On the Inductive Bias of Neural Tangent Kernels

Alberto Bietti Julien Mairal - Inria Grenoble

Inductive Bias and Over-Parameterization

- Over-parameterized deep networks are very expressive
- Optimization algorithm plays a crucial role for generalization

Lazy Training: In certain regimes (over-parameterization, particular initialization), neural networks behave like their linearization near initialization

\[f(x; \theta) = f(x; \theta_0) + (\theta - \theta_0, \nabla f(x; \theta_0)) \]

Neural Tangent Kernels (NTK): In this regime, generalization properties are controlled by the limiting kernel \(\kappa \) [Jacot et al., 2018]

\(\nabla f(x; \theta_0, \nabla f(x', \theta_0)) \to K(x, x') \)

In particular, with squared loss and infinite width, we get the interpolating solution with minimum RKHS norm.

Contributions:
- Derivation of NTK for convolutional networks with a generic linear patch extraction/pooling operators
- Study of smoothness, stability, and approximation properties of functions with finite RKHS norm
- Comparison to other ReLU kernels (e.g., training only last layer with random weights): the NTK has weaker smoothness properties but better approximation.

Approximation Properties (two layers)

Question: How rich is the RKHS for the NTK \(\kappa_{NTK} \) versus the simpler kernel \(\kappa_1 \) obtained by training just the second layer (random features)?

Mercer decomposition with spherical harmonics

Proposition (Mercer decomposition)

For any \(x, y \in S^{d-1} \), we have the following decomposition of the NTK \(\kappa_{NTK} \):

\[
\kappa_{NTK}(x, y) = \sum_{K=0}^{\infty} \sum_{j=1}^{N_K} \sum_{k=1}^{N_j} Y_k(x) Y_j(y),
\]

where \(Y_k \) are spherical harmonic polynomials of degree \(k \), and the non-negative eigenvalues \(\mu_k \) satisfy \(\mu_0 > \mu_1 > 0 \), \(\mu_k = 0 \) if \(k < 2j + 1 \) and \(j \geq 1 \), and otherwise \(\mu_k \sim C(p)k^{d-p} \) as \(k \to \infty \).

This gives an explicit characterization of the RKHS norm of a function.

Approximation results:
- The RKHS is “larger”: slower decay compared to \(\kappa_1 \), for which \(\mu_k = O(k^{d-p}) \):
- \(f \) with \(\phi \)-bounded derivatives \(\implies f \in \mathcal{H} \) with \(\|f\| \leq \mathcal{O}(\phi) \);
- Weaker requirement compared to \(\kappa_1 \) (need \(p/2 + 1 \) derivatives);
- Better rates for approximating Lipschitz functions on the sphere.

Relevant References

Smoothness and Deformation Stability

Two-layer ReLU networks: The NTK (when training both layers) has weaker smoothness compared to training only the second layer.

Proposition (Non-Lipschitzness)

The kernel mapping \(\Phi(x) \) of the two-layer NTK is not Lipschitz:

\[\sup_{x, y} \| \Phi(x) - \Phi(y) \|_x \to +\infty. \]

It follows that the RKHS \(\mathcal{H} \) contains unit-norm functions with arbitrarily large Lipschitz constant.

Proposition (Smoothness for ReLU NTK)

The kernel mapping \(\Phi \) satisfies

\[
\| \Phi(x) - \Phi(y) \| \leq \sqrt{\min(\|x\|, \|y\|)} \|x - y\| + 2 \|x - y\|.
\]

Deformation stability for deep ReLU CNNs: Similar assumptions to [Bietti and Mairal, 2019]:
- Continuous signals \(x(u) \) in \(L^2(\mathbb{R}^d) \), \(t : \mathbb{R}^d \to \mathbb{R}^d \), \(C^1 \), deformations \(L \cdot x(u) = x(u - \tau(v)) \);
- Anti-aliasing of the original signal: \(A \cdot x \) instead of \(x \);
- Patch sizes controlled at current resolution: \(\sup_{v \in S_k} \|v\| \leq \beta \sigma_{k-1} \)

Proposition (Stability of NTK)

Let \(\Phi_d(x) = \Phi_A(x) \), and assume \(\|\nabla \tau\|_{L^\infty} \leq 1/2 \). We have:

\[
\|\Phi_d(L \cdot x) - \Phi_d(x)\| \leq \left(C_1 \|\nabla \tau\|_{L^\infty}^2 + C_2 \|\tau\|_{L^\infty} + \frac{C_3}{\sigma_0} \|\tau\|_{L^\infty} \right) \|x\|
\]

Worse dependence on \(\|\nabla \tau\|_{L^\infty} \) for small deformations compared to CKN/random feature kernel obtained when training just the last layer!