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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)
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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

f (x) = Wnσ(Wn–1 · · ·σ(W1x) · · · )

Recipe: huge models + lots of data + compute + simple algorithms
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Exploiting data structure through architectures
Convolutional Neural Networks in Front of the Scene

The keywords: multi-scale, compositional, invariant, local features.
Picture from Y. LeCun’s tutorial:

Julien Mairal Data Science in the Alps 5/21Modern architectures (CNNs, GNNs, Transformers, ...)
Provide some invariance through pooling
Model (local) interactions at different scales, hierarchically
Useful inductive biases for learning efficiently on structured data
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Geometric stability to deformations

Deformations
φ : Ω→ Ω: C1-diffeomorphism (e.g., Ω = R2)
φ · x(u) = x(φ−1(u)): action operator
Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Geometric stability to deformations

Deformations
φ : Ω→ Ω: C1-diffeomorphism (e.g., Ω = R2)
φ · x(u) = x(φ−1(u)): action operator
Much richer group of transformations than translations

Geometric stability
A function f (·) is stable (Mallat, 2012) if:

f (φ · x) ≈ f (x) when ‖∇φ− I‖∞ ≤ ε

In particular, near-invariance to translations (∇φ = I)
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Understanding deep learning

The challenge of deep learning theory
Over-parameterized (millions of parameters)
Expressive (can approximate any function)
Complex architectures for exploiting problem structure
Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint
View deep networks as functions in some functional space
Non-parametric models, natural measures of complexity (e.g., norms)

What is an appropriate functional space?
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Kernels to the rescue

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Kernels?
Map data x to high-dimensional space, Φ(x) ∈ H (H: “RKHS”)
Functions f ∈ H are linear in features: f (x) = 〈f ,Φ(x)〉 (f can be non-linear in x !)
Learning with a positive definite kernel K (x , x ′) = 〈Φ(x),Φ(x ′)〉

I H can be infinite-dimensional! (kernel trick)
I Need to compute kernel matrix K = [K (xi , xj)]ij ∈ RN×N
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Kernels to the rescue

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Clean and well-developed theory
Tractable methods (convex optimization)
Statistical and approximation properties well understood for many kernels
Costly (kernel matrix of size N2) but approximations are possible
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Studying architecture benefits through kernels

Hierarchical kernels (Cho and Saul, 2009)
Kernels can be constructed hierarchically

K (x , x ′) = 〈Φ(x),Φ(x ′)〉 with Φ(x) = ϕ2(ϕ1(x))

e.g., dot-product kernels on the sphere

K (x , x ′) = κ2(〈ϕ1(x), ϕ1(x ′)〉) = κ2(κ1(x>x ′))
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Studying architecture benefits through kernels

Convolutional kernels for images (Mairal et al., 2014; Mairal, 2016; Shankar et al., 2020)

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Good empirical performance with tractable approximations (Nyström)
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Studying architecture benefits through kernels

Links with infinite-width networks
Over-parameterized networks can lead to similar structured kernels
“Kernel regimes”:

I Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
I Neural tangent kernels (NTK, Jacot et al., 2018; Chizat et al., 2019)

Well-defined for many architectures

Goal: study sample complexity benefits of architectures through kernels
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Outline

1 Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)

2 Locality and depth (B., 2021)
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Geometric priors

Invariant Function Classes

• These domain transformations are lifted to linear transformations (a.k.a. 
group representations):

$ " ! = "($"#!)
' ∶ Ω → Ω ' ∶ #(Ω) → #(Ω)

Functions f : X → R that are “smooth” along known transformations of input x
e.g., translations, rotations, permutations, deformations
We consider: permutations σ ∈ G

(σ · x)[u] = x [σ−1(u)]

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

f (σ · x) = f (x), σ ∈ G

Geometric stability: For other sets G (e.g., local shifts, deformations), we want

f (σ · x) ≈ f (x), σ ∈ G
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Geometric priors: symmetrization operator

SG f (x) := 1
|G |

∑
σ∈G

f (σ · x)

Assumptions on a target function f ∗

G-invariant: SG f ∗ = f ∗
G-stable: f ∗ = SGg∗, for some g∗

I More generally, f ∗ = S r
Gg∗ for some r

I Similarity to source conditions in kernel methods or inverse problems

How do these interact with generic smoothness properties of f ∗?
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Spherical harmonics, dot-product kernels
Harmonic analysis on the sphere

x ∼ τ uniform distribution on the sphere Sd−1

L2(τ) basis of spherical harmonics Yk,j

N(d , k) harmonics of degree k, form a basis of Vd ,k

Example (3/6)

Definition (Spherical harmonics)

A homogeneous polynomial of degree k � 0 in Rd whose Laplacian
vanishes is called a homogeneous harmonic of order k .

A spherical harmonic of order k is a homogeneous harmonic of order
k on the unit sphere Sd�1

The set Yk(d) of spherical harmonics is a vector space of dimension

N(n, k) = dim (Yk(d)) =
(2k + d � 2)(k + d � 3)!

k!(d � 2)!
.

237 / 652

Dot-product kernels and their RKHS K (x , x ′) = κ(〈x , x ′〉)

H =

f =
∞∑
k=0

N(d ,k)∑
j=1

ak,jYk,j(·) s.t. ‖f ‖2H :=
∑
k,j

a2k,j
µk

<∞


µk = ωd−2
ωd−1

∫ 1
−1 κ(t)Pd ,k(t)(1− t2)

d−3
2 dt: eigenvalues of integral operator TK , each with

multiplicity N(d , k) (Pd ,k : Legendre/Gegenbauer polynomial)

decay ↔ regularity: µk � k−2β ↔ ‖f ‖H = ‖T−1/2K f ‖L2(τ) ≈ ‖∆β/2
Sd−1f ‖L2(τ)
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Invariant harmonics

Key properties of SG for invariant case (Mei, Misiakiewicz, and Montanari, 2021)
SG acts as projection from Vd ,k (dim N(d , k)) to V d ,k (dim N(d , k))
The number of invariant spherical harmonics N can be estimated using:

γd(k) := N(d , k)
N(d , k) = 1

|G |
∑
σ∈G

Ex [Pd ,k(〈σ · x , x〉)].

Invariant kernels (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

KG(x , x ′) = 1
|G |

∑
σ∈G

κ(〈σ · x , x ′〉)

Corresponds to (full-width) convolution + global pooling
Note that TKG = SGTK
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Counting invariant harmonics

γd(k) := N(d , k)
N(d , k) = 1

|G |
∑
σ∈G

Ex [Pd ,k(〈σ · x , x〉)].

Proposition ((B., Venturi, and Bruna, 2021))
As k →∞, we have

γd(k) = 1
|G | + O(k−d+c),

where c is the maximal number of cycles of any permutation σ ∈ G \ {Id}.

Relies on singularity analysis of density of 〈σ · x , x〉 (Saldanha and Tomei, 1996)
c can be large (= d − 1) for some groups (e.g. cyclic on blocks of size 2, |G | = 2d/2)
Can use upper bounds with faster decays but larger constants
Comparison to Mei et al. (2021): they study d →∞ with fixed k (γd(k) = Θd(d−α)), we
study k →∞ with fixed d
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Sample complexity of invariant kernel

Assumptions for Kernel Ridge Regression
(G-invariance) f ∗(x) = E[y |x ] is G-invariant
(capacity) λm(TK ) ≤ CKm−α

(source) f ∗ = T r
Kg∗ with ‖g∗‖L2 ≤ Cf ∗

Theorem ((B., Venturi, and Bruna, 2021))

Let `n := sup{` : D(`) . νd(`)
2αr

2αr+1 n
1

2αr+1 }. (replace νd(`n) by 1 for non-invariant kernel)

E ‖f̂ − f ∗‖2L2(τ) ≤ C
(
νd(`n)

n

) 2αr
2αr+1

We have νd(`n) = 1
|G| + O(n

−β
(d−1)(2αr+1)+2βαr ) when γd(k) = 1/|G |+ O(k−β)

=⇒ Improvement in sample complexity by a factor |G |!
C may depend on d , but is optimal in a minimax sense over non-invariant f ∗
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Synthetic experiments

101 102 103

n

10 5

10 4

10 3

|f n
f* |

2

KRR, perm f*, d = 6

 cyclic
 block 3
 block 2
 perm

101 102 103

n

10 4

2 × 10 4

3 × 10 4

4 × 10 4

|f n
f* |

2

KRR, block_cyclic_2, d = 12

 inv

101 102 103

n

10 4

4 × 10 5

6 × 10 5

|f n
f* |

2

KRR, block_cyclic_6, d = 12

 inv

Figure: Comparison of KRR with invariant and non-invariant kernels.
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Stability
SG is no longer a projection, but its eigenvalues satisfy γd(k) = (

∑N(d ,k)
j=1 λk,j)/N(d , k)

Source condition adapted to SG : f ∗ = Sr
GT r

Kg∗ with ‖g∗‖L2 ≤ Cf ∗

Theorem ((B., Venturi, and Bruna, 2021))

Let `n := sup{` : D(`) . νd(`)
2r

2αr+1 n
1

2αr+1 }. (replace νd(`n) by 1 for non-invariant kernel)

E ‖f̂ − f ∗‖2L2(τ) ≤ C
(
νd(`n)1/α

n

) 2αr
2αr+1

Toy model for deformations (“small ‖∇σ − I‖”)

G := {σ ∈ Sd : |σ(u)− σ(u′)− (u − u′)| ≤ ε|u − u′|}

Can achieve γd(k) ≤ τd + O(k−Θ(d)), with τ < 1 =⇒ this leads to gains by a factor
exponential in d with a rate independent of d in νd(`n)!
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Discussion

Curse of dimensionality
For Lipschitz targets, cursed rate n−

2αr
2αr+1 = n−

2
2+d−1 (unimprovable)

Improving this rate requires more structural assumptions, and better architectures (up
next!) or adaptivity (Bach, 2017)

Comparison with (Mei ,Misiakiewicz , andMontanari , 2021)
Different asymptotics (us: n→∞ with d fixed, them: d →∞ with n ∼ d`)
Their regimes only allow gains by polynomial factors in d
We may achieve gains by exponential factors (when |G | is exponential in d), but only
asymptotically
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Outline

1 Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)

2 Locality and depth (B., 2021)
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Breaking the curse of dimensionality with locality
x

xu

One-layer local convolutional kernel: localized patches xu = (x [u], . . . , x [u + s]) (1D)

K (x , x ′) =
∑
u∈Ω

k(xu, x ′u)

RKHS HK contains functions f (x) =
∑

u∈Ω gu(xu) with gu ∈ Hk

No curse: Smoothness requirement on gu scales with s instead of d
Pooling further encourages similarities between the gu,

Generalization

E L(f̂n)− L(f ∗) . ‖f ∗‖HK

√
Ex K (x , x)

n

For invariant targets, ‖f ∗‖ independent of pooling, Ex K (x , x) improves with pooling
Fast rates possible (Favero et al., 2021)
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Adding convolutional layers

Fully-connected kernels: deep = shallow (B. and Bach, 2021; Chen and Xu, 2021)
Can depth help for structured kernels?

Convolutional Kernel networks (Mairal, 2016)

u 7→ x[u]

xu

u 7→ ϕ(xu)

dot-product kernel

linear pooling

downsampling

u 7→ Φ(x)[u]
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Some experiments on Cifar10

2-layers, 3x3 patches, pooling/downsampling sizes (2,5). Patch kernels κ1, κ2.

κ1 κ2 Test acc. (10k examples) Test acc. (50k examples)
Exp Exp 80.5% 87.9% (84.1%)
Exp Poly3 80.5% 87.7% (84.1%)
Exp Poly2 79.4% 86.9% (83.4%)
Poly2 Exp 77.4% - (81.5%)
Poly2 Poly2 75.1% - (81.2%)
Exp - (Lin) 74.2% - (76.3%)

In parentheses: Nyström approximation of the kernel (Mairal, 2016) with [256,4096] filters,
instead of the full kernel.
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Structured interaction models via depth and pooling
RKHS of 2-layer convolutional kernel with quadratic κ2: Contains functions

f (x) =
∑

p,q∈S2

∑
u,v∈Ω

gpq
u,v (xu, xv ),

with gpq
u,v = 0 if |u − v − (p − q)| > diam(supp(h1)).

Tensor-product ANOVA model: gpq
u,v ∈ Hk ⊗Hk

Still no curse if 2s � d
Pooling layers encourage similarities between different gpq

u,v
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Improvements in generalization

E L(f̂n)− L(f ∗) . ‖f ∗‖HK

√
Ex K (x , x)

n

Consider f ∗(x) =
∑

u,v∈Ω g∗(xu, xv ) with g∗ ∈ Hk ⊗Hk

Assume Ex [k(xu, xu′)k(xv , xv ′)] ≤ ε if u 6= u′ or v 6= v ′

Obtained bound for different pooling layers (h1, h2) and patch sizes (|S2|):

h1 h2 |S2| ‖f ∗‖K Ex K (x , x) Bound (ε = 0)
δ δ |Ω| |Ω|‖g‖ |Ω|3 + ε|Ω|3 ‖g‖|Ω|2.5/√n
δ 1 |Ω| |Ω|‖g‖ |Ω|2 + ε|Ω|3 ‖g‖|Ω|2/√n
1 1 |Ω|

√
|Ω|‖g‖ |Ω|+ ε|Ω|3 ‖g‖|Ω|/√n

1 δ or 1 1
√
|Ω|‖g‖ |Ω|−1 + ε|Ω| ‖g‖/√n

Note: larger polynomial improvements in |Ω| possible with higher-order interactions.
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Conclusion and perspectives

Summary
Improved sample complexity for invariance and stability through pooling
Locality breaks the curse
Depth and pooling in convolutional models captures rich interaction models with
invariances

Future directions
Empirical benefits for kernels beyond two-layers?
Invariance groups need to be built-in, can we adapt to them?
Adaptivity to structure beyond one-layer:

I low-dimensional structures (Gabor) at first layer?
I more structured interactions at second layer?
I optimization beyond kernel regimes?

Thank you!
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Folklore properties of convolutional modelsParadigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

Convolutional architectures:
Capture multi-scale and compositional structure in natural signals
Model local stationarity
Provide some translation invariance

Beyond translation invariance?
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One-layer convolutional kernel with pooling

h[u]: pooling filter (e.g., Gaussian)
Ah: (circular) convolution operator Ahx [u] =

∑
v∈Ω h[u − v ]x [v ]

Φ(x)[u] = ϕ(xu) ∈ H (ϕ: kernel mapping of k)

1-layer convolutional kernel

K (x , x ′) =
∑
u∈Ω

∑
v ,v ′

h[u − v ]h[u − v ′]k(xv , x ′v ′) = 〈AhΦ(x),AhΦ(x ′)〉L2(Ω,H)

Functions in RKHS: Same functions f (x) =
∑

u g [u](xu), different penalty: ‖A†hg‖2L2(Ω,H).

=⇒ Encourages spatial smoothness: for gz [u] := g [u](z), we have

Â†hgz [w ] = ĝz [w ]
ĥ[w ]

Large pooling ↔ fast decay of ĥ[w ] ↔ stronger penalty on high frequencies of gz .
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Generalization benefits of pooling
Translation-invariant target f ∗(x) =

∑
u g(xu), with g ∈ H.

Learn using kernel Kh with pooling with filter h ≥ 0, ‖h‖1 = 1, e.g.:
no pooling: h[u] = δu,0

global pooling: h[u] = 1/|Ω|
Ah(g , . . . , g) = (g , . . . , g) =⇒ same RKHS norm for any h!

Basic generalization bound with 1-Lipschitz loss on F = {‖f ‖Kh ≤ B}

E L(fn)−min
f ∈F

L(f ) . B
√
Ex [Kh(x , x)]√

n

Under simple data models, Ex [k(xu, xu)] = 1, Ex [k(xu, xv )] ≤ ε� 1 for u 6= v
no pooling: E[Kh(x , x)] = |Ω|
global pooling: E[Kh(x , x)] ≤ 1 + ε|Ω| =⇒ need ∼ |Ω| fewer samples!
General h: E[Kh(x , x)] ≤ |Ω|‖h‖22 + ε|Ω|(1− ‖h‖22)
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Two-layer convolutional kernel

Quadratic patch kernel k2(z , z ′) = (z>z ′)2 = 〈z ⊗ z , z ′ ⊗ z ′〉(H⊗H)|S2|×|S2|

H⊗H: contains functions g(xu, xv ) of 2 patches (Wahba, 1990)

RKHS of 2-layer convolutional kernel (patch size |S2| = 1): Contains functions

f (x) =
∑

u,v∈Ω
G [u, v ](xu, xv ),

with G [u, v ] = 0 if |u − v | > diam(supp(h1)). Penalty:

‖A†2 diag((A1 ⊗ A1)†G)‖2L2(Ω2,H⊗H)

(A1 ⊗ A1)†: encourages 2D smoothness of “image” G [u, v ], bandwidth σ1
A†2: encourage 1D smoothness along diagonal of G , bandwidth σ2
σ1 > σ2 =⇒ G [u, v ] can depend more strongly on u − v than u or v
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Two-layer convolutional kernel

RKHS of 2-layer convolutional kernel (any patch size |S2|): Contains functions

f (x) =
∑

p,q∈S2

∑
u,v∈Ω

Gpq[u, v ](xu, xv ),

with Gpq[u, v ] = 0 if |u − v − (p − q)| > diam(supp(h1)). Penalty:∑
p,q∈S2

‖A†2 diag((LpA1 ⊗ LqA1)†Gpq)‖2L2(Ω2,H⊗H)
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u,v∈Ω

Gpq[u, v ](xu, xv ),

with Gpq[u, v ] = 0 if |u − v − (p − q)| > diam(supp(h1)). Penalty:∑
p,q∈S2

‖A†2 diag((LpA1 ⊗ LqA1)†Gpq)‖2L2(Ω2,H⊗H)

“Variance” term:
√
Ex [K (x , x)] ≤ |Ω||S2|2

∑
v 〈h2, Lvhw 〉〈h1, Lvh1〉2 + O(ε)
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RKHS of 2-layer convolutional kernel (any patch size |S2|): Contains functions

f (x) =
∑
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“Variance” term:
√
Ex [K (x , x)] ≤ |Ω||S2|2

∑
v 〈h2, Lvhw 〉〈h1, Lvh1〉2 + O(ε)

Extensions:
κ2 higher-degree polynomial =⇒ higher-order interactions
more layers: also higher-order interactions, but more structured penalty
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Stability to deformations

Deformations
τ : Ω→ Ω: C1-diffeomorphism
Lτx(u) = x(u − τ(u)): action operator
Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Stability to deformations

Deformations
τ : Ω→ Ω: C1-diffeomorphism
Lτx(u) = x(u − τ(u)): action operator
Much richer group of transformations than translations

Definition of stability
Representation Φ(·) is stable (Mallat, 2012) if:

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation
‖τ‖∞ = supu |τ(u)| controls translation
C2 → 0: translation invariance
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Smoothness and stability with kernels

Geometry of the kernel mapping: f (x) = 〈f ,Φ(x)〉

|f (x)− f (x ′)| ≤ ‖f ‖H · ‖Φ(x)− Φ(x ′)‖H

‖f ‖H controls complexity of the model
Φ(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)

Useful kernels in practice:
Convolutional kernel networks (CKNs, Mairal, 2016) with efficient approximations
Extends to neural tangent kernels (NTKs, Jacot et al., 2018) of infinitely wide
CNNs (Bietti and Mairal, 2019)
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Construction of convolutional kernels

Construct a sequence of feature maps x1, . . . , xn
x0 : Ω→ H0: initial (continuous) signal

I u ∈ Ω = Rd : location (d = 2 for images)
I x0(u) ∈ H0: value (H0 = R3 for RGB images)

xk : Ω→ Hk : feature map at layer k

xk = AkMkPkxk−1

I Pk : patch extraction operator, extract small patch of feature map xk−1 around each point u
I Mk : non-linear mapping operator, maps each patch to a new point with a pointwise

non-linear function ϕk(·) (kernel mapping)
I Ak : (linear, Gaussian) pooling operator at scale σk

Goal: control stability of these operators through their norms
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CKN construction

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u + v))v∈Sk ∈ Pk = HSk
k–1

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)
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Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u + v))v∈Sk ∈ Pk = HSk
k–1

Sk : patch shape, e.g. box
Pk is linear, and preserves the L2 norm: ‖Pkxk–1‖ = ‖xk–1‖
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

xk–1 : Ω → Hk–1

Pkxk–1(v) ∈ Pk

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

ϕk : Pk → Hk pointwise non-linearity on patches (kernel map)
We assume non-expansivity: for z , z ′ ∈ Pk

‖ϕk(z)‖ ≤ ‖z‖ and ‖ϕk(z)− ϕk(z ′)‖ ≤ ‖z − z ′‖

Mk then satisfies, for x , x ′ ∈ L2(Ω,Pk)

‖Mkx‖ ≤ ‖x‖ and ‖Mkx −Mkx ′‖ ≤ ‖x − x ′‖
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ϕk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z , z ′) = ‖z‖‖z ′‖κk
( 〈z , z ′〉
‖z‖‖z ′‖

)
= 〈ϕk(z), ϕk(z ′)〉.

κk(u) =
∑∞

j=0 bjuj with bj ≥ 0, κk(1) = 1

Commonly used for hierarchical kernels
‖ϕk(z)‖ = Kk(z , z)1/2 = ‖z‖
‖ϕk(z)− ϕk(z ′)‖ ≤ ‖z − z ′‖ if κ′k(1) ≤ 1
=⇒ non-expansive

Alberto Bietti Sample complexity under invariance UC Berkeley, Sept 15, 2021 40 / 24



ϕk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z , z ′) = ‖z‖‖z ′‖κk
( 〈z , z ′〉
‖z‖‖z ′‖

)
= 〈ϕk(z), ϕk(z ′)〉.

κk(u) =
∑∞

j=0 bjuj with bj ≥ 0, κk(1) = 1

Examples
κexp(〈z , z ′〉) = e〈z,z ′〉−1 (Gaussian kernel on the sphere)
κinv-poly(〈z , z ′〉) = 1

2−〈z,z ′〉

κσ(〈z , z ′〉) = Ew [σ(w>z)σ(w>z ′)] (Random features)
I arc-cosine kernels for the ReLU σ(u) = max(0, u)
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

xk–1 : Ω → Hk–1

MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

hσk : pooling filter at scale σk
hσk (u) := σ−dk h(u/σk) with h(u) Gaussian
linear, non-expansive operator: ‖Ak‖ ≤ 1

In practice: discretization, sampling at resolution σk after pooling
“Preserves information” when subsampling ≤ patch size
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Recap: Pk , Mk , Ak

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Multilayer construction

Assumption on x0
x0 is typically a discrete signal aquired with physical device.
Natural assumption: x0 = A0x , with x the original continuous signal, A0 local integrator
with scale σ0 (anti-aliasing).

Multilayer representation

Φ(x0) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

Sk , σk grow exponentially in practice (i.e., fixed with subsampling).

Final kernel
KCKN(x , x ′) = 〈Φ(x),Φ(x ′)〉L2(Ω) =

∫
Ω
〈xn(u), x ′n(u)〉du
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Stability to deformations

Theorem (Stability of CKN (B. and Mairal, 2019))
Let Φn(x) = Φ(A0x) and assume ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτx)− Φn(x)‖ ≤
(

Cβ (n + 1) ‖∇τ‖∞ + C
σn
‖τ‖∞

)
‖x‖

Translation invariance: large σn
Stability: small patch sizes (β ≈ patch size, Cβ = O(β3) for images)
Signal preservation: subsampling factor ≈ patch size
=⇒ need several layers with small patches n = O(log(σn/σ0)/ log β)
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Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019))
Let Φn(x) = ΦNTK (A0x), and assume ‖∇τ‖∞ ≤ 1/2

‖Φn(Lτx)− Φn(x)‖

≤
(

Cβn7/4‖∇τ‖1/2∞ + C ′βn2‖∇τ‖∞ +
√

n + 1 C
σn
‖τ‖∞

)
‖x‖,

Comparison with random feature CKN on deformed MNIST digits:
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Experiments with convolutional kernels on Cifar10

Convolutional kernels with 3x3 patches + kernel ridge regression (danger: lots of compute!)

Conv. layers subsampling kernel test acc.
2 2-5 ReLU RF 86.63%
2 2-5 ReLU NTK 87.19%

2 2-5 exp, σ = 0.6 87.93%
3 2-2-2 exp, σ = 0.6 88.2%

16 (Li et al., 2019) last layer only ReLU RF 87.28%
16 (Li et al., 2019) last layer only ReLU NTK 86.77%

10 every 3 layers exp 88.2%

Li et al. (2019): no pooling before last layer, more complicated pre-processing
Shankar et al. (2020): similar performance to us (88.2%), reaches 90% when adding flips
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Approximation with convolutional networks

What functions does the RKHS contain? What is their norm?
Role of convolution vs fully-connected?
Role of depth?

Limitations of kernels?
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Prelude: “teacher” CNNs with smooth activations are in the RKHS

Consider a CNN with filters W ij
k (u), u ∈ Sk

Smooth activations σ with smoothness controlled by some Cκ,σ(·)
The CNN can be constructed hierarchically in HCKN

Complexity is controlled by the RKHS norm:

‖fσ‖2H ≤ ‖Wn+1‖22 C2
κ,σ(‖Wn‖22 C2

κ,σ(‖Wn–1‖22 C2
κ,σ(. . .)))

Linear layers: product of spectral norms
Can we give a more precise characterization of the RKHS?

(B. and Mairal, 2019)
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The fully-connected case

Fully-connected models =⇒ dot-product kernels

K (x , y) = κ(x>y) for x , y ∈ Sd−1

Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
Rotation-invariant kernel on the sphere
=⇒ RKHS description in the L2(Sd−1) basis of spherical harmonics Yk,j
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Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
Rotation-invariant kernel on the sphere
=⇒ RKHS description in the L2(Sd−1) basis of spherical harmonics Yk,j

Example (3/6)

Definition (Spherical harmonics)

A homogeneous polynomial of degree k � 0 in Rd whose Laplacian
vanishes is called a homogeneous harmonic of order k .

A spherical harmonic of order k is a homogeneous harmonic of order
k on the unit sphere Sd�1

The set Yk(d) of spherical harmonics is a vector space of dimension

N(n, k) = dim (Yk(d)) =
(2k + d � 2)(k + d � 3)!

k!(d � 2)!
.

237 / 652
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The fully-connected case

Fully-connected models =⇒ dot-product kernels

K (x , y) = κ(x>y) for x , y ∈ Sd−1

Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
Rotation-invariant kernel on the sphere
=⇒ RKHS description in the L2(Sd−1) basis of spherical harmonics Yk,j

κ(x>y) =
∞∑
k=0

µk

N(d ,k)∑
j=1

Yk,j(x)Yk,j(y), for x , y ∈ Sd−1
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NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
Rotation-invariant kernel on the sphere
=⇒ RKHS description in the L2(Sd−1) basis of spherical harmonics Yk,j

H =

f =
∞∑
k=0

N(d ,k)∑
j=1

ak,jYk,j(·) s.t. ‖f ‖2H :=
∑
k,j

a2k,j
µk

<∞
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Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)
Decay of µk ↔ regularity of functions in the RKHS
Polynomial decays µk ≈ k−2β: similar to Sobolev space of order β, norm:

‖f ‖H ≈ ‖∆β/2
Sd−1f ‖L2(Sd−1)

Leads to sufficient conditions for RKHS membership
Rates of approximation for Lipschitz functions

NTK vs random features (Bietti and Mairal, 2019)
f has β = p/2 η-bounded derivatives =⇒ f ∈ HNTK , ‖f ‖HNTK ≤ O(η)
β = p/2 + 1 needed for RF (Bach, 2017)
=⇒ HNTK is (slightly) “larger” than HRF

Similar improvement for approximation of Lipschitz functions
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Deep fully-connected ReLU networks: limitations

κL(x>y) = κ ◦ · · · ◦ κ︸ ︷︷ ︸
L times

(x>y)

Deep = Shallow (B. and Bach, 2021)
RF or NTK kernels for deep and shallow networks have the same decay! (thus same H)
Proof using differentiability of κ: we have µk ∼ kd−2ν+1 when

κ(1− t) = poly(t) + c1tν + o(tν)
κ(−1 + t) = poly(t) + c−1tν + o(tν).

Such expansions are preserved when taking composition with ReLU/arc-cosine kernel

Consequences
=⇒ kernel regime cannot explain power of depth in fully-connected nets
=⇒ power of deep kernels comes from architecture
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Deep = shallow: numerical experiments

Figure 1: (left, middle) expected squared error vs sample size n for kernel ridge regression estimators
with di�erent kernels on fú

1 and with two di�erent budgets on optimization di�culty ⁄min (the minimum
regularization parameter allowed). (right) ridge regression with one or two layers of random ReLU features
on fú

2 , with di�erent scalings of the number of “neurons” at each layer in terms of n.

Synthetic experiments. We consider randomly sampled inputs on the sphere S3 in 4 dimensions, and
outputs generated according to the following target models, for an arbitrary w œ S3: fú

1 (x) = {w€x Ø 0.7}
and fú

2 (x) = e≠(1≠w€x)3/2 + e≠(1+w€x)3/2 . Note that fú
1 is discontinuous and thus not in the RKHS in

general, while fú
2 is in the RKHS of Ÿ1 (since it is even and has the same decay as Ÿ1 as discussed in

Section 3.3). In Figure 1 we compare the quality of approximation for di�erent kernels by examining
generalization performance of ridge regression with exact kernels or random features. The regularization
parameter ⁄ is optimized on 10000 test datapoints on a logarithmic grid. In order to illustrate the di�culty
of optimization due to a small optimal ⁄, which would also indicate slower convergence with gradient methods,
we consider grids with ⁄ Ø ⁄min, for two di�erent choices of ⁄min. We see that all kernels provide a similar
rate of approximation for a large enough grid, but when fixing a smaller optimization budget by taking a
larger ⁄min, the NTK kernels can achieve better performance for large sample size n. Figure 1(right) shows
that when using m =

Ô
n random features (which can achieve optimal rates in some settings, see Rudi and

Rosasco, 2017), the “shallow” ReLU network performs better than a three-layer version, despite having fewer
weights. This suggests that in addition to providing no improvements to approximation in the infinite-width
case, the kernel regimes for deep ReLU networks may even be worse than their two-layer counterparts in the
finite-width setting.

MNIST and Fashion-MNIST. In Table 1, we consider the image classification datasets MNIST and
Fashion-MNIST, which both consist of 60k training and 10k test images of size 28x28 with 10 output
classes. We evaluate one-versus-all classifiers obtained by using kernel ridge regression by setting y = 0.9
for the correct label and y = ≠0.1 otherwise. We train on random subsets of 50k examples and use the
remaining 10k examples for validation. We find that test accuracy is comparable for di�erent numbers of
layers in RF or NTK kernels, with a slightly poorer performance for the two-layer case likely due to parity
constraints, in agreement with our theoretical result that the decay is the same for di�erent L. There is a
small decrease in accuracy for growing L, which may reflect changes in the decay constants or numerical
errors when composing kernels. The slightly better performance of RF compared to NTK may suggest that
these problems are relatively easy (e.g., the regression function is smooth), so that a faster decay is preferable
due to better adaptivity to smoothness.

5 Discussion
In this paper, we have analyzed the approximation properties of deep networks in kernel regimes, by studying
eigenvalue decays of integral operators through di�erentiability properties of the kernel function. In partic-
ular, the decay is governed by the form of the function’s (generalized) power series expansion around ±1,

8
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Deep = shallow: numerical experiments

Under review as a conference paper at ICLR 2021

Figure 1: (left, middle) expected squared error vs sample size n for kernel ridge regression
estimators with di�erent kernels on fú

1 and with two di�erent budgets on optimization
di�culty ⁄min (the minimum regularization parameter allowed). (right) ridge regression
with one or two layers of random ReLU features on fú

2 , with di�erent scalings of the number
of “neurons” at each layer in terms of n.

Table 1: Test accuracies on MNIST (left) and Fashion-MNIST (right) for RF and NTK
kernels with varying numbers of layers L. We use kernel ridge regression on 50k samples,
with ⁄ optimized on a validation set of size 10k, and report mean and standard errors across
5 such random splits of the 60k training samples.
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L RF NTK
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3 98.67 ± 0.03 98.53 ± 0.02
4 98.66 ± 0.02 98.49 ± 0.01
5 98.65 ± 0.04 98.46 ± 0.02

L RF NTK
2 90.75 ± 0.11 90.65 ± 0.07
3 90.87 ± 0.16 90.62 ± 0.08
4 90.89 ± 0.13 90.55 ± 0.07
5 90.88 ± 0.08 90.50 ± 0.05

MNIST and Fashion-MNIST. In Table 1, we consider the image classification datasets
MNIST and Fashion-MNIST, which both consist of 60k training and 10k test images of size
28x28 with 10 output classes. We evaluate one-versus-all classifiers obtained by using kernel
ridge regression by setting y = 0.9 for the correct label and y = ≠0.1 otherwise. We train
on random subsets of 50k examples and use the remaining 10k examples for validation. We
find that test accuracy is comparable for di�erent numbers of layers in RF or NTK kernels,
with a slightly poorer performance for the two-layer case likely due to parity constraints, in
agreement with our theoretical result that the decay is the same for di�erent L. There is a
small decrease in accuracy for growing L, which may reflect changes in the decay constants or
numerical errors when composing kernels. The slightly better performance of RF compared
to NTK may suggest that these problems are relatively easy (e.g., the regression function
is smooth), so that a faster decay is preferable due to better adaptivity to smoothness.

5 Discussion

In this paper, we have analyzed the approximation properties of deep networks in kernel
regimes, by studying eigenvalue decays of integral operators through di�erentiability proper-
ties of the kernel function. In particular, the decay is governed by the form of the function’s
(generalized) power series expansion around ±1, which remains the same for kernels aris-
ing from fully-connected ReLU networks of varying depths. This result suggests that the
kernel approach is unsatisfactory for understanding the power of depth in fully-connected
networks. In particular, it highlights the need to incorporate other regimes in the study of
deep networks, such as the mean field regime (Chizat & Bach, 2018; Mei et al., 2018), and
other settings with hierarchical structure (see, e.g., Allen-Zhu & Li, 2020; Chen et al., 2020).
We note that our results do not rule out benefits of depth for other network architectures
in kernel regimes; for instance, depth may improve stability properties of convolutional ker-
nels (Bietti & Mairal, 2019a;b), and a precise study of approximation for such kernels and
its dependence on depth would also be of interest.

8
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Approximating functions on signals: motivation

Curse of dimensionality
Natural signals are very high-dimensional (d ≈ |Ω|, where Ω is the domain)
Approximating general f ∗ requires exponentially large norm or very high smoothness

Adding structure: localized functions e.g., f ∗(x) = g∗(Px [u0])
With fully-connected kernel, still need norm exp. large in d
For basic convolutional kernel, norm only scales with the dimension of the patch Px [u0]:

K (x , x ′) = 〈MPx ,MPx ′〉 =
∑
u∈Ω

k(Px [u],Px ′[u])

See also Ciliberto et al. (2019) for similar part-based kernels for structured prediction
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Warmup: one layer with pooling

K (x , x ′) = 〈AMPx ,AMPx ′〉L2(Ω,H)

(H: RKHS of patch kernels)
RKHS consists of functions of the form (patches denoted xu = Px [u] ∈ Rp)

f (x) =
∑
u∈Ω

G [u](xu), G [u] ∈ H

Squared RKHS norm given by the minimum over such decompositions of

‖A−>G‖2L2(Ω,H) = ‖(A−> ⊗ Γ)G‖2L2(Ω)⊗L2(Sp−1)

I G viewed in L2(Ω)⊗ L2(Sp−1) as (u, z) 7→ G [u](z)
I Γ = T −1/2 regularization operator of H, e.g., Γ = ∆β/2

Sp−1

=⇒ A (pooling) encourages smoothness of u 7→ G [u](z)
=⇒ Γ (kernel) encourages smoothness of z 7→ G [u](z)

Alberto Bietti Sample complexity under invariance UC Berkeley, Sept 15, 2021 54 / 24



Warmup: one layer with pooling

K (x , x ′) = 〈AMPx ,AMPx ′〉L2(Ω,H)

(H: RKHS of patch kernels)
RKHS consists of functions of the form (patches denoted xu = Px [u] ∈ Rp)

f (x) =
∑
u∈Ω

G [u](xu), G [u] ∈ H

Squared RKHS norm given by the minimum over such decompositions of

‖A−>G‖2L2(Ω,H) = ‖(A−> ⊗ Γ)G‖2L2(Ω)⊗L2(Sp−1)

I G viewed in L2(Ω)⊗ L2(Sp−1) as (u, z) 7→ G [u](z)
I Γ = T −1/2 regularization operator of H, e.g., Γ = ∆β/2

Sp−1

=⇒ A (pooling) encourages smoothness of u 7→ G [u](z)
=⇒ Γ (kernel) encourages smoothness of z 7→ G [u](z)

Alberto Bietti Sample complexity under invariance UC Berkeley, Sept 15, 2021 54 / 24



Beyond one layer: empirical study

Cifar10 with full kernel (or Nyström in parentheses)
κ1 κ2 Test acc. (10k) Test acc. (full)
Exp Exp 80.5% 87.9% (84.1%)
Exp Poly3 80.5% 87.7% (84.1%)
Exp Poly2 79.4% 86.9% (83.4%)
Poly2 Exp 77.4% - (81.5%)
Poly2 Poly2 75.1% - (81.2%)
Exp - (Lin) 74.2% - (76.3%)

One layer is not enough

Polynomial kernel can be enough for second layer
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Interlude: kernel tensor products

κ2 polynomial =⇒ products of patch kernels

K ((x1, x2), (x ′1, x ′2)) = k(x1, x ′1)k(x2, x ′2) = 〈ϕ(x1)⊗ ϕ(x2), ϕ(x ′1)⊗ ϕ(x ′2)〉H⊗H

RKHS H⊗H contains closure of functions f (x1, x2) =
∑m

j=1 f1,j(x1)f2,j(x2)

RKHS is often much smaller than a dot-product kernel on x = (x1, x2)
Helpful for modeling interactions between variables/patches (Wahba, 1990; Lin, 2000;
Scetbon and Harchaoui, 2020)
Here, the architecture determines which interactions matter, and pooling will further
encourage spatial regularities among interaction terms
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RKHS of two-layer CKN with quadratic second layer

Kernel K (x , x ′) = 〈Φ(x),Φ(x ′)〉, with

Φ(x) = A2M2P2A1M1P1x ∈ L2
(

Ω, (H⊗H)|S2|×|S2|
)

RKHS functions of the form

f (x) =
∑

p,q∈S2

∑
u,v∈Ω

Gpq[u, v ](xu, xv )

Under localization constraint: Gpq ∈ Range((LpA1 ⊗ LqA1)> diag(·))

(LpA1 ⊗ LqA1)−>G encourages 2D smoothness of (u, v) 7→ G [u, v ](z , z ′)
A−>2 imposes even stronger 1D smoothness on diagonal u − v = p − q
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Approximation in deep CNNs: a kernel perspective

Table 1. Cifar10 test accuracy with 2-layer convolutional kernels
with 3x3 patches and pooling/downsampling sizes [2,5], with dif-
ferent choices of patch kernels 1 and 2. The last model is similar
to a 1-layer convolutional kernel. For computational reasons we
only use the exact kernel on the full training set (50k images) for
some of the models, but show results using 10k training images
for all models. The numbers in parentheses are for the Nyström
approximation approach of Mairal (2016) with [256,4096] filters,
instead of the full kernel, which is computationally much cheaper.
See Section 4 for experimental details.

1 2 Test acc. (10k) Test acc. (full)
Exp Exp 80.5% 87.9% (84.1%)
Exp Poly3 80.5% 87.7% (84.1%)
Exp Poly2 79.4% 86.9% (83.4%)

Poly2 Exp 77.4% - (81.5%)
Poly2 Poly2 75.1% - (81.2%)
Exp - (Lin) 74.2% - (76.3%)

at higher layers are typically similar to the ones from the
first layer, we show empirically on Cifar10 that they may
be replaced by simple polynomial kernels with little loss
in accuracy. We then proceed by studying the RKHS of
such simplified models, highlighting the role of depth for
capturing interactions between different patches via kernel
tensor products.

An empirical study. Table 1 shows the performance of
a given 2-layer convolutional kernel architecture, with dif-
ferent choices of patch kernels 1 and 2. The reference
model uses exponential kernels in both layers, following
the construction of Mairal (2016). We find that replacing
the second layer kernel by a simple polynomial kernel of
degree 3, 2(u) = u3, leads to roughly the same test ac-
curacy. By changing 2 to 2(u) = u2, the test accuracy
is only about 1% lower, while doing the same for the first
layer decreases it by at least 3%. The shallow kernel with a
single non-linear convolutional layer (shown in the last line
of Table 1) performs significantly worse, and even when
using larger patches and different pooling sizes, we could
not obtain more than 76% test accuracy on 10k training
examples. Similar observations apply for the Nyström ap-
proximation of the kernel proposed by Mairal (2016), which
is much more tractable computationally. This suggests that
the approximation properties described in Section 3.1 may
not be sufficient for this task, while even a simple polyno-
mial kernel of order 2 at the second layer may substantially
improve things by capturing interactions, in a way that we
describe below.

Two-layers with a quadratic kernel. Motivated by the
above experiments, we now study the RKHS of a two-
layer kernel K2(x, x0) = h (x), (x0)iL2(⌦2,H2) with �
as in (1) with L = 2, where the second-layer uses a

Figure 2. Display of the response of the operator Epq to Dirac
inputs x = �u centered at two different locations u. These are
bumps centered on points of the p � q diagonal, corresponding to
interactions between two patches, at distance around p � q.

quadratic kernel1 on patches k2(z, z0) = (hz, z0i)2. An
explicit feature map for k2 is given by '2(z) = z ⌦
z. Denoting by H the RKHS of k1, the patches z lie
in H|S2|, thus we may view '2 as a feature map into a
Hilbert space H2 = (H ⌦ H)|S2|⇥|S2| (by isomorphism
to H|S2| ⌦ H|S2|). The following result characterizes the
RKHS of such a 2-layer convolutional kernel. In it, we
use the notations diag(M)[u] = M [u, u] for M 2 L2(⌦2),
diag(x)[u, v] = {u = v}x[u] for x 2 L2(⌦), and Lc

denotes a translation operator Lcx[u] = x[u � c].

Proposition 2 (RKHS of 2-layer CKN with quadratic k2).
Let �(x) = ('1(xu) ⌦ '1(xv))u,v2⌦ 2 L2(⌦2, H ⌦ H)
The RKHS of K2 when k2(z, z0) = (hz, z0i)2 consists of
functions of the form

f(x) =
X

p,q2S2

hGpq,�(x)i =
X

p,q2S2

X

u,v2⌦

Gpq[u, v](xu, xv),

where Gpq 2 L2(⌦2, H ⌦ H) obeys the constraints Gpq 2
Range(Epq), where the linear operator Epq : L2(⌦1) !
L2(⌦2) is given by

Epqx = (LpA1 ⌦ LqA1)
> diag(x),

and diag((LpA1 ⌦ LqA1)
�>Gpq) 2 Range(A>

2 ).

The squared RKHS norm kfk2
HK2

is then equal to the mini-
mum over such decompositions of the quantity
X

p,q2S2

kA�>
2 diag((LpA1 ⌦ LqA1)

�>Gpq)k2
L2(⌦2,H⌦H).

As discussed in the one-layer case, the inverses should be
replaced by pseudo-inverses if needed, e.g., when using
downsampling. In particular, if A>

2 is singular, the second
constraint plays a similar role to the one-layer case. In order
to understand the first constraint, we show in Figure 2 the

1For simplicity we study the quadratic kernel instead of the
homogeneous version used in the experiments, but we note that it
still performs well (78.0% instead of 79.4% on 10k examples).

(LpA1 ⊗ LqA1)−>G encourages 2D smoothness of (u, v) 7→ G [u, v ](z , z ′)
A−>2 imposes even stronger 1D smoothness on diagonal u − v = p − q
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Extensions

Higher-order polynomials =⇒ higher-order interactions
More layers: also capture higher-order interactions, with different structure

Empirically, on Cifar10, 2 layers with degree-4 kernels at 2nd layer suffice for best
performance
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Conclusions

Benefits of convolutional kernels
Translation invariance + deformation stability with small patches and pooling
=⇒ benefits of depth for stability
Approximation benefits of ≥ 2 layers by efficiently capturing interactions
Limitations of depth for fully-connected models in kernel regimes

Future directions
Empirically, any benefits of depth beyond 2 layers?
Statistical analysis through covariance operator

Perspectives: beyond kernels
Kernels provide a nice tractable model, but a limited picture of deep learning
Feature selection through mean-field/“active” regime, at least at first layer
Benefits of depth beyond simple interaction models, e.g., through hierarchy
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Convolutional NTK kernel mapping

Define
M(x , y)(u) =

(
ϕ0(x(u))⊗ y(u)

ϕ1(x(u))

)

Theorem (NTK feature map for CNN)

KNTK (x , x ′) = 〈Φ(x),Φ(x ′)〉L2(Ω),

with Φ(x)(u) = AnM(xn, yn)(u), where y1(u) = x1(u) = P1x(u) and

xk(u) = PkAk–1ϕ1(xk–1)(u)
yk(u) = PkAk–1M(xk–1, yk–1)(u).
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Discretization and signal preservation

x̄k : subsampling factor sk after pooling with scale σk ≈ sk :

x̄k [n] = AkMkPk x̄k–1[nsk ]

Claim: We can recover x̄k−1 from x̄k if subsampling sk ≤ patch size
How? Kernels! Recover patches with linear functions (contained in RKHS)

〈fw ,MkPkx(u)〉 = fw (Pkx(u)) = 〈w ,Pkx(u)〉
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Signal recovery: example in 1D

xk−1

Pkxk−1(u) ∈ Pk

MkPkxk−1

dot-product kernel

AkMkPkxk−1

linear pooling

downsampling

xk

recovery with linear measurements

Akxk−1

deconvolution

xk−1
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Beyond the translation group

Global invariance to other groups?

Rotations, reflections, roto-translations, ...
Group action Lgx(u) = x(g−1u)
Equivariance in inner layers + (global) pooling in last layer
Similar construction to Cohen and Welling (2016); Kondor and Trivedi (2018)
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G-equivariant layer construction

Feature maps x(u) defined on u ∈ G (G : locally compact group)
I Input needs special definition when G 6= Ω

Patch extraction:
Px(u) = (x(uv))v∈S

Non-linear mapping: equivariant because pointwise!
Pooling (µ: left-invariant Haar measure):

Ax(u) =
∫
G

x(uv)h(v)dµ(v) =
∫
G

x(v)h(u−1v)dµ(v)
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Group invariance and stability

Roto-translation group G = R2 o SO(2) (translations + rotations)
Stability w.r.t. translation group
Global invariance to rotations (only global pooling at final layer)

I Inner layers: patches and pooling only on translation group
I Last layer: global pooling on rotations
I Cohen and Welling (2016): pooling on rotations in inner layers hurts performance on Rotated

MNIST
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