samples. We saw how Bayesian
posterior inference can be done with variational inference and Gibbs sampling algorithms, and
explored the advantages of variational inference in a large-scale, high-dimensional setting with text
document modeling. However, one can show that the number of clusters in a DP typically increases
as O(α logn), where n is the number of observations (see [9]), hence this might not be the perfect
way to find the right number of clusters in the data, and when one has some prior domain knowledge
on the data, then using a finite mixture model with an explicitely chosen number of components
might give better results.

In the context of text document modeling, we saw that when using DP mixtures with multino-
mial components, there can be words shared across multiple components, and different components
sharing a common set of words which belong together in a given topic. This happens because each
document is modeled as a sample from a single “topic”. If the goal is to find a set of topics ap-
pearing in a corpus of documents, rather than clustering documents, one can model each document
as being sampled itself from a mixture of topics, where each topic is a multinomial. This problem
has been studied extensively with a class of models called topic models. The most popular of these
models is Latent Dirichlet Allocation (LDA) [3], which considers a fixed number of topics, and
nonparametric extensions of LDA base on the DP have been developed, e.g. with the Hiererarchical
Dirichlet Process (HDP) [10].
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