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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)
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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

F(x) = Wy (Wiy - o(Wix) - --)

Recipe: huge models + lots of data + compute + simple algorithms
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Exploiting data structure through architectures

Low-Level| [Mid-Level| [High-Level Trainable
R 1) 1)
Feature Feature Feature Classifier
Vi 4 A\

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Modern architectures (CNNs, GNNs, Transformers, ...)
o Provide some invariance through pooling
o Model (local) interactions at different scales, hierarchically

o Useful inductive biases for learning efficiently on structured data
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Exploiting data structure through architectures
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Modern architectures (CNNs, GNNs, Transformers, ...)
o Provide some invariance through pooling
o Model (local) interactions at different scales, hierarchically

o Useful inductive biases for learning efficiently on structured data
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Geometric stability to deformations

Deformations
o ¢:Q — Q: Cl-diffeomorphism (e.g., Q = R?)
o ¢-x(u) = x(¢~(u)): action operator
o Much richer group of transformations than translations

EUS Y qhyyyn
555555556¢
77717717777
2355¢43¢C8 &

o Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Geometric stability to deformations

Deformations
o ¢:Q — Q: Cl-diffeomorphism (e.g., Q = R?)
o ¢ x(u) = x(¢~(u)): action operator
o Much richer group of transformations than translations

Geometric stability
o A function f(-) is stable (Mallat, 2012) if:

f(¢-x) = f(x) when [[Vé -l <e

o In particular, near-invariance to translations (V¢ = /)
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Understanding deep learning

The challenge of deep learning theory
o Over-parameterized (millions of parameters)
Expressive (can approximate any function)

Complex architectures for exploiting problem structure

©

©

Yet, easy to optimize with (stochastic) gradient descent!

©
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Understanding deep learning

The challenge of deep learning theory
o Over-parameterized (millions of parameters)

©

Expressive (can approximate any function)

Complex architectures for exploiting problem structure

©

Yet, easy to optimize with (stochastic) gradient descent!

©

A functional space viewpoint
o View deep networks as functions in some functional space

o Non-parametric models, natural measures of complexity (e.g., norms)
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Understanding deep learning

The challenge of deep learning theory

o Over-parameterized (millions of parameters)

©

Expressive (can approximate any function)

Complex architectures for exploiting problem structure

©

Yet, easy to optimize with (stochastic) gradient descent!

©

A functional space viewpoint
o View deep networks as functions in some functional space

o Non-parametric models, natural measures of complexity (e.g., norms)

What is an appropriate functional space?
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Kernels to the rescue

Vv

Kernels?

(x)

o Map data x to high-dimensional space, ®(x) € H (H: “RKHS")
o Functions f € H are linear in features: f(x) = (f, ®(x)) (f can be non-linear in x!)
o Learning with a positive definite kernel K(x,x") = (®(x), ®(x’))

» H can be infinite-dimensional! (kernel trick)

» Need to compute kernel matrix K = [K(x;, x;)]; € RV*N
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Kernels to the rescue

Clean and well-developed theory

o Tractable methods (convex optimization)

Vv

o Statistical and approximation properties well understood for many kernels

o Costly (kernel matrix of size N?) but approximations are possible
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Studying architecture benefits through kernels

Hierarchical kernels (Cho and Saul, 2009)

o Kernels can be constructed hierarchically
K(x,x") = (®(x), ®(x')) with &(x) = p2(p1(x))
o e.g., dot-product kernels on the sphere

K(x,x") = ra({p1(x), 1(x'))) = ka(k1(x X))
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Studying architecture benefits through kernels

Convolutional kernels for images (Mairal et al., 2014; Mairal, 2016; Shankar et al., 2020)

zp = Ap My Prxgq - Q — Hy o (w) = Ag My Py (w) € Hy,

linear pooling

My Prxy 1 :Q — Hp My, Prxiq (v) = @p(Prag-1(v)) € Hy

non-linear mapping
Prri-1(v) € P (patch extraction)

Ty 2 Q= Hi

o Good empirical performance with tractable approximations (Nystrém)
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Studying architecture benefits through kernels

Links with infinite-width networks

o Over-parameterized networks can lead to similar structured kernels
o “Kernel regimes":

» Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
» Neural tangent kernels (NTK, Jacot et al., 2018; Chizat et al., 2019)

o Well-defined for many architectures
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Studying architecture benefits through kernels

Links with infinite-width networks

o Over-parameterized networks can lead to similar structured kernels
o “Kernel regimes":

» Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
» Neural tangent kernels (NTK, Jacot et al., 2018; Chizat et al., 2019)

o Well-defined for many architectures

Goal: study sample complexity benefits of architectures through kernels
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Outline

@ Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)
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Geometric priors

Functions f : X — R that are “smooth” along known transformations of input x
o e.g., translations, rotations, permutations, deformations
o We consider: permutations ¢ € G

(0 -x)[u] = x[o ™} (u)]
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Geometric priors

Functions f : X — R that are “smooth” along known transformations of input x
o e.g., translations, rotations, permutations, deformations
o We consider: permutations ¢ € G

(0 - x)[u] = x[o™(u)]

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

flo-x)=1f(x), c€G
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Geometric priors

@ A
A == N
] ®

Functions f : X — R that are “smooth” along known transformations of input x
o e.g., translations, rotations, permutations, deformations
o We consider: permutations ¢ € G

(0 - x)[u] = x[o™(u)]

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

flo-x)=Ff(x), c€G

Geometric stability: For other sets G (e.g., local shifts, deformations), we want
flo-x)=f(x), c€G
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Geometric priors: symmetrization operator

Scf(x) = ’—é’ S (o x)

ceG

Assumptions on a target function f*
o G-invariant: Sgf* = f*
o G-stable: * = Sgg*, for some g*

» More generally, f* = Sgg* for some r
» Similarity to source conditions in kernel methods or inverse problems
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Geometric priors: symmetrization operator

Scf(x) = !_él S (o x)

ceG

Assumptions on a target function f*
o G-invariant: Sgf* = f*
o G-stable: * = Sgg*, for some g*

» More generally, f* = Sgg* for some r
» Similarity to source conditions in kernel methods or inverse problems

How do these interact with generic smoothness properties of f*?
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Spherical harmonics, dot-product kernels

Harmonic analysis on the sphere
o x ~ 7 uniform distribution on the sphere S9~1
o L?(t) basis of spherical harmonics Y

o N(d, k) harmonics of degree k, form a basis of Vj
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Spherical harmonics, dot-product kernels

Harmonic analysis on the sphere ®
o x ~ 7 uniform distribution on the sphere S9~1 [ "} 4
o L?(t) basis of spherical harmonics Y HeS
o N(d, k) harmonics of degree k, form a basis of Vy WHES

Dot-product kernels and their RKHS  K(x,x') = k({x, x'))
0o N(d,k) 2.
f—z Z akj Y j(+) Hf”% ::Z—’J<oo
k=0 j=1 Ky Mk

o g = :Z f S E(t)Par(t)(1 — t2) > dt: eigenvalues of integral operator T, each with

multiplicity N(d, k) (Pq.x: Legendre/Gegenbauer polynomial)

. _ —1/2 2
o decay ¢ regularity: ji =< k2% & ||l = | T *Fll 2y ~ 18502 Fll 2y
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Invariant harmonics

Key properties of S; for invariant case (Mei, Misiakiewicz, and Montanari, 2021)
o Sg acts as projection from Vy x (dim N(d, k)) to Vg« (dim N(d, k))
o The number of invariant spherical harmonics N can be estimated using:

o) = %EZ g _ ‘é‘ X BulPaslo x. )L
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Invariant harmonics

Key properties of S; for invariant case (Mei, Misiakiewicz, and Montanari, 2021)
o Sg acts as projection from Vy x (dim N(d, k)) to Vg« (dim N(d, k))
o The number of invariant spherical harmonics N can be estimated using:

o) = %EZ g _ ‘é‘ X BulPaslo x. )L

Invariant kernels (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

Ke(x,x') = @ Z k({0 x,x"))

o Corresponds to (full-width) convolution + global pooling
o Note that TKG =S¢ Tk
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Counting invariant harmonics

N(d, k
Mg = 16 3 BalParllo x )L

ceG

Ya(k) ==

Proposition ((B., Venturi, and Bruna, 2021))
As k — 00, we have )

va(k) = Eh O(k=7*e),

where c is the maximal number of cycles of any permutation o € G\ {Id}.
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Counting invariant harmonics

N(d, k
Mg = 16 3 BalParllo x )L

ceG

Ya(k) ==

Proposition ((B., Venturi, and Bruna, 2021))
As k — 00, we have )

va(k) = Eh O(k=7*e),

where c is the maximal number of cycles of any permutation o € G\ {Id}.

o Relies on singularity analysis of density of (o - x, x) (Saldanha and Tomei, 1996)

o c can be large (= d — 1) for some groups (e.g. cyclic on blocks of size 2, |G| = 29/?)
o Can use upper bounds with faster decays but larger constants
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Counting invariant harmonics

N(d, k
Mg = 16 3 BalParllo x )L

ceG

Ya(k) ==

Proposition ((B., Venturi, and Bruna, 2021))

As k — 0o, we have )
Ya(k) = G| + O(k=7%9),

where c is the maximal number of cycles of any permutation o € G\ {Id}.

o Relies on singularity analysis of density of (o - x, x) (Saldanha and Tomei, 1996)
o c can be large (= d — 1) for some groups (e.g. cyclic on blocks of size 2, |G| = 29/?)
o Can use upper bounds with faster decays but larger constants

o Comparison to Mei et al. (2021): they study d — oo with fixed k (v4(k) = ©4(d™?)), we
study k — oo with fixed d
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Sample complexity of invariant kernel

Assumptions for Kernel Ridge Regression
o (G-invariance) f*(x) = E[y|x] is G-invariant
o (capacity) Am(Tk) < Ckm™©
o (source) f* = Tj.g* with [|g*||;2 < C¢~
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Sample complexity of invariant kernel

Assumptions for Kernel Ridge Regression
o (G-invariance) f*(x) = E[y|x] is G-invariant
o (capacity) Am(Tk) < Ckm™©
o (source) f* = Tj.g* with [|g*||;2 < C¢~

Theorem ((B., Venturi, and Bruna, 2021))

Let ¢, :=sup{¢: D(¢) < Vd(ﬁ)%nfiﬂ}. (replace v4(¢,) by 1 for non-invariant kernel)

2ar
A - Vyg Kn 2ar+1
E|[f — |32y < c( ( ))

n

Alberto Bietti Sample complexity under invariance UC Berkeley, Sept 15, 2021 14 /24



Sample complexity of invariant kernel

Assumptions for Kernel Ridge Regression
o (G-invariance) f*(x) = E[y|x] is G-invariant
o (capacity) Am(Tk) < Ckm™©
o (source) f* = Tj.g* with [|g*||;2 < C¢~

Theorem ((B., Venturi, and Bruna, 2021))

Let £, :=sup{l: D({) < yd(ﬁ)%nﬁ}. (replace v4(¢y) by 1 for non-invariant kernel)

2ar
~ - yd fn 2ar+1
E|f —f ||%2(T)§C< ( ))

n

-8
Qo We have Z/d(gn) g ﬁ —|— O(n(dfl)(zar+1)+2ﬁar) When ryd(k) — 1/‘G‘ + O(k_ﬁ)
o = Improvement in sample complexity by a factor |G|!

o C may depend on d, but is optimal in a minimax sense over non-invariant f*

Alberto Bietti Sample complexity under invariance UC Berkeley, Sept 15, 2021

14 /24



Synthetic experiments

KRR, perm f*,d = 6

KRR, block_cyclic_2,d = 12 KRR, block_cyclic_6, d = 12
— K
-3
10 —— K cyclic 4% 104 K_
—— khblock 3 Kinv
o~ —— K block 2 3x 104 .
" B K perm = = 10
[ 107 L “
o s 2x107 .
6x1075
1075 I
— Kinv
I Emm——— 107 -0 e e 41075
10t 102 103 10! 102 103 10! 102 10°
n n n

Figure: Comparison of KRR with invariant and non-invariant kernels.
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Stability

o Sg is no longer a projection, but its eigenvalues satisfy vq4(k) = (ZN(

N ) N(d, k)

o Source condition adapted to Sg: f* = S; Trg* with ||g*||;2 < C¢-

Theorem ((B., Venturi, and Bruna, 2021))

Let £, :=sup{f: D(¢) < Vd(ﬂ)ﬁnﬁ}. (replace v4(¢y,) by 1 for non-invariant kernel)

_2ar
Vd(gf])l/()z) 2ar+1

n

B~ 1y <
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Stability

o Sg is no longer a projection, but its eigenvalues satisfy vq4(k) = (Zjl-vz(f’k) Akj)/N(d, k)
o Source condition adapted to Sg: f* =

— SLThg" with g7z < Cre
Theorem ((B., Venturi, and Bruna, 2021))
Let £, :=sup{f: D(¢) < Vd(ﬂ)ﬁnfiﬂ}. (replace v4(¢y,) by 1 for non-invariant kernel)

2ar
1/a\ 2arfl
~ o Vq gn
EW—fuaﬂ<C(()>

n

Toy model for deformations (“small |Vo — /|

")

G:={o€Sy : lou) o)~ (u—u)] <clu—u]}

o Can achieve y4(k) < 79 + O(k=®(), with 7 <1 = this leads to gains by a factor
exponential in d with a rate independent of d in v4(¢,)!
Alberto Bietti
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Discussion

Curse of dimensionality
2ar _ 2 .
o For Lipschitz targets, cursed rate n~ 2or+1 = n~ 2+d—1 (unimprovable)
o Improving this rate requires more structural assumptions, and better architectures (up

next!) or adaptivity (Bach, 2017)

Comparison with (Mei, Misiakiewicz, andMontanari, 2021)
o Different asymptotics (us: n — oo with d fixed, them: d — oo with n ~ d*)
o Their regimes only allow gains by polynomial factors in d
o We may achieve gains by exponential factors (when |G| is exponential in d), but only
asymptotically
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QOutline

1) Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)

@ Locality and depth (B., 2021)



Breaking the curse of dimensionality with locality
N I |

One-layer local convolutional kernel: localized patches x, = (x[u], ..., x[u + s]) (1D)
K(x,x") = Z k(xu, x,,)
ueQ

o RKHS H contains functions f(x) = 3 ,cq 8u(Xxu) With g, € H
o No curse: Smoothness requirement on g, scales with s instead of d
o Pooling further encourages similarities between the g,
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Breaking the curse of dimensionality with locality
N I |

One-layer local convolutional kernel: localized patches x, = (x[u], ..., x[u + s]) (1D)
K(x,x") = Z k(xu, x,,)
ueQ

o RKHS H contains functions f(x) = 3 ,cq 8u(Xxu) With g, € H
o No curse: Smoothness requirement on g, scales with s instead of d
o Pooling further encourages similarities between the g,

A . . E, K(x,x
EL(R) — L(F) 5 1 ) i)

o For invariant targets, ||f*|| independent of pooling, E, K(x, x) improves with pooling

Generalization

o Fast rates possible (Favero et al., 2021)
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Adding convolutional layers

o Fully-connected kernels: deep = shallow (B. and Bach, 2021; Chen and Xu, 2021)
o Can depth help for structured kernels?
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Adding convolutional layers

o Fully-connected kernels: deep = shallow (B. and Bach, 2021; Chen and Xu, 2021)
o Can depth help for structured kernels?

Convolutional Kernel networks (Mairal, 2016)

u— P(z)[u)

downsampling

linear pooling

; \

s pla)

dot-product kernel

u s xfu] | | ‘ ‘ | |

Ty
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Some experiments on Cifarl0

2-layers, 3x3 patches, pooling/downsampling sizes (2,5). Patch kernels k1, ko.

Test acc. (10k examples)

Test acc. (50k examples)

K1 K2

Exp | Exp 80.5% 87.9% (84.1%)
Exp | Poly3 80.5% 87.7% (84.1%)
Exp | Poly2 79.4% 86.9% (83.4%)
Poly2 | Exp 77.4% - (81.5%)
Poly2 | Poly2 75.1% - (81.2%)
Exp | - (Lin) 74.2% - (76.3%)

In parentheses: Nystrom approximation of the kernel (Mairal, 2016) with [256,4096] filters,

instead of the full kernel.

Alberto Bietti
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Structured interaction models via depth and pooling
RKHS of 2-layer convolutional kernel with quadratic x;: Contains functions

f(x) = Z Zg (Xu, xv),

P,gES> u,veQ

with gf% =0 if |u — v — (p — q)| > diam(supp(hy)).
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Structured interaction models via depth and pooling
RKHS of 2-layer convolutional kernel with quadratic x;: Contains functions

f(X Z Z gu v XU7XV

P,gES> u,veQ
with gf% =0 if |u — v — (p — q)| > diam(supp(hy)).
o Tensor-product ANOVA model: g% € Hi @ He

o Still no curse if 2s <« d

o Pooling layers encourage similarities between different gff?
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Improvements in generalization

A . . Ex K(x,x
EL(R) — L(F) S [F e 20

o Consider f*(x) =32, ,cq &" (xu, xv) with g* € Hi @ Hy
o Assume E,[k(xy, xy ) k(xy,x,/)] < €eif u#u orv#V
o Obtained bound for different pooling layers (h1, ho) and patch sizes (|S2]):

h1 h2 |52| Hf*HK EX K(X,X) Bound (6 == 0)
o o L1l [Qllel |I1QF+eQP | llellQf*/vn
o | 1Ll (el | 1P+ | llgllQl?/vn
L1 | ViQllel | 12 +dQP | lelliol/vn
1]oor1| 1 | Vgl | 19" +€Q l&ll/v/n

Note: larger polynomial improvements in || possible with higher-order interactions.

Alberto Bietti Sample complexity under invariance UC Berkeley, Sept 15, 2021 23 /24



Conclusion and perspectives

Summary
o Improved sample complexity for invariance and stability through pooling
o Locality breaks the curse

o Depth and pooling in convolutional models captures rich interaction models with
invariances

Future directions
o Empirical benefits for kernels beyond two-layers?
o Invariance groups need to be built-in, can we adapt to them?

o Adaptivity to structure beyond one-layer:

» low-dimensional structures (Gabor) at first layer?
» more structured interactions at second layer?
» optimization beyond kernel regimes?
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Conclusion and perspectives

Summary
o Improved sample complexity for invariance and stability through pooling
o Locality breaks the curse

o Depth and pooling in convolutional models captures rich interaction models with
invariances

Future directions
o Empirical benefits for kernels beyond two-layers?
o Invariance groups need to be built-in, can we adapt to them?

o Adaptivity to structure beyond one-layer:

» low-dimensional structures (Gabor) at first layer?
» more structured interactions at second layer?
» optimization beyond kernel regimes?

Thank youl!
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Folklore properties of convolutional models

C3: 1, maps 16@10x10
C1: feature maps S4:1. 16@5x5
G228 maps 152

52:f. maps

INPUT
F2x32 .
GER14x14

! | Full connection Gaussian connections
Canvelutions Subsampling Convelutions  Subsampling Full connection

Convolutional architectures:
o Capture multi-scale and compositional structure in natural signals
o Model local stationarity

o Provide some translation invariance
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Folklore properties of convolutional models

C3: 1, maps 16@10x10
C1: feature maps S4:1. 16@5x5
G228 maps 152

S2:f. maps

INPUT
F2x32 .
GE@14x14

! | Full connection Gaussian connections
Canvelutions Subsampling Convelutions  Subsampling Full connection

Convolutional architectures:
o Capture multi-scale and compositional structure in natural signals
o Model local stationarity
o Provide some translation invariance

Beyond translation invariance?
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One-layer convolutional kernel with pooling

o h[u]: pooling filter (e.g., Gaussian)
o Ap: (circular) convolution operator Apx[u] = >, cq hlu — v]x[v]
o O(x)[u] = ¢(xy) € H (¢: kernel mapping of k)

1-layer convolutional kernel

K(x,x") Z Z hlu — vIh[u = V']k(xy, x,1) = (Ap®(x), Ap®(X)) 120,34

ueQ v,v/

Functions in RKHS: Same functions f(x) = Y, g[u](xy), different penalty: \\Azg\\%z(ﬂﬂ).
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One-layer convolutional kernel with pooling

o h[u]: pooling filter (e.g., Gaussian)
o Ap: (circular) convolution operator Apx[u] = >, cq hlu — v]x[v]
o O(x)[u] = ¢(xy) € H (¢: kernel mapping of k)

1-layer convolutional kernel

K(x,x") Z Z hlu — vIh[u = V']k(xy, x,1) = (Ap®(x), Ap®(X)) 120,34

ueQ v,v/
Functions in RKHS: Same functions f(x) = >, g[u](xy), different penalty: HALgH%2(Q )
= Encourages spatial smoothness: for g,[u] := g[u](z), we have

&z(w]

h[w]

Large pooling <> fast decay of fA'I[W] <> stronger penalty on high frequencies of g,.

Al ga[w] =
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Generalization benefits of pooling
Translation-invariant target f*(x) = Y, g(x,), with g € H.

Learn using kernel Kj, with pooling with filter h > 0, ||h|l1 =1, e.g:
o no pooling: h[u] = d,p
o global pooling: h[u] =1/|Q]
o An(g,...,g)=(g,...,8) = same RKHS norm for any h!
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Generalization benefits of pooling

Translation-invariant target f*(x) = Y, g(x,), with g € H.

Learn using kernel Kj, with pooling with filter h > 0, ||h|l1 =1, e.g:
o no pooling: h[u] = d,p
o global pooling: h[u] =1/|Q]
o An(g,...,g)=(g,...,8) = same RKHS norm for any h!

Basic generalization bound with 1-Lipschitz loss on F = {||f||x, < B}

. X bl
EL(f,) — min L(f) < BV Kn(xx)]
fer vn
Under simple data models, E,[k(xy, xu)] = 1, Ex[k(xu, xv)] < e << 1foru+#v
o no pooling: E[Kx(x, x)] = ||
o global pooling: E[Kx(x, x)] <1+ €|Q|
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Translation-invariant target f*(x) = Y, g(x,), with g € H.

Learn using kernel Kj, with pooling with filter h > 0, ||h|l1 =1, e.g:
o no pooling: h[u] = d,p
o global pooling: h[u] =1/|Q]
o An(g,...,g)=(g,...,8) = same RKHS norm for any h!

Basic generalization bound with 1-Lipschitz loss on F = {||f||x, < B}

. X bl
EL(f,) — min L(f) < BV Kn(xx)]
fer vn
Under simple data models, E,[k(xy, xu)] = 1, Ex[k(xu, xv)] < e << 1foru+#v
o no pooling: E[Kx(x, x)] = ||
o global pooling: E[Kx(x,x)] <1+ ¢|Q| = need ~ || fewer samples!
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Generalization benefits of pooling

Translation-invariant target f*(x) = Y, g(x,), with g € H.

Learn using kernel Kj, with pooling with filter h > 0, ||h|l1 =1, e.g:
o no pooling: h[u] = d,p
o global pooling: h[u] =1/|Q]
o An(g,...,g)=(g,...,8) = same RKHS norm for any h!

Basic generalization bound with 1-Lipschitz loss on F = {||f||x, < B}

. X bl
EL(f,) — min L(f) < BV Kn(xx)]
fer vn
Under simple data models, E,[k(xy, xu)] = 1, Ex[k(xu, xv)] < e << 1foru+#v
o no pooling: E[Kx(x, x)] = ||
o global pooling: E[Kx(x,x)] <1+ ¢|Q| = need ~ || fewer samples!
o General h: E[Ky(x, )] < |21 l13 + €l2(1 — [1h]3)
Alberto Bietti
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Two-layer convolutional kernel

o Quadratic patch kernel ky(z,2') = (z"2)? = (z® z,Z ® Z/>(H®H)\SQ\><\SQ\
o H ® H: contains functions g(xy, x,) of 2 patches (Wahba, 1990)
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Two-layer convolutional kernel

o Quadratic patch kernel ky(z,2') = (z"2)? = (z® z,Z ® Z/>(H®H)\SQ\><|52\
o H ® H: contains functions g(xy, x,) of 2 patches (Wahba, 1990)

RKHS of 2-layer convolutional kernel (patch size |S;| = 1): Contains functions

f(x) = Z Glu, v](xu, xv),

u,veQ

with Glu,v] =0 if |u — v| > diam(supp(hy)). Penalty:

| AL diag((A; ® AT G) 12, sy
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Two-layer convolutional kernel

o Quadratic patch kernel ky(z,2') = (z"2)? = (z® z,Z ® Z/>(H®H)\SQ\><|SQ\
o H ® H: contains functions g(xy, x,) of 2 patches (Wahba, 1990)

RKHS of 2-layer convolutional kernel (patch size |S;| = 1): Contains functions

f(x) = Z Glu, v](xu, xv),

u,veQ

with Glu,v] =0 if |u — v| > diam(supp(hy)). Penalty:
1AL diag((Ar © A1)'6) 720, 7y

o (A; ® A1)f: encourages 2D smoothness of “image” G[u, v], bandwidth oy
° A;: encourage 1D smoothness along diagonal of G, bandwidth o2

0 01 > 02 = GJu,v] can depend more strongly on u — v than v or v
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Two-layer convolutional kernel

RKHS of 2-layer convolutional kernel (any patch size |S;|): Contains functions

f(x)= Z Z Gpglu, v](Xu, xv),

p,gESy u,veQ

with Gpg[u, v] =0 if |u — v — (p — q)| > diam(supp(h1)). Penalty:

Z ||AJ£ diag((LpA1 ® Lqu)T qu)”%(%,?—l@?—t)
p,q€S2
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Two-layer convolutional kernel

RKHS of 2-layer convolutional kernel (any patch size |S;|): Contains functions

f(x)= Z Z Gpglu, v](Xu, xv),

p,gESy u,veQ

with Gpg[u, v] =0 if |u — v — (p — q)| > diam(supp(h1)). Penalty:

Z ||AJ£ diag((LpA1 ® Lqu)T qu)”%(fb,?—t@?—t)
p,q€S2

“Variance” term: /E,[K(x,x)] < |9]|S2|?> 3, (ho, Lyhw)(h1, L, h1)% + O(e)
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Two-layer convolutional kernel

RKHS of 2-layer convolutional kernel (any patch size |S;|): Contains functions

f(x)= Z Z Gpglu, v](Xu, xv),

p,gESy u,veQ

with Gpg[u, v] =0 if |u — v — (p — q)| > diam(supp(h1)). Penalty:

Z ||AJ£ diag((LpA1 ® Lqu)T qu)”%(fb,?—t@?—t)
p,q€S2

“Variance” term: /E,[K(x,x)] < |9]|S2|?> 3, (ho, Lyhw)(h1, L, h1)% + O(e)
Extensions:
o ko higher-degree polynomial = higher-order interactions

o more layers: also higher-order interactions, but more structured penalty
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Stability to deformations

Deformations
o 7:Q — Q: Cl-diffeomorphism
o Lyx(u) = x(u—7(u)): action operator

o Much richer group of transformations than translations

EUS Y qhyyyn
555555556¢
77717717777
2355¢43¢C8 &

o Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Stability to deformations

Deformations
o 7:Q — Q: Cl-diffeomorphism
o Lyx(u) = x(u—7(u)): action operator

o Much richer group of transformations than translations

Definition of stability
o Representation ®(-) is stable (Mallat, 2012) if:

[8(Lrx) = *(x)]| < (G| VTloo + Cof|Tllo0) 1]l

0 |V7|loo = sup, ||V7(u)| controls deformation
0 ||7]|co = sup, |7(u)| controls translation

o ( — 0: translation invariance
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Smoothness and stability with kernels

Geometry of the kernel mapping: f(x) = (f, ®(x))

[F(x) = FON < Nl - [[D(x) = (X[

o ||f]| controls complexity of the model

o ®(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)
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Smoothness and stability with kernels

Geometry of the kernel mapping: f(x) = (f, ®(x))

[F(x) = FON < Nl - [[D(x) = (X[

o ||f]| controls complexity of the model

o ®(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)

Useful kernels in practice:
o Convolutional kernel networks (CKNs, Mairal, 2016) with efficient approximations

o Extends to neural tangent kernels (NTKs, Jacot et al., 2018) of infinitely wide
CNNs (Bietti and Mairal, 2019)
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Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xp : Q — Ho: initial (continuous) signal
» u € Q=R location (d = 2 for images)
> xo(u) € Ho: value (Ho = R3 for RGB images)
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Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xp : Q — Ho: initial (continuous) signal
» u € Q=R location (d = 2 for images)
> xo(u) € Ho: value (Ho = R3 for RGB images)

o xx : Q — Hy: feature map at layer k

Piexi—1

» Py: patch extraction operator, extract small patch of feature map x,_; around each point u
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Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xp : Q — Ho: initial (continuous) signal
» u € Q=R location (d = 2 for images)
> xo(u) € Ho: value (Ho = R3 for RGB images)

o xx : Q — Hy: feature map at layer k

My Prexi—1

» Py: patch extraction operator, extract small patch of feature map x,_; around each point u
» M. non-linear mapping operator, maps each patch to a new point with a pointwise
non-linear function @k (-) (kernel mapping)

Alberto Bietti Sample complexity under invariance UC Berkeley, Sept 15, 2021 36/24



Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xp : Q — Ho: initial (continuous) signal
» u € Q=R location (d = 2 for images)
> xo(u) € Ho: value (Ho = R3 for RGB images)

o xx : Q — Hy: feature map at layer k
Xk = Ak M Piexic—1
» Py: patch extraction operator, extract small patch of feature map x,_; around each point u
» M. non-linear mapping operator, maps each patch to a new point with a pointwise

non-linear function @k (-) (kernel mapping)
» Ag: (linear, Gaussian) pooling operator at scale oy
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Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xp : Q — Ho: initial (continuous) signal
» u € Q=R location (d = 2 for images)
> xo(u) € Ho: value (Ho = R3 for RGB images)

o xx : Q — Hy: feature map at layer k

X = AkM Pixic—1

» Py: patch extraction operator, extract small patch of feature map x,_; around each point u

» M. non-linear mapping operator, maps each patch to a new point with a pointwise
non-linear function @k (-) (kernel mapping)

» Ag: (linear, Gaussian) pooling operator at scale oy

Goal: control stability of these operators through their norms
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CKN construction

Ty = A M Pz : Q — Hy xp(w) = A My Prxy1(w) € Hy,

linear pooling

M. Prxy 1 : Q— Hy My, Prxy, 1(1}) = L,Q],;(Pk.T}; 1(1))) € Hy

non-linear mapping

Pyxy1(v) € P (patch extraction)

Tp1(u) € Hi Tp1: Q= Hia
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Patch extraction operator Py

Pixia(u) = (xk—1(u + v))ves, € Pk = 7{251

Pyxj1(v) € Py (patch extraction)

Ll'}\v]<U)EH1\‘] IkltgﬁHkl
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Patch extraction operator Py

Pixia(u) = (xk—1(u + v))ves, € Pk = Hfﬁ

o Si: patch shape, e.g. box

o Py is linear, and preserves the L2 norm: ||Pix1|| = ||xk-1]|

Alberto Bietti Sample complexity under invariance UC Berkeley, Sept 15, 2021 38/24



Non-linear mapping operator M

I\/IkPka_l(u) = ng(Pka_l(u)) € Hy

My Prxy 1 : Q— Hy My, Prxy. 4 (’U) = ;,9]<¢(Pk;£lfk;,1(L'>) € Hp

non-linear mapping

Pk.Tk 1(7,‘) S 77/;,
L1 - Q— Hi
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Non-linear mapping operator M

/\/lkPka_l(u) = gok(Pka_l(u)) € Hy

0 ¢k : Px — Hy pointwise non-linearity on patches (kernel map)
o We assume non-expansivity: for z,z' € Py

lex(2) < llzll - and  low(z) = wu(Z)] < [z = 2|
o My then satisfies, for x, x" € L2(Q, Py)

IMx|| < [Ix]l - and [[Mix = Mix'|| < [lx = X'

Alberto Bietti Sample complexity under invariance UC Berkeley, Sept 15, 2021

39/24



i from kernels

Kernel mapping of homogeneous dot-product kernels:

Kz, 2) = Izl (50 ) = Gonta)onl)

ki(u) = Y320 bjud with b >0, k(1) =1

o Commonly used for hierarchical kernels
o [le(2)]| = Ki(z,2)"* = | 2|
o |le(z) = er(Z) < llz = 2] if w (1) < 1

© = non-expansive
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i from kernels

Kernel mapping of homogeneous dot-product kernels:

Kz, 2) = Izl (50 ) = Gonta)onl)

ki(u) = Y320 bjud with b >0, k(1) =1

Examples
0 Kexp((z,2)) = elzz)-1 (Gaussian kernel on the sphere)
© Finv-poly((z,2')) = ﬁ

o ko({z,2")) = Eyfo(w'2)o(w'Z')] (Random features)
» arc-cosine kernels for the ReLU o(u) = max(0, u)
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Pooling operator Ay

Xk(u) = AkMkPka_l(u) = /]Rd hak(u — V)MkPka_l(V)dV S Hk

zp = AgMp Prxpq 0 Q — Hy v (w) = A My Prag1(w) € Hy,

linear pooling

My Prxyq: Q — Hy
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Pooling operator Ay

Xk ( ) AkMkPka 1 / hgk MkPka 1( )dV S Hk

o h,,: pooling filter at scale o
o hy(u) := o h(u/ok) with h(u) Gaussian

o linear, non-expansive operator: ||Ax|| <1
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Pooling operator Ay

Xk ( ) AkMkPka 1 / hgk MkPka 1( )dV S Hk

o h,,: pooling filter at scale o
ho, (1) == 0 ?h(u/oy) with h(u) Gaussian

linear, non-expansive operator: |Ag|| <1

©

©

©

In practice: discretization, sampling at resolution oy after pooling

o “Preserves information” when subsampling < patch size
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Recap: Pk, Mk, Ak

Ty = A M Pz : Q — Hy xp(w) = A My Prxy1(w) € Hy,

linear pooling

M Prxy 1 : Q— Hy My, Prxy, 1(1}) = L,Q],;(Pk.T}; 1(1))) € Hy

kernel mapping

Pyxy1(v) € P (patch extraction)

Tp1(u) € Hi Tp1: Q= Hia
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Multilayer construction

Assumption on xg
o X is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal, Ag local integrator
with scale o (anti-aliasing).
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Multilayer construction

Assumption on xg
o X is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal, Ag local integrator
with scale o (anti-aliasing).

Multilayer representation

O(x0) = AsMpPrAn 1My 1Py_1 - AIMIPixy € L%(Q,H,).

o Sy, ok grow exponentially in practice (i.e., fixed with subsampling).
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Multilayer construction

Assumption on xg

o X is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal, Ag local integrator
with scale o (anti-aliasing).

Multilayer representation
O(x0) = AsMpPrAn 1My 1Py_1 - AIMIPixy € L%(Q,H,).

o Sy, ok grow exponentially in practice (i.e., fixed with subsampling).

Final kernel
Kern(x,x") = (®(x), ®(x')) 12(0) = /Q<Xn(U)aXA(U)>du
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Stability to deformations

Theorem (Stability of CKN (B. and Mairal, 2019))
Let ®,(x) = ®(Aox) and assume |VT|oo < 1/2,

C
[9(Lr) = @40l < (G5 (1+ 1) [Vl + =l ) el

o Translation invariance: large o,
o Stability: small patch sizes (3 ~ patch size, C5 = O(3®) for images)
o Signal preservation: subsampling factor = patch size
—> need several layers with small patches n = O(log(c,/00)/log )
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Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019))
Let ®,(x) = ®NTK(Agx), and assume ||V 7o < 1/2

[®n(Lrx) — n(x)
C
< (o VT2 + o2Vl + v+ T 7l ) Il
n

Comparison with random feature CKN on deformed MNIST digits:

Sample complexity under invariance

Alberto Bietti
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Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019))
Let ®,(x) = ®NTK(Agx), and assume ||V 7|00 < 1/2

[®n(Lrx) — ®n(x)]l

C
< (o VT2 + o2Vl + v+ T 7l ) Il
n

Comparison with random feature CKN on deformed MNIST digits:

0] (0]
] ]
% _____ —— deformations % 0.3 - p— E—
i —— deformations + translation 9
5 0.2 - same label 5
o == all labels ) 0.2
3 2
- -
© 0.1 ©
o] / o 0.1- .
bas s
c _’________——~—~—~""' c //,,——”“'—_~—_~‘_~‘_
g 0.0- ; ; . goo-, ; : ;
S 0 1 2 3 S 0 1 2 3
deformation size deformation size
(a) CKN (b) NTK
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Experiments with convolutional kernels on Cifarl0

Convolutional kernels with 3x3 patches + kernel ridge regression (danger: lots of compute!)

Conv. layers ‘ subsampling ‘ kernel ‘ test acc.
2 2-5 ReLU RF 86.63%
2 2-5 ReLU NTK | 87.19%
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Experiments with convolutional kernels on Cifarl0

Convolutional kernels with 3x3 patches + kernel ridge regression (danger: lots of compute!)

Alberto Bietti

Conv. layers subsampling ‘ kernel ‘ test acc.
2 2-5 ReLU RF 86.63%
2 2-5 ReLU NTK | 87.19%
2 2-5 exp, o = 0.6 | 87.93%
3 2-2-2 exp, c = 0.6 | 88.2%
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Experiments with convolutional kernels on Cifarl0

Convolutional kernels with 3x3 patches + kernel ridge regression (danger: lots of compute!)

Conv. layers subsampling kernel test acc.

2 2-5 ReLU RF 86.63%

2 2-5 ReLU NTK | 87.19%

2 2-5 exp, o = 0.6 | 87.93%

3 2-2-2 exp, c = 0.6 | 88.2%

16 (Li et al., 2019) | last layer only ReLU RF 87.28%
16 (Li et al., 2019) | last layer only | ReLU NTK | 86.77%
10 every 3 layers exp 88.2%

Li et al. (2019): no pooling before last layer, more complicated pre-processing
Shankar et al. (2020): similar performance to us (88.2%), reaches 90% when adding flips
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Approximation with convolutional networks

o What functions does the RKHS contain? What is their norm?
o Role of convolution vs fully-connected?
o Role of depth?
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Approximation with convolutional networks

o What functions does the RKHS contain? What is their norm?
o Role of convolution vs fully-connected?
Role of depth?

Limitations of kernels?

©

©
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Prelude: “teacher” CNNs with smooth activations are in the RKHS

©

Consider a CNN with filters W/ (u), u € Si
o Smooth activations o with smoothness controlled by some C; ,(-)
o The CNN can be constructed hierarchically in Hcxp

©

Complexity is controlled by the RKHS norm:

115 < IWaiall3 CEo(IWall3 CEo(IWanall3 C2o(-)))

(B. and Mairal, 2019)
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Prelude: “teacher” CNNs with smooth activations are in the RKHS

©

Consider a CNN with filters W/ (u), u € Si
o Smooth activations o with smoothness controlled by some C; ,(-)
o The CNN can be constructed hierarchically in Hcxp

©

Complexity is controlled by the RKHS norm (linear layers):

113, < [IWasall3 - [IWall3 - [ Wa-sl3 - [ WA3

©

Linear layers: product of spectral norms

(B. and Mairal, 2019)
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Prelude: “teacher” CNNs with smooth activations are in the RKHS

©

Consider a CNN with filters W/ (u), u € Si
o Smooth activations o with smoothness controlled by some C; ,(-)
o The CNN can be constructed hierarchically in Hcxp

©

Complexity is controlled by the RKHS norm (linear layers):

113, < [IWasall3 - [IWall3 - [ Wa-sl3 - [ WA3

©

Linear layers: product of spectral norms

©

Can we give a more precise characterization of the RKHS?

(B. and Mairal, 2019)
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The fully-connected case

Fully-connected models — dot-product kernels
K(x,y) = k(x"y) for x,y € S971

o Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
o NTK for infinitely wide networks (Jacot et al., 2018)

Alberto Bietti Sample complexity under invariance UC Berkeley, Sept 15, 2021 49 /24



The fully-connected case

Fully-connected models — dot-product kernels
K(x,y) = k(x"y) for x,y € S971
o Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)

o NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
o Rotation-invariant kernel on the sphere
o = RKHS description in the L2(S9~1) basis of spherical harmonics Y ;

ote
HESTN
HESH0
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The fully-connected case

Fully-connected models — dot-product kernels
K(x,y) = k(x"y) for x,y € S971

o Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
o NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
o Rotation-invariant kernel on the sphere

o = RKHS description in the L2(S9~1) basis of spherical harmonics Y ;

N(d,k)
Zﬂk Z Yij(x) Y (y), for x,y e S71
Jj=
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The fully-connected case

Fully-connected models — dot-product kernels
K(x,y) = k(x"y) for x,y € S971

o Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
o NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
o Rotation-invariant kernel on the sphere

o = RKHS description in the L2(S9~1) basis of spherical harmonics Y ;

oo N(d,k)
{f_z Z akJYk,J s.t. Hf”%{ :Z'L:(J<OO}

k=0 j=1 k.j
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Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)

©

Decay of ux <+ regularity of functions in the RKHS

Polynomial decays jux ~ k=25: similar to Sobolev space of order /3, norm:

©

2
1112 = [|A50% ] 2ga1y

©

Leads to sufficient conditions for RKHS membership

©

Rates of approximation for Lipschitz functions
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Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)
o Decay of uy <> regularity of functions in the RKHS

o Polynomial decays i, ~ k—22: similar to Sobolev space of order /3, norm:
8/2
| Flls ~ I1AZ2 Al

o Leads to sufficient conditions for RKHS membership

o Rates of approximation for Lipschitz functions

NTK vs random features (Bietti and Mairal, 2019)
o f has 8 = p/2 n-bounded derivatives = f € Hntxk, ||f |2y < O(n)
o 3= p/2+ 1 needed for RF (Bach, 2017)
o = Hprk is (slightly) “larger” than Hgr

o Similar improvement for approximation of Lipschitz functions
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Deep fully-connected RelLU networks: limitations

ki(xTy)=ro---ok(x"y)
L times
Deep = Shallow (B. and Bach, 2021)
o RF or NTK kernels for deep and shallow networks have the same decay! (thus same H)

kd—2z/+1

o Proof using differentiability of x: we have uyx ~ when

k(1 —t) = poly(t) + cit” + o(t")
k(=14 t) = poly(t) + c_1t” + o(t").

o Such expansions are preserved when taking composition with ReLU/arc-cosine kernel
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Deep fully-connected RelLU networks: limitations

ki(xTy)=ro---ok(x"y)
L times
Deep = Shallow (B. and Bach, 2021)
o RF or NTK kernels for deep and shallow networks have the same decay! (thus same H)

o Proof using differentiability of x: we have px ~ k9=2**1 when

k(1 —t) = poly(t) + cit” + o(t")
k(=14 t) = poly(t) + c_1t” + o(t").

o Such expansions are preserved when taking composition with ReLU/arc-cosine kernel

Consequences
—> kernel regime cannot explain power of depth in fully-connected nets
— power of deep kernels comes from architecture
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Deep = shallow: numerical experiments

KRR, Amin = 1e-9 ReLU random features
KRR, Amin = 1e-5

—— rf_b 2-layer
3§ — rf_b 2-layer
—— rf 3-layer i
el 6x1072 \ — rf 3-layer
~ —==- ntk_b 2-layer iy HEVE? ]
— X\ ~_ 4%x1077 } === ntk_b 2-layer —
(sl ntk 3-layer Lo ntk 3-layer b Y
1 ntk 4-layer 3x1072 \ v ! : RV
> ayel )
- ntk 4-layer S 101 \ NA N
W& \ o ., = 10 —-= 2-layer, m=sqrt(n) (S
’ 2x10 , _ —== 3-layer (sqrt(n), sqrt(n))
102- . N --- 3dayer (10,sqrt(n) s
- S Wemne —== 3-layer (sqrt(n), 10) Sl
I EEEE—————_—— 1072 -, ! ! ) ; ] ]
10! 102 103 10! 102 10° 10* 10? 10® 10
n n n

Figure 1: (left, middle) expected squared error vs sample size n for kernel ridge regression estimators
with different kernels on f{ and with two different budgets on optimization difficulty Amin (the minimum
regularization parameter allowed). (right) ridge regression with one or two layers of random ReLU features
on fy, with different scalings of the number of “neurons” at each layer in terms of n.
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Deep = shallow: numerical experiments

MNIST F-MNIST
L RF NTK L RF NTK
2 | 98.60 = 0.03 | 98.49 £ 0.02 2 1 90.75 £ 0.11 | 90.65 £+ 0.07
3 | 98.67 £ 0.03 | 98.53 £ 0.02 3 1 90.87 £0.16 | 90.62 £ 0.08
4 | 98.66 &+ 0.02 | 98.49 + 0.01 4 | 90.89 £ 0.13 | 90.55 £ 0.07
5 | 98.65 £ 0.04 | 98.46 £ 0.02 5 | 90.88 £ 0.08 | 90.50 £ 0.05

Alberto Bietti

(on 50k samples)

Sample complexity under invariance

UC Berkeley, Sept 15, 2021
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Approximating functions on signals: motivation

Curse of dimensionality
o Natural signals are very high-dimensional (d ~ ||, where Q is the domain)

o Approximating general f* requires exponentially large norm or very high smoothness

Alberto Bietti Sample complexity under invariance UC Berkeley, Sept 15, 2021 53/24



Approximating functions on signals: motivation

Curse of dimensionality
o Natural signals are very high-dimensional (d ~ ||, where Q is the domain)

o Approximating general f* requires exponentially large norm or very high smoothness

Adding structure: localized functions e.g., f*(x) = g*(Px|[uo])
o With fully-connected kernel, still need norm exp. large in d

o For basic convolutional kernel, norm only scales with the dimension of the patch Px|[up]:

K(x,x") = (MPx, MPx') = Z k(Px[u], Px'[u])
ueQ

o See also Ciliberto et al. (2019) for similar part-based kernels for structured prediction
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Warmup: one layer with pooling

K(x,x") = (AMPx, AMPX) 12(q 1)
(H: RKHS of patch kernels)
o RKHS consists of functions of the form (patches denoted x, = Px|[u] € RP)

f(x) = Z Glu](xu), Glul e H

ue
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Warmup: one layer with pooling

K(x,x") = (AMPx, AMPX) 12(q 1)

(H: RKHS of patch kernels)
o RKHS consists of functions of the form (patches denoted x, = Px|[u] € RP)

f(x) = Z Glu](xu), Glul e H

ue

o Squared RKHS norm given by the minimum over such decompositions of

1A~ GliEa@0 = (AT @ NGl @eie1)

» G viewed in L?(Q) ® L2(SP71) as (u, z) = G[u](2)

» [ = T~/ regularization operator of #, e.g., I = NP2

o = A (pooling) encourages smoothness of u — G[u](z)

o = [ (kernel) encourages smoothness of z — G[u](z)
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Beyond one layer: empirical study

Cifar10 with full kernel (or Nystrém in parentheses)

K1 K2 Test acc. (10k) | Test acc. (full)
Exp Exp 80.5% 87.9% (84.1%)
Exp | Poly3 80.5% 87.7% (84.1%)
Exp | Poly2 79.4% 86.9% (83.4%)
Poly2 | Exp 77.4% - (81.5%)
Poly2 | Poly2 75.1% - (81.2%)
Exp | - (Lin) 74.2% - (76.3%)

One layer is not enough

Polynomial kernel can be enough for second layer

Alberto Bietti Sample complexity under invariance UC Berkeley, Sept 15, 2021 55 /24



Interlude: kernel tensor products

k2 polynomial — products of patch kernels

K((x1,%2), (51, %)) = k(x1, x1)k(x2, 35) = ((x1) @ (x2), (x1) ® () o

o RKHS H ® H contains closure of functions f(xi,xp) = Zj’ll fij(x1)fj(x2)
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Interlude: kernel tensor products

k2 polynomial — products of patch kernels

K((x1, %), (X1, %)) = k(x1, x1)k(x2, x3) = (p(x1) ® p(x2), p(x1) © 0(%0)) Haon

o RKHS H ® H contains closure of functions f(xi,xp) = Zj’ll frj(x1) o j(x2)
o RKHS is often much smaller than a dot-product kernel on x = (x1, x2)

o Helpful for modeling interactions between variables/patches (Wahba, 1990; Lin, 2000;
Scetbon and Harchaoui, 2020)
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Interlude: kernel tensor products

k2 polynomial — products of patch kernels

K((x1, %), (X1, %)) = k(x1, x1)k(x2, x3) = (p(x1) ® p(x2), p(x1) © 0(%0)) Haon

o RKHS H ® H contains closure of functions f(xi,xp) = Zj’ll frj(x1) o j(x2)

o RKHS is often much smaller than a dot-product kernel on x = (x1, x2)

Helpful for modeling interactions between variables/patches (Wahba, 1990; Lin, 2000;
Scetbon and Harchaoui, 2020)

Here, the architecture determines which interactions matter, and pooling will further
encourage spatial regularities among interaction terms

©

©
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RKHS of two-layer CKN with quadratic second layer
Kernel K(x,x") = (®(x), ®(x')), with

P(x) = AMa Py AL M Pyx € L (Q, (H® %)\SQIX\&I)
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RKHS of two-layer CKN with quadratic second layer
Kernel K(x,x") = (®(x), ®(x')), with

O(x) = AsMoaPr A My Pyx € 12 (9, (H @ 1) 1))
RKHS functions of the form

f(x) = Z Z Gpglu, v](xu, xv)

P,gES> u,veQ
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RKHS of two-layer CKN with quadratic second layer
Kernel K(x,x") = (®(x), ®(x')), with
O(x) = Ao My PrALM Pix € L2 (9, (H & H)/%XI%1)

RKHS functions of the form

f(x) = Z Z Gpglu, v](xu, xv)

P,gES> u,veQ

Under localization constraint: Gpq € Range((LpA1 ® LgA1) T diag(+))

Figure 2. Display of the response of the operator E, to Dirac
inputs 2 = &, centered at two different locations u. These are
bumps centered on points of the p — g diagonal, corresponding to
interactions between two patches, at distance around p — ¢.
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RKHS of two-layer CKN with quadratic second layer
Kernel K(x,x") = (®(x), ®(x')), with

P(x) = AMa Py AL M Pyx € L (Q, (H® %)\SQIX\&I)

RKHS functions of the form

f(x) = Z Z Gpglu, v](xu, xv)

P,gES> u,veQ

Under localization constraint: Gpq € Range((LpA1 ® LgA1) T diag(+))
RKHS norm given by the penalty

> 1Ay T diag((LpAr ® LaA1) ™" Gpg) 2 pienny-
P,q€S2

o (LpA1 ® LgA1)~ T G encourages 2D smoothness of (u,v) — Glu, v](z,2')
o AZ_T imposes even stronger 1D smoothness on diagonal u — v =p—¢q
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Extensions

o Higher-order polynomials = higher-order interactions
o More layers: also capture higher-order interactions, with different structure
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Extensions

o Higher-order polynomials = higher-order interactions
o More layers: also capture higher-order interactions, with different structure

o Empirically, on Cifarl0, 2 layers with degree-4 kernels at 2nd layer suffice for best
performance
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Conclusions

Benefits of convolutional kernels

©

Translation invariance + deformation stability with small patches and pooling
o = benefits of depth for stability

o Approximation benefits of > 2 layers by efficiently capturing interactions

©

Limitations of depth for fully-connected models in kernel regimes
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Conclusions

Benefits of convolutional kernels

©

Translation invariance + deformation stability with small patches and pooling
o = benefits of depth for stability

o Approximation benefits of > 2 layers by efficiently capturing interactions

©

Limitations of depth for fully-connected models in kernel regimes

Future directions
o Empirically, any benefits of depth beyond 2 layers?
o Statistical analysis through covariance operator
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Conclusions

Benefits of convolutional kernels

©

Translation invariance + deformation stability with small patches and pooling
o = benefits of depth for stability

o Approximation benefits of > 2 layers by efficiently capturing interactions

©

Limitations of depth for fully-connected models in kernel regimes

Future directions
o Empirically, any benefits of depth beyond 2 layers?
o Statistical analysis through covariance operator

Perspectives: beyond kernels
o Kernels provide a nice tractable model, but a limited picture of deep learning
o Feature selection through mean-field/“active” regime, at least at first layer

o Benefits of depth beyond simple interaction models, e.g., through hierarchy
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Convolutional NTK kernel mapping

Define

_ (o(x(v)) @ y(u)
I\/I(X,)/)(“)_< p1(x(u)) >

Theorem (NTK feature map for CNN)

Kt (x, x) = (®(x), o(x)) 12(q),
with ®(x)(u) = ApM(xn, yn)(u), where y1(u) = x1(u) = Pix(u) and

xk(u) = PrAk-11(xk-1)(u)
yi(u) = PrAxa M(Xi-1, yi1) (u).
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Discretization and signal preservation

o Xk: subsampling factor sy after pooling with scale o) =~ si:

)_(k[n] = AkMkPk)_(k—l[nsk]
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o) = si:

)_(k[n] = AkMkPk)_(k—l[nsk]

o Claim: We can recover xx_1 from X, if subsampling s, < patch size
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o) = si:

)_(k[n] = AkMkPk)_(k—l[nsk]
o Claim: We can recover xx_1 from X, if subsampling s, < patch size

o How? Kernels! Recover patches with linear functions (contained in RKHS)

(fw, Mk Pix(u)) = fu(Prx(u)) = (w, Pgx(u))

Alberto Bietti Sample complexity under invariance UC Berkeley, Sept 15, 2021

61 /24



Signal recovery: example in 1D

Alberto Bietti

Ik—Ll

deconvolution

Apxp_y |

recovery with linear measurements

downsampling

AkAJkPkmk,1| | | |

linear pooling

My, Pyy_y |

dot-product kernel

Tk—1

Pyxj—1(u) € Py
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Beyond the translation group

Global invariance to other groups?
o Rotations, reflections, roto-translations, ...
o Group action Lgx(u) = x(g7u)
o Equivariance in inner layers + (global) pooling in last layer
o Similar construction to Cohen and Welling (2016); Kondor and Trivedi (2018)
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G-equivariant layer construction

©

Feature maps x(u) defined on u € G (G: locally compact group)
» Input needs special definition when G # Q

Patch extraction:

©

Px(u) = (x(uv))ves

Non-linear mapping: equivariant because pointwise!

©

Pooling (y: left-invariant Haar measure):

©

Ax(u) = /G x(uv)h(v)dp(v) = /G <(V)h(u~ V) dp(v)
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Group invariance and stability

Roto-translation group G = R? x SO(2) (translations + rotations)

o Stability w.r.t. translation group
o Global invariance to rotations (only global pooling at final layer)

» Inner layers: patches and pooling only on translation group

» Last layer: global pooling on rotations

» Cohen and Welling (2016): pooling on rotations in inner layers hurts performance on Rotated
MNIST
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