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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)
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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

f (x) = Wnσ(Wn–1 · · · σ(W1x) · · · )

Recipe: huge models + lots of data + compute + simple algorithms
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Convolutional networks
Exploiting structure of natural images (LeCun et al., 1989)
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Convolutional networks

(LeCun et al., 1998)

Convolutional networks

Model local neighborhoods at different scales

Provide some invariance through pooling

Useful inductive bias for learning efficiently on natural images
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Convolutional networks

(Simonyan and Zisserman, 2014)

Convolutional networks

Model local neighborhoods at different scales

Provide some invariance through pooling

Useful inductive bias for learning efficiently on natural images
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Understanding deep learning

The challenge of deep learning theory

Over-parameterized (millions of parameters)

Expressive (can approximate any function)

Complex architectures for exploiting problem structure

Yet, easy to optimize with (stochastic) gradient descent!
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Understanding deep learning

The challenge of deep learning theory

Over-parameterized (millions of parameters)

Expressive (can approximate any function)

Complex architectures for exploiting problem structure

Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint

View deep networks as functions in some functional space

Non-parametric models, natural measures of complexity (e.g., norms)

What is an appropriate functional space?

Alberto Bietti PhD defense November 27, 2019 4 / 40



Kernels to the rescue

X •

•

•
•

H
Φ

•
•

•
•

x Φ(x)

Kernels?

Map data x to high-dimensional space, Φ(x) ∈ H (H: “RKHS”)

Functions f ∈ H are linear in features: f (x) = 〈f , Φ(x)〉 (f can be non-linear in x !)

Learning with a positive definite kernel K (x , x ′) = 〈Φ(x), Φ(x ′)〉
◮ H can be infinite-dimensional! (kernel trick)
◮ Need to compute kernel matrix K = [K (xi , xj)]ij ∈ R

N×N
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Kernels to the rescue

X •

•

•
•

H
Φ

•
•

•
•

x Φ(x)

Clean and well-developed theory

Tractable methods (convex optimization)

Statistical and approximation properties well understood for many kernels

Costly (kernel matrix of size N2) but approximations are possible
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Kernels for deep models: deep kernel machines

Hierarchical kernels (Cho and Saul, 2009)

Kernels can be constructed hierarchically

K (x , x ′) = 〈Φ(x), Φ(x ′)〉 with Φ(x) = ϕ2(ϕ1(x))

e.g., dot-product kernels on the sphere

K (x , x ′) = κ2(〈ϕ1(x), ϕ1(x ′)〉) = κ2(κ1(x⊤x ′))
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Kernels for deep models: deep kernel machines

Convolutional kernels networks (CKNs) for images (Mairal et al., 2014; Mairal, 2016)

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Good empirical performance with tractable approximations (Nyström)
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Kernels for deep models: infinite-width networks

fθ(x) =
1√
m

m
∑

i=1

viσ(w⊤
i x), m → ∞

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)

θ = (vi)i , fixed random weights wi ∼ N(0, I)

KRF (x , x ′) = Ew∼N(0,I)[σ(w⊤x)σ(w⊤x ′)]
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∑

i=1

viσ(w⊤
i x), m → ∞

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)

θ = (vi)i , fixed random weights wi ∼ N(0, I)

KRF (x , x ′) = Ew∼N(0,I)[σ(w⊤x)σ(w⊤x ′)]

Neural tangent kernels (NTK, Jacot et al., 2018)

θ = (vi , wi)i , initialization θ0 ∼ N(0, I)

Lazy training (Chizat et al., 2019): θ stays close to θ0 when training with large m

fθ(x) ≈ fθ0(x) + 〈θ − θ0, ∇θfθ(x)|θ=θ0〉.
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Kernels for deep models: infinite-width networks

fθ(x) =
1√
m

m
∑

i=1

viσ(w⊤
i x), m → ∞

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)

θ = (vi)i , fixed random weights wi ∼ N(0, I)

KRF (x , x ′) = Ew∼N(0,I)[σ(w⊤x)σ(w⊤x ′)]

Neural tangent kernels (NTK, Jacot et al., 2018)

θ = (vi , wi)i , initialization θ0 ∼ N(0, I)

Lazy training (Chizat et al., 2019): θ stays close to θ0 when training with large m

fθ(x) ≈ fθ0(x) + 〈θ − θ0, ∇θfθ(x)|θ=θ0〉.

Gradient descent for m → ∞ ≈ kernel ridge regression with neural tangent kernel

KNTK (x , x ′) = lim
m→∞

〈∇θfθ0(x), ∇θfθ0(x
′)〉
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fθ(x) =
1√
m

m
∑

i=1

viσ(w⊤
i x), m → ∞

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)

θ = (vi)i , fixed random weights wi ∼ N(0, I)

KRF (x , x ′) = Ew∼N(0,I)[σ(w⊤x)σ(w⊤x ′)]

Neural tangent kernels (NTK, Jacot et al., 2018)

θ = (vi , wi)i , initialization θ0 ∼ N(0, I)

Lazy training (Chizat et al., 2019): θ stays close to θ0 when training with large m

fθ(x) ≈ fθ0(x) + 〈θ − θ0, ∇θfθ(x)|θ=θ0〉.

Gradient descent for m → ∞ ≈ kernel ridge regression with neural tangent kernel

KNTK (x , x ′) = lim
m→∞

〈∇θfθ0(x), ∇θfθ0(x
′)〉

RF and NTK extend to deep architectures
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Contributions of the thesis

Invariance, stability to deformations, and complexity of convolutional kernels

A. Bietti and J. Mairal. Invariance and stability of deep convolutional representations.
In Advances in Neural Information Processing Systems (NIPS), 2017a

A. Bietti and J. Mairal. Group invariance, stability to deformations, and complexity of deep
convolutional representations.
Journal of Machine Learning Research (JMLR), 20(25):1–49, 2019a
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Contributions of the thesis

Invariance, stability to deformations, and complexity of convolutional kernels

Applications to regularization and robustness

A. Bietti, G. Mialon, D. Chen, and J. Mairal. A kernel perspective for regularizing deep neural networks.
In Proceedings of the International Conference on Machine Learning (ICML), 2019

Alberto Bietti PhD defense November 27, 2019 8 / 40

http://alberto.bietti.me/software


Contributions of the thesis

Invariance, stability to deformations, and complexity of convolutional kernels

Applications to regularization and robustness

Study of neural tangent kernels

A. Bietti and J. Mairal. On the inductive bias of neural tangent kernels.
In Advances in Neural Information Processing Systems (NeurIPS), 2019b
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Contributions of the thesis

Invariance, stability to deformations, and complexity of convolutional kernels

Applications to regularization and robustness

Study of neural tangent kernels

Other: convex optimization, contextual bandits

A. Bietti and J. Mairal. Stochastic optimization with variance reduction for infinite datasets with finite
sum structure.
In Advances in Neural Information Processing Systems (NIPS), 2017b

A. Bietti, A. Agarwal, and J. Langford. A contextual bandit bake-off.
arXiv preprint arXiv:1802.04064, 2018
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Contributions of the thesis

Invariance, stability to deformations, and complexity of convolutional kernels

Applications to regularization and robustness

Study of neural tangent kernels

Other: convex optimization, contextual bandits

Software: http://alberto.bietti.me/software
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Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives
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Properties of convolutional models

Convolutional architectures:

Capture multi-scale and compositional structure in natural signals

Model local stationarity

Provide some translation invariance
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Properties of convolutional models

Convolutional architectures:

Capture multi-scale and compositional structure in natural signals

Model local stationarity

Provide some translation invariance

Beyond translation invariance?
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Stability to deformations

Deformations

τ : Ω → Ω: C1-diffeomorphism

Lτ x(u) = x(u − τ(u)): action operator

Much richer group of transformations than translations

Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Stability to deformations

Deformations

τ : Ω → Ω: C1-diffeomorphism

Lτ x(u) = x(u − τ(u)): action operator

Much richer group of transformations than translations

Definition of stability

Representation Φ(·) is stable (Mallat, 2012) if:

‖Φ(Lτ x) − Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation

‖τ‖∞ = supu |τ(u)| controls translation

C2 → 0: translation invariance
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Smoothness and stability with kernels

Geometry of the kernel mapping: f (x) = 〈f , Φ(x)〉

|f (x) − f (x ′)| ≤ ‖f ‖H · ‖Φ(x) − Φ(x ′)‖H

‖f ‖H controls complexity of the model

Φ(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)
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Smoothness and stability with kernels

Geometry of the kernel mapping: f (x) = 〈f , Φ(x)〉

|f (x) − f (x ′)| ≤ ‖f ‖H · ‖Φ(x) − Φ(x ′)‖H

‖f ‖H controls complexity of the model

Φ(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)

Useful kernels in practice:

Convolutional kernel networks (CKNs, Mairal, 2016) with efficient approximations

Extends to neural tangent kernels (NTKs, Jacot et al., 2018) of infinitely wide
CNNs (Bietti and Mairal, 2019b)
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Construction of convolutional kernels

Construct a sequence of feature maps x1, . . . , xn

x0 : Ω → H0: initial (continuous) signal
◮ u ∈ Ω = R

d : location (d = 2 for images)
◮ x0(u) ∈ H0: value (H0 = R

3 for RGB images)
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Construction of convolutional kernels
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x0 : Ω → H0: initial (continuous) signal
◮ u ∈ Ω = R

d : location (d = 2 for images)
◮ x0(u) ∈ H0: value (H0 = R

3 for RGB images)

xk : Ω → Hk : feature map at layer k

xk = AkMkPkxk−1

◮ Pk : patch extraction operator, extract small patch of feature map xk−1 around each point u
◮ Mk : non-linear mapping operator, maps each patch to a new point with a pointwise

non-linear function ϕk(·) (kernel mapping)
◮ Ak : (linear, Gaussian) pooling operator at scale σk
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Construction of convolutional kernels

Construct a sequence of feature maps x1, . . . , xn

x0 : Ω → H0: initial (continuous) signal
◮ u ∈ Ω = R

d : location (d = 2 for images)
◮ x0(u) ∈ H0: value (H0 = R

3 for RGB images)

xk : Ω → Hk : feature map at layer k

xk = AkMkPkxk−1

◮ Pk : patch extraction operator, extract small patch of feature map xk−1 around each point u
◮ Mk : non-linear mapping operator, maps each patch to a new point with a pointwise

non-linear function ϕk(·) (kernel mapping)
◮ Ak : (linear, Gaussian) pooling operator at scale σk

Goal: control stability of these operators through their norms
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CKN construction

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Alberto Bietti PhD defense November 27, 2019 15 / 40



Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u + v))v∈Sk
∈ Pk = HSk

k–1

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)
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Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u + v))v∈Sk
∈ Pk = HSk

k–1

Sk : patch shape, e.g. box

Pk is linear, and preserves the L2 norm: ‖Pkxk–1‖ = ‖xk–1‖
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

xk–1 : Ω → Hk–1

Pkxk–1(v) ∈ Pk

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

ϕk : Pk → Hk pointwise non-linearity on patches (kernel map)

We assume non-expansivity: for z , z ′ ∈ Pk

‖ϕk(z)‖ ≤ ‖z‖ and ‖ϕk(z) − ϕk(z ′)‖ ≤ ‖z − z ′‖

Mk then satisfies, for x , x ′ ∈ L2(Ω, Pk)

‖Mkx‖ ≤ ‖x‖ and ‖Mkx − Mkx ′‖ ≤ ‖x − x ′‖
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ϕk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z , z ′) = ‖z‖‖z ′‖κk

( 〈z , z ′〉
‖z‖‖z ′‖

)

= 〈ϕk(z), ϕk(z ′)〉.

κk(u) =
∑∞

j=0 bju
j with bj ≥ 0, κk(1) = 1

Commonly used for hierarchical kernels

‖ϕk(z)‖ = Kk(z , z)1/2 = ‖z‖
‖ϕk(z) − ϕk(z ′)‖ ≤ ‖z − z ′‖ if κ′

k(1) ≤ 1

=⇒ non-expansive

Alberto Bietti PhD defense November 27, 2019 18 / 40



ϕk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z , z ′) = ‖z‖‖z ′‖κk

( 〈z , z ′〉
‖z‖‖z ′‖

)

= 〈ϕk(z), ϕk(z ′)〉.

κk(u) =
∑∞

j=0 bju
j with bj ≥ 0, κk(1) = 1

Examples

κexp(〈z , z ′〉) = e〈z,z ′〉−1 (Gaussian kernel on the sphere)

κinv-poly(〈z , z ′〉) = 1
2−〈z,z ′〉

κσ(〈z , z ′〉) = Ew [σ(w⊤z)σ(w⊤z ′)] (Random features)
◮ arc-cosine kernels for the ReLU σ(u) = max(0, u)
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =

∫

Rd
hσk

(u − v)MkPkxk–1(v)dv ∈ Hk

xk–1 : Ω → Hk–1

MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =

∫

Rd
hσk

(u − v)MkPkxk–1(v)dv ∈ Hk

hσk
: pooling filter at scale σk

hσk
(u) := σ−d

k h(u/σk) with h(u) Gaussian

linear, non-expansive operator: ‖Ak‖ ≤ 1
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =

∫

Rd
hσk

(u − v)MkPkxk–1(v)dv ∈ Hk

hσk
: pooling filter at scale σk

hσk
(u) := σ−d

k h(u/σk) with h(u) Gaussian

linear, non-expansive operator: ‖Ak‖ ≤ 1

In practice: discretization, sampling at resolution σk after pooling

“Preserves information” when subsampling ≤ patch size
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Recap: Pk , Mk , Ak

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Multilayer construction

Assumption on x0

x0 is typically a discrete signal aquired with physical device.

Natural assumption: x0 = A0x , with x the original continuous signal, A0 local integrator
with scale σ0 (anti-aliasing).
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Multilayer representation

Φ(x0) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω, Hn).

Sk , σk grow exponentially in practice (i.e., fixed with subsampling).
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Assumption on x0

x0 is typically a discrete signal aquired with physical device.

Natural assumption: x0 = A0x , with x the original continuous signal, A0 local integrator
with scale σ0 (anti-aliasing).

Multilayer representation

Φ(x0) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω, Hn).

Sk , σk grow exponentially in practice (i.e., fixed with subsampling).

Final kernel

KCKN(x , x ′) = 〈Φ(x), Φ(x ′)〉L2(Ω) =

∫

Ω
〈xn(u), x ′

n(u)〉du
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Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a))

Let Φn(x) = Φ(A0x) and assume ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτ x) − Φn(x)‖ ≤
(

Cβ (n + 1) ‖∇τ‖∞ +
C

σn
‖τ‖∞

)

‖x‖

Translation invariance: large σn

Stability: small patch sizes (β ≈ patch size, Cβ = O(β3) for images)

Signal preservation: subsampling factor ≈ patch size

=⇒ need several layers with small patches n = O(log(σn/σ0)/ log β)
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Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a))

Let Φn(x) = Φ(A0x) and assume ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτ x) − Φn(x)‖ ≤
(

Cβ (n + 1) ‖∇τ‖∞ +
C

σn
‖τ‖∞

)

‖x‖

Translation invariance: large σn

Stability: small patch sizes (β ≈ patch size, Cβ = O(β3) for images)

Signal preservation: subsampling factor ≈ patch size

=⇒ need several layers with small patches n = O(log(σn/σ0)/ log β)

Achieved by controlling norm of commutator [Lτ , PkAk–1]
◮ Extend result by Mallat (2012) for controlling ‖[Lτ , A]‖
◮ Need patches Sk adapted to resolution σk–1: diam Sk ≤ βσk–1
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Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a))

Let Φn(x) = Φ(A0x) and assume ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτ x) − Φn(x)‖ ≤
(

Cβ (n + 1) ‖∇τ‖∞ +
C

σn
‖τ‖∞

)

‖x‖

Translation invariance: large σn

Stability: small patch sizes (β ≈ patch size, Cβ = O(β3) for images)

Signal preservation: subsampling factor ≈ patch size

=⇒ need several layers with small patches n = O(log(σn/σ0)/ log β)

Achieved by controlling norm of commutator [Lτ , PkAk–1]
◮ Extend result by Mallat (2012) for controlling ‖[Lτ , A]‖
◮ Need patches Sk adapted to resolution σk–1: diam Sk ≤ βσk–1

Extensions to other transformation groups, e.g. roto-translations
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Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019b))

Let Φn(x) = ΦNTK (A0x), and assume ‖∇τ‖∞ ≤ 1/2

‖Φn(Lτ x) − Φn(x)‖

≤
(

Cβn7/4‖∇τ‖1/2
∞ + C ′

βn2‖∇τ‖∞ +
√

n + 1
C

σn
‖τ‖∞

)

‖x‖,

Comparison with random feature CKN on deformed MNIST digits:
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Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives
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RKHS of patch kernels Kk

Kk(z , z ′) = ‖z‖‖z ′‖κ

( 〈z , z ′〉
‖z‖‖z ′‖

)

, κ(u) =
∞
∑

j=0

bju
j

RKHS contains homogeneous functions:

f : z 7→ ‖z‖σ(〈g , z〉/‖z‖)

(Bietti and Mairal, 2019a). Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels Kk

Kk(z , z ′) = ‖z‖‖z ′‖κ

( 〈z , z ′〉
‖z‖‖z ′‖

)

, κ(u) =
∞
∑

j=0

bju
j

RKHS contains homogeneous functions:

f : z 7→ ‖z‖σ(〈g , z〉/‖z‖)

Smooth activations: σ(u) =
∑∞

j=0 aju
j

Norm: ‖f ‖2
Hk

≤ C2
σ(‖g‖2) =

∑∞
j=0

a2
j

bj
‖g‖2 < ∞

(Bietti and Mairal, 2019a). Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels Kk

Examples:

σ(u) = u (linear): C2
σ(λ2) = O(λ2)

σ(u) = up (polynomial): C2
σ(λ2) = O(λ2p)

σ ≈ sin, sigmoid, smooth ReLU: C2
σ(λ2) = O(ecλ2

)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

f : x (x)
ReLU
sReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

f(x
)

f : x |x| (wx/|x|)
ReLU, w=1
sReLU, w = 0
sReLU, w = 0.5
sReLU, w = 1
sReLU, w = 2
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Constructing a CNN in the RKHS HCKN

Consider a CNN with filters W ij
k (u), u ∈ Sk

“Smooth homogeneous” activations σ

The CNN can be constructed hierarchically in HCKN

Norm upper bound:

‖fσ‖2
H ≤ ‖Wn+1‖2

2 C2
σ(‖Wn‖2

2 C2
σ(‖Wn–1‖2

2 C2
σ(. . . )))

(Bietti and Mairal, 2019a)
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Constructing a CNN in the RKHS HCKN

Consider a CNN with filters W ij
k (u), u ∈ Sk

“Smooth homogeneous” activations σ

The CNN can be constructed hierarchically in HCKN

Norm upper bound (linear layers):

‖fσ‖2
H ≤ ‖Wn+1‖2

2 · ‖Wn‖2
2 · ‖Wn–1‖2

2 . . . ‖W1‖2
2

Linear layers: product of spectral norms

(Bietti and Mairal, 2019a)
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Link with generalization

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ H, ‖f ‖H ≤ B} =⇒ RadN(FB) ≤ O

(

BR√
N

)
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Link with generalization

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ H, ‖f ‖H ≤ B} =⇒ RadN(FB) ≤ O

(

BR√
N

)

Margin bound for a learned model f̂N with margin (confidence) γ > 0

P(y f̂N(x) < 0) ≤ O

(

‖f̂N‖HR

γ
√

N

)

If f̂N is a CNN: related to recent generalization bounds for neural networks based on
product of spectral norms (e.g., Bartlett et al., 2017; Neyshabur et al., 2018)
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Going further for the non-convolutional case

Fully-connected models =⇒ dot-product kernels

K (x , y) = κ(x⊤y) for x , y ∈ S
p–1

Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)

NTK for infinitely wide networks (Jacot et al., 2018)
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Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)

NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)

Rotation-invariant kernel on the sphere

=⇒ RKHS description in the L2(Sp–1) basis of spherical harmonics Yk,j

κ(x⊤y) =
∞
∑

k=0

µk

N(p,k)
∑

j=1

Yk,j(x)Yk,j(y), for x , y ∈ S
p–1
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Going further for the non-convolutional case

Fully-connected models =⇒ dot-product kernels

K (x , y) = κ(x⊤y) for x , y ∈ S
p–1

Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)

NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)

Rotation-invariant kernel on the sphere

=⇒ RKHS description in the L2(Sp–1) basis of spherical harmonics Yk,j

H =







f =
∞
∑

k=0

N(p,k)
∑

j=1

ak,jYk,j(·) s.t. ‖f ‖2
H :=

∑

k,j

a2
k,j

µk

< ∞






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Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)

Decay of µk ↔ regularity of functions in the RKHS

Leads to sufficient conditions for RKHS membership

Rates of approximation for Lipschitz functions
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Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)

Decay of µk ↔ regularity of functions in the RKHS

Leads to sufficient conditions for RKHS membership

Rates of approximation for Lipschitz functions

NTK vs random features (Bietti and Mairal, 2019b)

f has p/2 η-bounded derivatives =⇒ f ∈ HNTK , ‖f ‖HNTK
≤ O(η)

p/2 + 1 needed for RF (Bach, 2017)

=⇒ HNTK is (slightly) “larger” than HRF

Similar improvement for approximation of Lipschitz functions
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Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives

Alberto Bietti PhD defense November 27, 2019 30 / 40



Regularizing deep learning models in practice

Two issues with today’s deep learning models:

Poor performance on small datasets

Lack of robustness to adversarial perturbations
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Two issues with today’s deep learning models:

Poor performance on small datasets

Lack of robustness to adversarial perturbations

clean + noise → “ostrich”
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Regularizing deep learning models in practice

Two issues with today’s deep learning models:

Poor performance on small datasets

Lack of robustness to adversarial perturbations

(a real ostrich)
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Regularizing deep learning models in practice

Two issues with today’s deep learning models:

Poor performance on small datasets

Lack of robustness to adversarial perturbations

New approach to regularization (Bietti et al., 2019):

View generic CNN fθ as an element of a RKHS H
◮ CNNs fθ with ReLUs are (approximately) in the RKHS for CKNs

Regularize using ‖fθ‖H
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Better models through regularization

Controlling upper bounds: spectral norm penalties/constraints

(Bietti, Mialon, Chen, and Mairal, 2019)
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Controlling upper bounds: spectral norm penalties/constraints

Controlling lower bounds using ‖f ‖H = sup‖u‖H≤1〈f , u〉
=⇒ consider tractable subsets of the unit ball using properties of Φ

‖f ‖H ≥ sup
x ,‖δ‖≤1

〈f , Φ(x + δ) − Φ(x)〉H (adversarial perturbations)

(Bietti, Mialon, Chen, and Mairal, 2019)
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x
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Better models through regularization

Controlling upper bounds: spectral norm penalties/constraints

Controlling lower bounds using ‖f ‖H = sup‖u‖H≤1〈f , u〉
=⇒ consider tractable subsets of the unit ball using properties of Φ

‖f ‖H ≥ sup
x ,‖δ‖≤1

f (x + δ) − f (x) (adversarial perturbations)

‖f ‖H ≥ sup
x ,‖τ‖≤C

f (Lτ x) − f (x) (adversarial deformations)

‖f ‖H ≥ sup
x

‖∇f (x)‖2 (gradient penalty)

Best performance by combining upper + lower bound approaches

(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularization on small datasets: image classification

Table 2. Regularization on 300 or 1 000 examples from MNIST,

using deformations from Infinite MNIST. (∗) indicates that random

deformations were included as training examples, while kfk2τ and

kDτfk
2 use them as part of the regularization penalty.

Method 300 VGG 1k VGG

Weight decay 89.32 94.08
SN projection 90.69 95.01
grad-`2 93.63 96.67

kfk2δ penalty 94.17 96.99

krfk2 penalty 94.08 96.82

Weight decay (∗) 92.41 95.64
grad-`2 (∗) 95.05 97.48

kDτfk
2 penalty 94.18 96.98

kfk2τ penalty 94.42 97.13

kfk2τ + krfk2 94.75 97.40

kfk2τ + kfk2δ 95.23 97.66

kfk2τ + kfk2δ (∗) 95.53 97.56

kfk2τ + kfk2δ + SN proj 95.20 97.60

kfk2τ + kfk2δ + SN proj (∗) 95.40 97.77

(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularization on small datasets: protein homology detection

Table 3. Regularization on protein homology detection tasks, with

or without data augmentation (DA). Fixed hyperparameters are

selected using the first half of the datasets, and we report the

average auROC50 score on the second half.

Method No DA DA

No weight decay 0.446 0.500
Weight decay 0.501 0.546
SN proj 0.591 0.632

PGD-`2 0.575 0.595
grad-`2 0.540 0.552

kfk2δ 0.600 0.608

krfk2 0.585 0.611
PGD-`2 + SN proj 0.596 0.627

grad-`2 + SN proj 0.592 0.624

kfk2δ + SN proj 0.630 0.644

krfk2 + SN proj 0.603 0.625

(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularization for robustness

Links with robust optimization/adversarial training

Robust optimization yields another lower bound (hinge/logistic loss)

1

N

N
∑

i=1

sup
‖δ‖2≤ǫ

ℓ(yi , f (xi + δ)) ≤ 1

N

N
∑

i=1

ℓ(yi , f (xi)) + ǫ‖f ‖H

But: may only encourage local robustness around training data

(Bietti, Mialon, Chen, and Mairal, 2019)
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Links with robust optimization/adversarial training

Robust optimization yields another lower bound (hinge/logistic loss)

1

N

N
∑

i=1

sup
‖δ‖2≤ǫ

ℓ(yi , f (xi + δ)) ≤ 1

N

N
∑

i=1

ℓ(yi , f (xi)) + ǫ‖f ‖H

But: may only encourage local robustness around training data

Global vs local robustness

Controlling ‖f ‖H allows a more global form of robustness

Guarantees on adversarial generalization with ℓ2 perturbations
◮ Extension of margin-based bound, by using ‖f ‖H ≥ ‖f ‖Lip near the decision boundary

But: may cause a loss in accuracy in practice

(Bietti, Mialon, Chen, and Mairal, 2019)
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Robustness trade-offs on Cifar10
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(Bietti, Mialon, Chen, and Mairal, 2019)
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State-of-the-art robust accuracy for large ǫtest

(Bietti, Mialon, Chen, and Mairal, 2019)
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4 Conclusions and perspectives
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Conclusions

Benefits of convolutional kernels

Translation invariance + deformation stability with small patches and pooling

Extensions to other groups (roto-translations)

RKHS contains CNNs with smooth activations
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Conclusions

Benefits of convolutional kernels

Translation invariance + deformation stability with small patches and pooling

Extensions to other groups (roto-translations)

RKHS contains CNNs with smooth activations

New practical regularization strategies

Regularization of generic CNNs using RKHS norm

State-of-the-art performance on adversarial robustness

Links with over-parameterized optimization: neural tangent kernels

NTK for CNNs takes a similar form to CKNs

Weaker stability guarantees, but better approximation properties
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Perspectives

Further study of convolutional kernels

More precise approximation guarantees?

More empirical evaluation; is the NTK useful in practice?
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Perspectives

Further study of convolutional kernels

More precise approximation guarantees?

More empirical evaluation; is the NTK useful in practice?

Beyond kernels for deep learning

Kernels do not fully explain success of deep learning

Simple, tractable, interpretable models that improve on kernels?

Inductive bias of optimization beyond “lazy training”? lazy only for some layers?
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Thanks!
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Alberto Bietti PhD defense November 27, 2019 40 / 40



References I

F. Bach. Breaking the curse of dimensionality with convex neural networks. Journal of Machine
Learning Research (JMLR), 18(19):1–53, 2017.

P. L. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Advances in Neural Information Processing Systems (NIPS), 2017.

A. Bietti and J. Mairal. Invariance and stability of deep convolutional representations. In Advances in
Neural Information Processing Systems (NIPS), 2017a.

A. Bietti and J. Mairal. Stochastic optimization with variance reduction for infinite datasets with finite
sum structure. In Advances in Neural Information Processing Systems (NIPS), 2017b.

A. Bietti and J. Mairal. Group invariance, stability to deformations, and complexity of deep
convolutional representations. Journal of Machine Learning Research (JMLR), 20(25):1–49, 2019a.

A. Bietti and J. Mairal. On the inductive bias of neural tangent kernels. In Advances in Neural
Information Processing Systems (NeurIPS), 2019b.

A. Bietti, A. Agarwal, and J. Langford. A contextual bandit bake-off. arXiv preprint arXiv:1802.04064,
2018.

A. Bietti, G. Mialon, D. Chen, and J. Mairal. A kernel perspective for regularizing deep neural
networks. In Proceedings of the International Conference on Machine Learning (ICML), 2019.

Alberto Bietti PhD defense November 27, 2019 41 / 40



References II
J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 35(8):1872–1886, 2013.

L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in Neural Information
Processing Systems (NIPS), 2009.

T. Cohen and M. Welling. Group equivariant convolutional networks. In International Conference on
Machine Learning (ICML), 2016.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

R. Kondor and S. Trivedi. On the generalization of equivariance and convolution in neural networks to
the action of compact groups. In Proceedings of the International Conference on Machine Learning
(ICML), 2018.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551,
1989.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Alberto Bietti PhD defense November 27, 2019 42 / 40



References III

J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein. Deep neural
networks as gaussian processes. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks. In Advances in
Neural Information Processing Systems (NIPS), 2016.

J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. Convolutional kernel networks. In Advances in
Neural Information Processing Systems (NIPS), 2014.

S. Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics, 65(10):
1331–1398, 2012.

R. M. Neal. Bayesian learning for neural networks. Springer, 1996.

B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. A PAC-Bayesian approach to
spectrally-normalized margin bounds for neural networks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2018.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural
Information Processing Systems (NIPS), 2007.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In
Proceedings of the International Conference on Learning Representations (ICLR), 2014.

Alberto Bietti PhD defense November 27, 2019 43 / 40



References IV

Y. Zhang, J. D. Lee, and M. I. Jordan. ℓ1-regularized neural networks are improperly learnable in
polynomial time. In International Conference on Machine Learning (ICML), 2016.

Y. Zhang, P. Liang, and M. J. Wainwright. Convexified convolutional neural networks. In International
Conference on Machine Learning (ICML), 2017.

Alberto Bietti PhD defense November 27, 2019 44 / 40



Discretization and signal preservation

I0 : Ω0 ! H0I0(ω0) ∈ H0

Pω1
∈ P0 (patch)

Kernel trick

I0.5(ω1) = ϕ1(Pω1
) ∈ H1

I0.5 : Ω0 → H1

I1 : Ω1 → H1

Linear pooling

I1(ω2) ∈ H1
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Discretization and signal preservation

x̄k : subsampling factor sk after pooling with scale σk ≈ sk :

x̄k [n] = AkMkPk x̄k–1[nsk ]
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Discretization and signal preservation

x̄k : subsampling factor sk after pooling with scale σk ≈ sk :

x̄k [n] = AkMkPk x̄k–1[nsk ]

Claim: We can recover x̄k−1 from x̄k if subsampling sk ≤ patch size

How? Kernels! Recover patches with linear functions (contained in RKHS)

〈fw , MkPkx(u)〉 = fw (Pkx(u)) = 〈w , Pkx(u)〉
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Signal recovery: example in 1D

xk−1

Pkxk−1(u) ∈ Pk

MkPkxk−1

dot-product kernel

AkMkPkxk−1

linear pooling

downsampling

xk

recovery with linear measurements

Akxk−1

deconvolution

xk−1

Alberto Bietti PhD defense November 27, 2019 47 / 40



Beyond the translation group

Global invariance to other groups?

Rotations, reflections, roto-translations, ...

Group action Lgx(u) = x(g−1u)

Equivariance in inner layers + (global) pooling in last layer

Similar construction to Cohen and Welling (2016); Kondor and Trivedi (2018)
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G-equivariant layer construction

Feature maps x(u) defined on u ∈ G (G : locally compact group)
◮ Input needs special definition when G 6= Ω

Patch extraction:
Px(u) = (x(uv))v∈S

Non-linear mapping: equivariant because pointwise!

Pooling (µ: left-invariant Haar measure):

Ax(u) =

∫

G
x(uv)h(v)dµ(v) =

∫

G
x(v)h(u−1v)dµ(v)
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Group invariance and stability

Roto-translation group G = R
2
⋊ SO(2) (translations + rotations)

Stability w.r.t. translation group

Global invariance to rotations (only global pooling at final layer)
◮ Inner layers: patches and pooling only on translation group
◮ Last layer: global pooling on rotations
◮ Cohen and Welling (2016): pooling on rotations in inner layers hurts performance on Rotated

MNIST
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