On the Sample Complexity of Learning under Invariance and Geometric Stability

Alberto Bietti

NYU

UC Berkeley. Sept. 15, 2021.

Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

ENGLISH - DETECTED	ENGLISH CH	\sim	←	FRENCH	CHINESE (TRADITIONAL)	\sim
where is the train station? \qquad >				où est la gare? ⊘		☆
(ب ا	27/500	00 🧪		•		:

Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

$$f(x) = W_n \sigma(W_{n-1} \cdots \sigma(W_1 x) \cdots)$$

Recipe: huge models + lots of data + compute + simple algorithms

Exploiting data structure through architectures

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Modern architectures (CNNs, GNNs, Transformers, ...)

- Provide some invariance through pooling
- Model (local) interactions at different scales, hierarchically
- Useful inductive biases for learning efficiently on structured data

Exploiting data structure through architectures

Modern architectures (CNNs, GNNs, Transformers, ...)

- Provide some invariance through pooling
- Model (local) interactions at different scales, hierarchically
- Useful inductive biases for learning efficiently on structured data

Exploiting data structure through architectures

Modern architectures (CNNs, GNNs, Transformers, ...)

- Provide some invariance through pooling
- Model (local) interactions at different scales, hierarchically
- Useful inductive biases for learning efficiently on structured data

Geometric stability to deformations

Deformations

- $\phi: \Omega \to \Omega$: C^1 -diffeomorphism (e.g., $\Omega = \mathbb{R}^2$)
- $\phi \cdot x(u) = x(\phi^{-1}(u))$: action operator
- Much richer group of transformations than translations

• Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)

Geometric stability to deformations

Deformations

- $\phi: \Omega \to \Omega$: C^1 -diffeomorphism (e.g., $\Omega = \mathbb{R}^2$)
- $\phi \cdot x(u) = x(\phi^{-1}(u))$: action operator
- Much richer group of transformations than translations

Geometric stability

• A function $f(\cdot)$ is **stable** (Mallat, 2012) if:

$$f(\phi \cdot x) \approx f(x)$$
 when $\|\nabla \phi - I\|_{\infty} \leq \epsilon$

• In particular, near-invariance to translations ($abla \phi = I$)

Understanding deep learning

The challenge of deep learning theory

- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize with (stochastic) gradient descent!

Understanding deep learning

The challenge of deep learning theory

- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint

- View deep networks as functions in some functional space
- Non-parametric models, natural measures of complexity (e.g., norms)

Understanding deep learning

The challenge of deep learning theory

- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint

- View deep networks as functions in some functional space
- Non-parametric models, natural measures of complexity (e.g., norms)

What is an appropriate functional space?

Kernels to the rescue

Kernels?

- Map data x to high-dimensional space, $\Phi(x) \in \mathcal{H}$ (\mathcal{H} : "RKHS")
- Functions $f \in \mathcal{H}$ are linear in features: $f(x) = \langle f, \Phi(x) \rangle$ (f can be non-linear in x!)
- Learning with a positive definite kernel $K(x,x') = \langle \Phi(x), \Phi(x') \rangle$
 - ▶ *H* can be infinite-dimensional! (*kernel trick*)
 - Need to compute kernel matrix $K = [K(x_i, x_j)]_{ij} \in \mathbb{R}^{N \times N}$

Kernels to the rescue

Clean and well-developed theory

- Tractable methods (convex optimization)
- Statistical and approximation properties well understood for many kernels
- Costly (kernel matrix of size N^2) but approximations are possible

Hierarchical kernels (Cho and Saul, 2009)

• Kernels can be constructed hierarchically

$$K(x,x') = \langle \Phi(x), \Phi(x') \rangle$$
 with $\Phi(x) = \varphi_2(\varphi_1(x))$

• e.g., dot-product kernels on the sphere

$$\mathcal{K}(x,x') = \kappa_2(\langle \varphi_1(x), \varphi_1(x') \rangle) = \kappa_2(\kappa_1(x^\top x'))$$

Convolutional kernels for images (Mairal et al., 2014; Mairal, 2016; Shankar et al., 2020)

Good empirical performance with tractable approximations (Nyström)

Links with infinite-width networks

- Over-parameterized networks can lead to similar structured kernels
- "Kernel regimes":
 - ► Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
 - ▶ Neural tangent kernels (NTK, Jacot et al., 2018; Chizat et al., 2019)
- Well-defined for many architectures

Links with infinite-width networks

- Over-parameterized networks can lead to similar structured kernels
- "Kernel regimes":
 - ► Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
 - ▶ Neural tangent kernels (NTK, Jacot et al., 2018; Chizat et al., 2019)
- Well-defined for many architectures

Goal: study sample complexity benefits of architectures through kernels

1 Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)

2 Locality and depth (B., 2021)

Geometric priors

Functions $f : \mathcal{X} \to \mathbb{R}$ that are "smooth" along known transformations of input x

- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)[u] = x[\sigma^{-1}(u)]$$

Geometric priors

Functions $f : \mathcal{X} \to \mathbb{R}$ that are "smooth" along known transformations of input x

- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)[u] = x[\sigma^{-1}(u)]$$

Group invariance: If G is a group (*e.g.*, cyclic shifts, all permutations), we want

$$f(\sigma \cdot x) = f(x), \quad \sigma \in G$$

Geometric priors

Functions $f : \mathcal{X} \to \mathbb{R}$ that are "smooth" along known transformations of input x

- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)[u] = x[\sigma^{-1}(u)]$$

Group invariance: If G is a group (*e.g.*, cyclic shifts, all permutations), we want

$$f(\sigma \cdot x) = f(x), \quad \sigma \in G$$

Geometric stability: For other sets G (e.g., local shifts, deformations), we want

$$f(\sigma \cdot x) \approx f(x), \quad \sigma \in G$$

Geometric priors: symmetrization operator

$$S_G f(x) := \frac{1}{|G|} \sum_{\sigma \in G} f(\sigma \cdot x)$$

Assumptions on a target function f^*

- *G*-invariant: $S_G f^* = f^*$
- G-stable: $f^* = S_G g^*$, for some g^*
 - More generally, $f^* = S_G^r g^*$ for some r
 - ► Similarity to source conditions in kernel methods or inverse problems

Geometric priors: symmetrization operator

$$S_G f(x) := \frac{1}{|G|} \sum_{\sigma \in G} f(\sigma \cdot x)$$

Assumptions on a target function f^*

- *G*-invariant: $S_G f^* = f^*$
- G-stable: $f^* = S_G g^*$, for some g^*
 - More generally, $f^* = S_G^r g^*$ for some r
 - ► Similarity to *source conditions* in kernel methods or inverse problems

How do these interact with generic smoothness properties of f^* ?

Spherical harmonics, dot-product kernels

Harmonic analysis on the sphere

- $x \sim \tau$ uniform distribution on the sphere \mathbb{S}^{d-1}
- $L^2(\tau)$ basis of spherical harmonics $Y_{k,j}$
- N(d, k) harmonics of degree k, form a basis of $V_{d,k}$

Spherical harmonics, dot-product kernels

Harmonic analysis on the sphere

- $x \sim \tau$ uniform distribution on the sphere \mathbb{S}^{d-1}
- $L^2(\tau)$ basis of spherical harmonics $Y_{k,j}$
- N(d, k) harmonics of degree k, form a basis of $V_{d,k}$

Dot-product kernels and their RKHS $K(x, x') = \kappa(\langle x, x' \rangle)$

$$\mathcal{H} = \left\{ f = \sum_{k=0}^{\infty} \sum_{j=1}^{N(d,k)} a_{k,j} Y_{k,j}(\cdot) \quad \text{s.t.} \quad \|f\|_{\mathcal{H}}^2 := \sum_{k,j} \frac{a_{k,j}^2}{\mu_k} < \infty \right\}$$

- $\mu_k = \frac{\omega_{d-2}}{\omega_{d-1}} \int_{-1}^1 \kappa(t) P_{d,k}(t) (1-t^2)^{\frac{d-3}{2}} dt$: eigenvalues of **integral operator** T_K , each with multiplicity N(d,k) ($P_{d,k}$: Legendre/Gegenbauer polynomial)
- decay \leftrightarrow regularity: $\mu_k \asymp k^{-2\beta} \leftrightarrow \|f\|_{\mathcal{H}} = \|T_K^{-1/2}f\|_{L^2(\tau)} \approx \|\Delta_{\mathbb{S}^{d-1}}^{\beta/2}f\|_{L^2(\tau)}$

Invariant harmonics

Key properties of S_G for invariant case (Mei, Misiakiewicz, and Montanari, 2021)

- S_G acts as projection from $V_{d,k}$ (dim N(d,k)) to $\overline{V}_{d,k}$ (dim $\overline{N}(d,k)$)
- The number of invariant spherical harmonics \overline{N} can be estimated using:

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x[P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

Invariant harmonics

Key properties of S_G for invariant case (Mei, Misiakiewicz, and Montanari, 2021)

- S_G acts as projection from $V_{d,k}$ (dim N(d,k)) to $\overline{V}_{d,k}$ (dim $\overline{N}(d,k)$)
- The number of invariant spherical harmonics \overline{N} can be estimated using:

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x[P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

Invariant kernels (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

$$K_G(x,x') = rac{1}{|G|} \sum_{\sigma \in G} \kappa(\langle \sigma \cdot x, x' \rangle)$$

- ${\scriptstyle \bullet }$ Corresponds to (full-width) convolution + global pooling
- Note that $T_{K_G} = S_G T_K$

Counting invariant harmonics

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x[P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

Proposition ((B., Venturi, and Bruna, 2021)) As $k \to \infty$, we have

$$\gamma_d(k) = \frac{1}{|G|} + O(k^{-d+c}),$$

where *c* is the maximal number of cycles of any permutation $\sigma \in G \setminus \{Id\}$.

Counting invariant harmonics

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x[P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

Proposition ((B., Venturi, and Bruna, 2021)) As $k \to \infty$, we have

$$\gamma_d(k) = \frac{1}{|G|} + O(k^{-d+c}),$$

where c is the maximal number of cycles of any permutation $\sigma \in G \setminus \{Id\}$.

- Relies on singularity analysis of density of $\langle \sigma \cdot x, x \rangle$ (Saldanha and Tomei, 1996)
- c can be large (= d 1) for some groups (e.g. cyclic on blocks of size 2, $|G| = 2^{d/2}$)
- Can use upper bounds with faster decays but larger constants

Counting invariant harmonics

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x[P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

Proposition ((B., Venturi, and Bruna, 2021)) As $k \to \infty$, we have

$$\gamma_d(k) = \frac{1}{|G|} + O(k^{-d+c}),$$

where c is the maximal number of cycles of any permutation $\sigma \in G \setminus \{Id\}$.

- Relies on singularity analysis of density of $\langle \sigma \cdot x, x \rangle$ (Saldanha and Tomei, 1996)
- c can be large (= d 1) for some groups (e.g. cyclic on blocks of size 2, $|G| = 2^{d/2}$)
- Can use upper bounds with faster decays but larger constants
- Comparison to Mei et al. (2021): they study $d \to \infty$ with fixed k ($\gamma_d(k) = \Theta_d(d^{-\alpha})$), we study $k \to \infty$ with fixed d

Sample complexity of invariant kernel

Assumptions for Kernel Ridge Regression

- (*G*-invariance) $f^*(x) = \mathbb{E}[y|x]$ is *G*-invariant
- (capacity) $\lambda_m(T_K) \leq C_K m^{-\alpha}$
- (source) $f^* = T_K^r g^*$ with $\|g^*\|_{L^2} \leq C_{f^*}$

Sample complexity of invariant kernel

Assumptions for Kernel Ridge Regression

- (*G*-invariance) $f^*(x) = \mathbb{E}[y|x]$ is *G*-invariant
- (capacity) $\lambda_m(T_K) \leq C_K m^{-lpha}$
- (source) $f^* = T_K^r g^*$ with $\|g^*\|_{L^2} \leq C_{f^*}$

Theorem ((B., Venturi, and Bruna, 2021)) Let $\ell_n := \sup\{\ell : D(\ell) \leq \nu_d(\ell)^{\frac{2\alpha r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}}\}$. (replace $\nu_d(\ell_n)$ by 1 for non-invariant kernel) $\mathbb{E} \|\hat{f} - f^*\|_{L^2(\tau)}^2 \leq C \left(\frac{\nu_d(\ell_n)}{n}\right)^{\frac{2\alpha r}{2\alpha r+1}}$

Sample complexity of invariant kernel

Assumptions for Kernel Ridge Regression

- (*G*-invariance) $f^*(x) = \mathbb{E}[y|x]$ is *G*-invariant
- (capacity) $\lambda_m(T_K) \leq C_K m^{-lpha}$
- (source) $f^* = T^r_K g^*$ with $\|g^*\|_{L^2} \leq C_{f^*}$

Theorem ((B., Venturi, and Bruna, 2021)) Let $\ell_n := \sup\{\ell : D(\ell) \leq \nu_d(\ell)^{\frac{2\alpha r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}}\}$. (replace $\nu_d(\ell_n)$ by 1 for non-invariant kernel) $\mathbb{E} \|\hat{f} - f^*\|_{L^2(\tau)}^2 \leq C \left(\frac{\nu_d(\ell_n)}{n}\right)^{\frac{2\alpha r}{2\alpha r+1}}$

• We have
$$u_d(\ell_n) = rac{1}{|G|} + O(n^{rac{-\beta}{(d-1)(2\alpha r+1)+2\beta\alpha r}})$$
 when $\gamma_d(k) = 1/|G| + O(k^{-\beta})$

- \implies Improvement in sample complexity by a factor |G|!
- C may depend on d, but is optimal in a minimax sense over non-invariant f^*

Synthetic experiments

Figure: Comparison of KRR with invariant and non-invariant kernels.

Stability

• S_G is no longer a projection, but its eigenvalues satisfy $\gamma_d(k) = (\sum_{j=1}^{N(d,k)} \lambda_{k,j})/N(d,k)$

• Source condition adapted to S_G : $f^* = S_G^r T_K^r g^*$ with $\|g^*\|_{L^2} \leq C_{f^*}$

Theorem ((B., Venturi, and Bruna, 2021)) Let $\ell_n := \sup\{\ell : D(\ell) \leq \nu_d(\ell)^{\frac{2r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}}\}$. (replace $\nu_d(\ell_n)$ by 1 for non-invariant kernel) $\mathbb{E} \|\hat{f} - f^*\|_{L^2(\tau)}^2 \leq C \left(\frac{\nu_d(\ell_n)^{1/\alpha}}{n}\right)^{\frac{2\alpha r}{2\alpha r+1}}$

Stability

• S_G is no longer a projection, but its eigenvalues satisfy $\gamma_d(k) = (\sum_{j=1}^{N(d,k)} \lambda_{k,j}) / N(d,k)$

• Source condition adapted to S_G : $f^* = S_G^r T_K^r g^*$ with $\|g^*\|_{L^2} \leq C_{f^*}$

Theorem ((B., Venturi, and Bruna, 2021)) Let $\ell_n := \sup\{\ell : D(\ell) \leq \nu_d(\ell)^{\frac{2r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}}\}$. (replace $\nu_d(\ell_n)$ by 1 for non-invariant kernel) $\mathbb{E} \|\hat{f} - f^*\|_{L^2(\tau)}^2 \leq C \left(\frac{\nu_d(\ell_n)^{1/\alpha}}{n}\right)^{\frac{2\alpha r}{2\alpha r+1}}$

Toy model for deformations ("small $\|\nabla \sigma - I\|$ ")

$$G := \{ \sigma \in \mathcal{S}_d : |\sigma(u) - \sigma(u') - (u - u')| \le \varepsilon |u - u'| \}$$

• Can achieve $\gamma_d(k) \leq \tau^d + O(k^{-\Theta(d)})$, with $\tau < 1 \implies$ this leads to gains by a factor **exponential** in *d* with a rate independent of *d* in $\nu_d(\ell_n)$!
Discussion

Curse of dimensionality

- For Lipschitz targets, cursed rate $n^{-\frac{2\alpha r}{2\alpha r+1}} = n^{-\frac{2}{2+d-1}}$ (unimprovable)
- Improving this rate requires more structural assumptions, and better architectures (up next!) or adaptivity (Bach, 2017)

Comparison with (*Mei*, *Misiakiewicz*, *andMontanari*, 2021)

- Different asymptotics (us: $n o \infty$ with d fixed, them: $d o \infty$ with $n \sim d^\ell$)
- Their regimes only allow gains by polynomial factors in d
- We may achieve gains by exponential factors (when |G| is exponential in d), but only asymptotically

1 Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)

2 Locality and depth (B., 2021)

Breaking the curse of dimensionality with locality

One-layer local convolutional kernel: localized patches $x_u = (x[u], \dots, x[u+s])$ (1D)

$$\mathcal{K}(x,x') = \sum_{u \in \Omega} k(x_u,x'_u)$$

- RKHS \mathcal{H}_K contains functions $f(x) = \sum_{u \in \Omega} g_u(x_u)$ with $g_u \in \mathcal{H}_k$
- No curse: Smoothness requirement on g_u scales with s instead of d
- **Pooling** further encourages similarities between the g_u,

Breaking the curse of dimensionality with locality

One-layer local convolutional kernel: localized patches $x_u = (x[u], \dots, x[u+s])$ (1D)

$$\mathcal{K}(x,x') = \sum_{u \in \Omega} k(x_u,x'_u)$$

- RKHS \mathcal{H}_K contains functions $f(x) = \sum_{u \in \Omega} g_u(x_u)$ with $g_u \in \mathcal{H}_k$
- No curse: Smoothness requirement on g_u scales with s instead of d
- **Pooling** further encourages similarities between the g_u ,

Generalization

$$\mathbb{E} L(\hat{f}_n) - L(f^*) \lesssim \|f^*\|_{\mathcal{H}_K} \sqrt{\frac{\mathbb{E}_x K(x,x)}{n}}$$

• For invariant targets, $\|f^*\|$ independent of pooling, $\mathbb{E}_x \mathcal{K}(x,x)$ improves with pooling

• Fast rates possible (Favero et al., 2021)

Adding convolutional layers

- Fully-connected kernels: deep = shallow (B. and Bach, 2021; Chen and Xu, 2021)
- Can depth help for structured kernels?

Adding convolutional layers

- Fully-connected kernels: deep = shallow (B. and Bach, 2021; Chen and Xu, 2021)
- Can depth help for structured kernels?

Convolutional Kernel networks (Mairal, 2016)

Some experiments on Cifar10

2-layers, 3x3 patches, pooling/downsampling sizes (2,5). Patch kernels κ_1 , κ_2 .

κ_1	κ_2	Test acc. (10k examples)	Test acc. (50k examples)
Exp	Exp	80.5%	87.9% (84.1%)
Exp	Poly3	80.5%	87.7% (84.1%)
Exp	Poly2	79.4%	86.9% (83.4%)
Poly2	Exp	77.4%	- (81.5%)
Poly2	Poly2	75.1%	- (81.2%)
Exp	- (Lin)	74.2%	- (76.3%)

In parentheses: Nyström approximation of the kernel (Mairal, 2016) with [256,4096] filters, instead of the full kernel.

Structured interaction models via depth and pooling **RKHS of 2-layer convolutional kernel with quadratic** κ_2 : Contains functions

$$f(x) = \sum_{p,q\in S_2} \sum_{u,v\in\Omega} g_{u,v}^{pq}(x_u,x_v),$$

with $g_{u,v}^{pq} = 0$ if $|u - v - (p - q)| > \operatorname{diam}(\operatorname{supp}(h_1))$.

Structured interaction models via depth and pooling **RKHS of 2-layer convolutional kernel with quadratic** κ_2 : Contains functions

$$f(x) = \sum_{p,q\in S_2} \sum_{u,v\in\Omega} g_{u,v}^{pq}(x_u,x_v),$$

with $g_{u,v}^{pq} = 0$ if $|u - v - (p - q)| > \operatorname{diam}(\operatorname{supp}(h_1))$.

- Tensor-product ANOVA model: $g_{u,v}^{pq} \in \mathcal{H}_k \otimes \mathcal{H}_k$
- Still no curse if $2s \ll d$
- Pooling layers encourage similarities between different $g_{u,v}^{pq}$

Improvements in generalization

$$\mathbb{E} L(\hat{f}_n) - L(f^*) \lesssim \|f^*\|_{\mathcal{H}_K} \sqrt{\frac{\mathbb{E}_x K(x,x)}{n}}$$

• Consider
$$f^*(x) = \sum_{u,v \in \Omega} g^*(x_u,x_v)$$
 with $g^* \in \mathcal{H}_k \otimes \mathcal{H}_k$

- Assume $\mathbb{E}_{x}[k(x_{u}, x_{u'})k(x_{v}, x_{v'})] \leq \epsilon$ if $u \neq u'$ or $v \neq v'$
- Obtained bound for different pooling layers (h_1, h_2) and patch sizes $(|S_2|)$:

h_1	<i>h</i> ₂	$ S_2 $	$\ f^*\ _K$	$\mathbb{E}_{x} K(x,x)$	Bound ($\epsilon = 0$)
δ	δ	$ \Omega $	$ \Omega \ g\ $	$ \Omega ^3 + \epsilon \Omega ^3$	$\ g\ \Omega ^{2.5} / \sqrt{n}$
δ	1	$ \Omega $	$ \Omega \ g\ $	$ \Omega ^2 + \epsilon \Omega ^3$	$\ g\ \Omega ^2/\sqrt{n}$
1	1	$ \Omega $	$\sqrt{ \Omega } \ g\ $	$ \Omega + \epsilon \Omega ^3$	$\ g\ \Omega /\sqrt{n}$
1	δ or ${f 1}$	1	$\sqrt{ \Omega }\ g\ $	$ \Omega ^{-1} + \epsilon \Omega $	$\ g\ /\sqrt{n}$

Note: larger polynomial improvements in $|\Omega|$ possible with higher-order interactions.

Conclusion and perspectives

Summary

- Improved sample complexity for invariance and stability through pooling
- Locality breaks the curse
- Depth and pooling in convolutional models captures rich interaction models with invariances

Future directions

- Empirical benefits for kernels beyond two-layers?
- Invariance groups need to be built-in, can we adapt to them?
- Adaptivity to structure beyond one-layer:
 - Iow-dimensional structures (Gabor) at first layer?
 - more structured interactions at second layer?
 - optimization beyond kernel regimes?

Conclusion and perspectives

Summary

- Improved sample complexity for invariance and stability through pooling
- Locality breaks the curse
- Depth and pooling in convolutional models captures rich interaction models with invariances

Future directions

- Empirical benefits for kernels beyond two-layers?
- Invariance groups need to be built-in, can we adapt to them?
- Adaptivity to structure beyond one-layer:
 - Iow-dimensional structures (Gabor) at first layer?
 - more structured interactions at second layer?
 - optimization beyond kernel regimes?

Thank you!

References I

- A. B. Approximation and learning with deep convolutional models: a kernel perspective. arXiv preprint arXiv:2102.10032, 2021.
- A. B. and F. Bach. Deep equals shallow for relu networks in kernel regimes. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021.
- A. B. and J. Mairal. Group invariance, stability to deformations, and complexity of deep convolutional representations. *Journal of Machine Learning Research (JMLR)*, 20(25):1–49, 2019.
- A. B., L. Venturi, and J. Bruna. On the sample complexity of learning with geometric stability. *arXiv* preprint arXiv:2106.07148, 2021.
- F. Bach. Breaking the curse of dimensionality with convex neural networks. *Journal of Machine Learning Research (JMLR)*, 18(19):1–53, 2017.
- A. Bietti and J. Mairal. On the inductive bias of neural tangent kernels. In Advances in Neural Information Processing Systems (NeurIPS), 2019.
- J. Bruna and S. Mallat. Invariant scattering convolution networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, 35(8):1872–1886, 2013.
- L. Chen and S. Xu. Deep neural tangent kernel and laplace kernel have the same rkhs. In *Proceedings* of the International Conference on Learning Representations (ICLR), 2021.

References II

- L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. In Advances in Neural Information Processing Systems (NeurIPS), 2019.
- Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in Neural Information Processing Systems (NIPS), 2009.
- C. Ciliberto, F. Bach, and A. Rudi. Localized structured prediction. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2019.
- T. Cohen and M. Welling. Group equivariant convolutional networks. In International Conference on Machine Learning (ICML), 2016.
- A. Favero, F. Cagnetta, and M. Wyart. Locality defeats the curse of dimensionality in convolutional teacher-student scenarios. *arXiv preprint arXiv:2106.08619*, 2021.
- B. Haasdonk and H. Burkhardt. Invariant kernel functions for pattern analysis and machine learning. *Machine learning*, 68(1):35–61, 2007.
- A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2018.
- R. Kondor and S. Trivedi. On the generalization of equivariance and convolution in neural networks to the action of compact groups. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2018.

References III

- J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein. Deep neural networks as gaussian processes. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2018.
- Y. Lin. Tensor product space anova models. Annals of Statistics, 28(3):734–755, 2000.
- J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks. In Advances in Neural Information Processing Systems (NIPS), 2016.
- J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. Convolutional kernel networks. In Advances in Neural Information Processing Systems (NIPS), 2014.
- S. Mallat. Group invariant scattering. *Communications on Pure and Applied Mathematics*, 65(10): 1331–1398, 2012.
- S. Mei, T. Misiakiewicz, and A. Montanari. Learning with invariances in random features and kernel models. In *Conference on Learning Theory (COLT)*, 2021.
- Y. Mroueh, S. Voinea, and T. A. Poggio. Learning with group invariant features: A kernel perspective. In Advances in Neural Information Processing Systems (NIPS), 2015.
- R. M. Neal. Bayesian learning for neural networks. Springer, 1996.
- A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural Information Processing Systems (NIPS), 2007.

References IV

- N. C. Saldanha and C. Tomei. The accumulated distribution of quadratic forms on the sphere. *Linear algebra and its applications*, 245:335–351, 1996.
- M. Scetbon and Z. Harchaoui. Harmonic decompositions of convolutional networks. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2020.
- V. Shankar, A. Fang, W. Guo, S. Fridovich-Keil, L. Schmidt, J. Ragan-Kelley, and B. Recht. Neural kernels without tangents. *arXiv preprint arXiv:2003.02237*, 2020.
- G. Wahba. Spline models for observational data, volume 59. Siam, 1990.

Folklore properties of convolutional models

Convolutional architectures:

- Capture multi-scale and compositional structure in natural signals
- Model local stationarity
- Provide some translation invariance

Folklore properties of convolutional models

Convolutional architectures:

- Capture multi-scale and compositional structure in natural signals
- Model local stationarity
- Provide some translation invariance

Beyond translation invariance?

One-layer convolutional kernel with pooling

- *h*[*u*]: pooling filter (*e.g.*, Gaussian)
- A_h : (circular) convolution operator $A_h x[u] = \sum_{v \in \Omega} h[u v] x[v]$
- $\Phi(x)[u] = \varphi(x_u) \in \mathcal{H} \ (\varphi: \text{ kernel mapping of } k)$

1-layer convolutional kernel

$$\mathcal{K}(x,x') = \sum_{u \in \Omega} \sum_{v,v'} h[u-v]h[u-v']k(x_v,x'_{v'}) = \langle A_h \Phi(x), A_h \Phi(x') \rangle_{L^2(\Omega,\mathcal{H})}$$

Functions in RKHS: Same functions $f(x) = \sum_{u} g[u](x_u)$, different **penalty**: $\|A_h^{\dagger}g\|_{L^2(\Omega,\mathcal{H})}^2$.

One-layer convolutional kernel with pooling

- *h*[*u*]: pooling filter (*e.g.*, Gaussian)
- A_h : (circular) convolution operator $A_h x[u] = \sum_{v \in \Omega} h[u v] x[v]$
- $\Phi(x)[u] = \varphi(x_u) \in \mathcal{H} \ (\varphi: \text{ kernel mapping of } k)$

1-layer convolutional kernel

$$\mathcal{K}(x,x') = \sum_{u \in \Omega} \sum_{v,v'} h[u-v]h[u-v']k(x_v,x'_{v'}) = \langle A_h \Phi(x), A_h \Phi(x') \rangle_{L^2(\Omega,\mathcal{H})}$$

Functions in RKHS: Same functions $f(x) = \sum_{u} g[u](x_u)$, different **penalty**: $\|A_h^{\dagger}g\|_{L^2(\Omega,\mathcal{H})}^2$.

 \implies Encourages spatial smoothness: for $g_{z}[u] := g[u](z)$, we have

$$\widehat{A_h^{\dagger}g_z}[w] = \frac{\hat{g}_z[w]}{\hat{h}[w]}$$

Large pooling \leftrightarrow fast decay of $\hat{h}[w] \leftrightarrow$ stronger penalty on high frequencies of g_z .

Translation-invariant target $f^*(x) = \sum_u g(x_u)$, with $g \in \mathcal{H}$.

Learn using kernel K_h with pooling with filter $h \ge 0$, $\|h\|_1 = 1$, e.g.:

- no pooling: $h[u] = \delta_{u,0}$
- global pooling: $h[u] = 1/|\Omega|$
- $A_h(g,...,g) = (g,...,g) \implies$ same RKHS norm for any h!

Translation-invariant target $f^*(x) = \sum_u g(x_u)$, with $g \in \mathcal{H}$.

Learn using kernel K_h with pooling with filter $h \ge 0$, $||h||_1 = 1$, *e.g.*: • no pooling: $h[u] = \delta_{u,0}$

- global pooling: $h[u] = 1/|\Omega|$
- $A_h(g, \ldots, g) = (g, \ldots, g) \implies$ same RKHS norm for any h!

Basic generalization bound with 1-Lipschitz loss on $\mathcal{F} = \{ \|f\|_{K_h} \leq B \}$

$$\mathbb{E} L(f_n) - \min_{f \in \mathcal{F}} L(f) \lesssim \frac{B\sqrt{\mathbb{E}_{\mathsf{X}}[K_h(\mathsf{X},\mathsf{X})]}}{\sqrt{n}}$$

Under simple data models, $\mathbb{E}_x[k(x_u, x_u)] = 1$, $\mathbb{E}_x[k(x_u, x_v)] \le \epsilon \ll 1$ for $u \ne v$

- no pooling: $\mathbb{E}[K_h(x,x)] = |\Omega|$
- global pooling: $\mathbb{E}[K_h(x,x)] \leq 1 + \epsilon |\Omega|$

Translation-invariant target $f^*(x) = \sum_u g(x_u)$, with $g \in \mathcal{H}$.

Learn using kernel K_h with pooling with filter $h \ge 0$, $||h||_1 = 1$, *e.g.*: • no pooling: $h[u] = \delta_{u,0}$

- global pooling: $h[u] = 1/|\Omega|$
- $A_h(g,...,g) = (g,...,g) \implies$ same RKHS norm for any h!

Basic generalization bound with 1-Lipschitz loss on $\mathcal{F} = \{ \|f\|_{K_h} \leq B \}$

$$\mathbb{E} L(f_n) - \min_{f \in \mathcal{F}} L(f) \lesssim \frac{B\sqrt{\mathbb{E}_{\times}[K_h(x,x)]}}{\sqrt{n}}$$

Under simple data models, $\mathbb{E}_{x}[k(x_{u}, x_{u})] = 1$, $\mathbb{E}_{x}[k(x_{u}, x_{v})] \leq \epsilon \ll 1$ for $u \neq v$ • **no pooling**: $\mathbb{E}[\mathcal{K}_{b}(x, x)] = |\Omega|$

• global pooling: $\mathbb{E}[\mathcal{K}_h(x,x)] \leq 1 + \epsilon |\Omega| \implies \text{need} \sim |\Omega|$ fewer samples!

Translation-invariant target $f^*(x) = \sum_u g(x_u)$, with $g \in \mathcal{H}$.

Learn using kernel K_h with pooling with filter $h \ge 0$, $||h||_1 = 1$, e.g.: • no pooling: $h[u] = \delta_{u,0}$

- global pooling: $h[u] = 1/|\Omega|$
- $A_h(g,...,g) = (g,...,g) \implies$ same RKHS norm for any h!

Basic generalization bound with 1-Lipschitz loss on $\mathcal{F} = \{ \|f\|_{K_h} \leq B \}$

$$\mathbb{E} L(f_n) - \min_{f \in \mathcal{F}} L(f) \lesssim \frac{B\sqrt{\mathbb{E}_{\mathsf{X}}[K_h(\mathsf{X},\mathsf{X})]}}{\sqrt{n}}$$

Under simple data models, $\mathbb{E}_x[k(x_u, x_u)] = 1$, $\mathbb{E}_x[k(x_u, x_v)] \le \epsilon \ll 1$ for $u \ne v$

• no pooling: $\mathbb{E}[\mathcal{K}_h(x,x)] = |\Omega|$

• global pooling: $\mathbb{E}[K_h(x,x)] \leq 1 + \epsilon |\Omega| \implies \text{need} \sim |\Omega|$ fewer samples!

• General *h*: $\mathbb{E}[K_h(x,x)] \le |\Omega| ||h||_2^2 + \epsilon |\Omega| (1 - ||h||_2^2)$

- Quadratic patch kernel $k_2(z,z') = (z^\top z')^2 = \langle z \otimes z, z' \otimes z' \rangle_{(\mathcal{H} \otimes \mathcal{H})^{|S_2| \times |S_2|}}$
- $\mathcal{H} \otimes \mathcal{H}$: contains functions $g(x_u, x_v)$ of 2 patches (Wahba, 1990)

- Quadratic patch kernel $k_2(z,z') = (z^\top z')^2 = \langle z \otimes z, z' \otimes z' \rangle_{(\mathcal{H} \otimes \mathcal{H})^{|S_2| \times |S_2|}}$
- $\mathcal{H} \otimes \mathcal{H}$: contains functions $g(x_u, x_v)$ of 2 patches (Wahba, 1990)

RKHS of 2-layer convolutional kernel (patch size $|S_2| = 1$): Contains functions

$$f(x) = \sum_{u,v\in\Omega} G[u,v](x_u,x_v),$$

with G[u, v] = 0 if $|u - v| > \text{diam}(\text{supp}(h_1))$. **Penalty**:

 $\|A_2^{\dagger}\operatorname{diag}((A_1\otimes A_1)^{\dagger}G)\|_{L^2(\Omega_2,\mathcal{H}\otimes\mathcal{H})}^2$

- Quadratic patch kernel $k_2(z,z') = (z^\top z')^2 = \langle z \otimes z, z' \otimes z' \rangle_{(\mathcal{H} \otimes \mathcal{H})^{|S_2| \times |S_2|}}$
- $\mathcal{H} \otimes \mathcal{H}$: contains functions $g(x_u, x_v)$ of 2 patches (Wahba, 1990)

RKHS of 2-layer convolutional kernel (patch size $|S_2| = 1$): Contains functions

$$f(x) = \sum_{u,v\in\Omega} G[u,v](x_u,x_v),$$

with G[u, v] = 0 if $|u - v| > \text{diam}(\text{supp}(h_1))$. Penalty:

 $\|A_2^{\dagger}\operatorname{diag}((A_1\otimes A_1)^{\dagger}G)\|_{L^2(\Omega_2,\mathcal{H}\otimes\mathcal{H})}^2$

(A₁ ⊗ A₁)[†]: encourages 2D smoothness of "image" G[u, v], bandwidth σ₁
A₂[†]: encourage 1D smoothness along diagonal of G, bandwidth σ₂
σ₁ > σ₂ ⇒ G[u, v] can depend more strongly on u - v than u or v

RKHS of 2-layer convolutional kernel (any patch size $|S_2|$): Contains functions

$$f(x) = \sum_{p,q\in S_2} \sum_{u,v\in\Omega} G_{pq}[u,v](x_u,x_v),$$

with $G_{pq}[u, v] = 0$ if $|u - v - (p - q)| > \text{diam}(\text{supp}(h_1))$. Penalty:

$$\sum_{p,q\in S_2} \|A_2^{\dagger} \operatorname{diag}((L_p A_1 \otimes L_q A_1)^{\dagger} G_{pq})\|_{L^2(\Omega_2,\mathcal{H}\otimes\mathcal{H})}^2$$

RKHS of 2-layer convolutional kernel (any patch size $|S_2|$): Contains functions

$$f(x) = \sum_{p,q\in S_2} \sum_{u,v\in\Omega} G_{pq}[u,v](x_u,x_v),$$

with $G_{pq}[u, v] = 0$ if $|u - v - (p - q)| > \text{diam}(\text{supp}(h_1))$. Penalty:

$$\sum_{p,q\in S_2} \|A_2^{\dagger} \operatorname{diag}((L_p A_1 \otimes L_q A_1)^{\dagger} G_{pq})\|_{L^2(\Omega_2, \mathcal{H} \otimes \mathcal{H})}^2$$

"Variance" term: $\sqrt{\mathbb{E}_x[K(x,x)]} \le |\Omega| |S_2|^2 \sum_{\nu} \langle h_2, L_{\nu} h_w \rangle \langle h_1, L_{\nu} h_1 \rangle^2 + O(\epsilon)$

RKHS of 2-layer convolutional kernel (any patch size $|S_2|$): Contains functions

$$f(x) = \sum_{p,q\in S_2} \sum_{u,v\in\Omega} G_{pq}[u,v](x_u,x_v),$$

with $G_{pq}[u, v] = 0$ if $|u - v - (p - q)| > \text{diam}(\text{supp}(h_1))$. Penalty:

$$\sum_{p,q\in S_2} \|A_2^{\dagger} \operatorname{diag}((L_p A_1 \otimes L_q A_1)^{\dagger} G_{pq})\|_{L^2(\Omega_2, \mathcal{H} \otimes \mathcal{H})}^2$$

"Variance" term: $\sqrt{\mathbb{E}_x[K(x,x)]} \le |\Omega| |S_2|^2 \sum_{\nu} \langle h_2, L_{\nu} h_w \rangle \langle h_1, L_{\nu} h_1 \rangle^2 + O(\epsilon)$ Extensions:

• κ_2 higher-degree polynomial \implies higher-order interactions

• more layers: also higher-order interactions, but more structured penalty

Stability to deformations

Deformations

- $\tau : \Omega \to \Omega$: C^1 -diffeomorphism
- $L_{\tau}x(u) = x(u \tau(u))$: action operator
- Much richer group of transformations than translations

• Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)

Stability to deformations

Deformations

- $\tau: \Omega \to \Omega$: C^1 -diffeomorphism
- $L_{\tau}x(u) = x(u \tau(u))$: action operator
- Much richer group of transformations than translations

Definition of stability

• Representation $\Phi(\cdot)$ is **stable** (Mallat, 2012) if:

$$\|\Phi(L_{\tau}x) - \Phi(x)\| \le (C_1 \|\nabla \tau\|_{\infty} + C_2 \|\tau\|_{\infty}) \|x\|$$

- $\|\nabla \tau\|_{\infty} = \sup_{u} \|\nabla \tau(u)\|$ controls deformation
- $\|\tau\|_{\infty} = \sup_{u} |\tau(u)|$ controls translation
- $C_2 \rightarrow 0$: translation invariance

Smoothness and stability with kernels

Geometry of the kernel mapping: $f(x) = \langle f, \Phi(x) \rangle$

$$|f(x) - f(x')| \leq \|f\|_{\mathcal{H}} \cdot \|\Phi(x) - \Phi(x')\|_{\mathcal{H}}$$

- $\|f\|_{\mathcal{H}}$ controls **complexity** of the model
- Φ(x) encodes CNN architecture independently of the model (smoothness, invariance, stability to deformations)

Smoothness and stability with kernels

Geometry of the kernel mapping: $f(x) = \langle f, \Phi(x) \rangle$

$$|f(x) - f(x')| \leq \|f\|_{\mathcal{H}} \cdot \|\Phi(x) - \Phi(x')\|_{\mathcal{H}}$$

- $\|f\|_{\mathcal{H}}$ controls **complexity** of the model
- Φ(x) encodes CNN architecture independently of the model (smoothness, invariance, stability to deformations)

Useful kernels in practice:

- Convolutional kernel networks (CKNs, Mairal, 2016) with efficient approximations
- Extends to neural tangent kernels (**NTKs**, Jacot et al., 2018) of infinitely wide CNNs (Bietti and Mairal, 2019)

Construction of convolutional kernels

Construct a sequence of feature maps x_1, \ldots, x_n

- $x_0: \Omega \to \mathcal{H}_0$: initial (continuous) signal
 - $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images)
 - $x_0(u) \in \mathcal{H}_0$: value ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images)

Construction of convolutional kernels

Construct a sequence of feature maps x_1, \ldots, x_n

- $x_0 : \Omega \to \mathcal{H}_0$: initial (continuous) signal
 - $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images)
 - $x_0(u) \in \mathcal{H}_0$: value ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images)

• $x_k : \Omega \to \mathcal{H}_k$: feature map at layer k

 $P_k x_{k-1}$

• P_k : patch extraction operator, extract small patch of feature map x_{k-1} around each point u
Construction of convolutional kernels

Construct a sequence of feature maps x_1, \ldots, x_n

- $x_0 : \Omega \to \mathcal{H}_0$: initial (continuous) signal
 - $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images)
 - $x_0(u) \in \mathcal{H}_0$: value $(\mathcal{H}_0 = \mathbb{R}^3 \text{ for RGB images})$
- $x_k : \Omega \to \mathcal{H}_k$: feature map at layer k

$$M_k P_k x_{k-1}$$

- P_k : patch extraction operator, extract small patch of feature map x_{k-1} around each point u
- M_k : non-linear mapping operator, maps each patch to a new point with a **pointwise** non-linear function $\varphi_k(\cdot)$ (kernel mapping)

Construction of convolutional kernels

Construct a sequence of feature maps x_1, \ldots, x_n

- $x_0 : \Omega \to \mathcal{H}_0$: initial (continuous) signal
 - $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images)
 - $x_0(u) \in \mathcal{H}_0$: value ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images)

• $x_k : \Omega \to \mathcal{H}_k$: feature map at layer k

$$x_k = A_k M_k P_k x_{k-1}$$

- P_k : patch extraction operator, extract small patch of feature map x_{k-1} around each point u
- M_k : non-linear mapping operator, maps each patch to a new point with a **pointwise** non-linear function $\varphi_k(\cdot)$ (kernel mapping)
- A_k : (linear, Gaussian) **pooling** operator at scale σ_k

Construction of convolutional kernels

Construct a sequence of feature maps x_1, \ldots, x_n

- $x_0 : \Omega \to \mathcal{H}_0$: initial (continuous) signal
 - $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images)
 - $x_0(u) \in \mathcal{H}_0$: value ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images)

• $x_k : \Omega \to \mathcal{H}_k$: feature map at layer k

$$x_k = A_k M_k P_k x_{k-1}$$

- P_k : patch extraction operator, extract small patch of feature map x_{k-1} around each point u
- M_k : **non-linear mapping** operator, maps each patch to a new point with a **pointwise** non-linear function $\varphi_k(\cdot)$ (kernel mapping)
- A_k : (linear, Gaussian) **pooling** operator at scale σ_k

Goal: control stability of these operators through their norms

CKN construction

Patch extraction operator P_k

Patch extraction operator P_k

$$P_k x_{k-1}(u) := (x_{k-1}(u+v))_{v \in S_k} \in \mathcal{P}_k = \mathcal{H}_{k-1}^{S_k}$$

- S_k : patch shape, e.g. box
- P_k is linear, and preserves the L^2 norm: $||P_k x_{k-1}|| = ||x_{k-1}||$

Non-linear mapping operator M_k

Non-linear mapping operator M_k

$$M_k P_k x_{k-1}(u) := \varphi_k (P_k x_{k-1}(u)) \in \mathcal{H}_k$$

φ_k : P_k → H_k pointwise non-linearity on patches (kernel map)
We assume non-expansivity: for z, z' ∈ P_k

$$\|arphi_k(z)\| \leq \|z\|$$
 and $\|arphi_k(z) - arphi_k(z')\| \leq \|z - z'\|$

• M_k then satisfies, for $x, x' \in L^2(\Omega, \mathcal{P}_k)$

$$||M_k x|| \le ||x||$$
 and $||M_k x - M_k x'|| \le ||x - x'||$

φ_k from kernels

Kernel mapping of homogeneous dot-product kernels:

$$\mathcal{K}_k(z,z') = \|z\| \|z'\| \kappa_kigg(rac{\langle z,z'
angle}{\|z\|\|z'\|}igg) = \langle arphi_k(z),arphi_k(z')
angle.$$

 $\kappa_k(u) = \sum_{j=0}^\infty b_j u^j$ with $b_j \ge 0$, $\kappa_k(1) = 1$

• Commonly used for hierarchical kernels

•
$$\|\varphi_k(z)\| = K_k(z,z)^{1/2} = \|z\|$$

•
$$\|\varphi_k(z) - \varphi_k(z')\| \le \|z - z'\|$$
 if $\kappa'_k(1) \le 1$

• \implies non-expansive

φ_k from kernels

Kernel mapping of homogeneous dot-product kernels:

$$\mathcal{K}_k(z,z') = \|z\| \|z'\| \kappa_k \Big(rac{\langle z,z'
angle}{\|z\| \|z'\|} \Big) = \langle arphi_k(z), arphi_k(z')
angle.$$

 $\kappa_k(u) = \sum_{j=0}^\infty b_j u^j$ with $b_j \ge 0$, $\kappa_k(1) = 1$

Examples

• arc-cosine kernels for the ReLU $\sigma(u) = \max(0, u)$

Pooling operator A_k

Pooling operator A_k

$$x_k(u) = A_k M_k P_k x_{k-1}(u) = \int_{\mathbb{R}^d} h_{\sigma_k}(u-v) M_k P_k x_{k-1}(v) dv \in \mathcal{H}_k$$

• linear, non-expansive operator: $||A_k|| \le 1$

Pooling operator A_k

$$x_k(u) = A_k M_k P_k x_{k-1}(u) = \int_{\mathbb{R}^d} h_{\sigma_k}(u-v) M_k P_k x_{k-1}(v) dv \in \mathcal{H}_k$$

- h_{σ_k} : pooling filter at scale σ_k
- $h_{\sigma_k}(u) := \sigma_k^{-d} h(u/\sigma_k)$ with h(u) Gaussian
- linear, non-expansive operator: $||A_k|| \le 1$
- In practice: **discretization**, sampling at resolution σ_k after pooling
- $\bullet~$ "Preserves information" when $subsampling \leq patch~size$

Recap: P_k , M_k , A_k

Multilayer construction

Assumption on x₀

- x_0 is typically a **discrete** signal aquired with physical device.
- Natural assumption: $x_0 = A_0 x$, with x the original continuous signal, A_0 local integrator with scale σ_0 (anti-aliasing).

Multilayer construction

Assumption on x₀

- x_0 is typically a **discrete** signal aquired with physical device.
- Natural assumption: $x_0 = A_0 x$, with x the original continuous signal, A_0 local integrator with scale σ_0 (anti-aliasing).

Multilayer representation

$$\Phi(x_0) = A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x_0 \in L^2(\Omega, \mathcal{H}_n).$$

• S_k , σ_k grow exponentially in practice (i.e., fixed with subsampling).

Multilayer construction

Assumption on x₀

- x_0 is typically a **discrete** signal aquired with physical device.
- Natural assumption: $x_0 = A_0 x$, with x the original continuous signal, A_0 local integrator with scale σ_0 (anti-aliasing).

Multilayer representation

$$\Phi(x_0) = A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x_0 \in L^2(\Omega, \mathcal{H}_n).$$

• S_k , σ_k grow exponentially in practice (i.e., fixed with subsampling).

Final kernel

$$\mathcal{K}_{CKN}(x,x') = \langle \Phi(x), \Phi(x') \rangle_{L^{2}(\Omega)} = \int_{\Omega} \langle x_{n}(u), x_{n}'(u) \rangle du$$

Stability to deformations

Theorem (Stability of CKN (B. and Mairal, 2019)) Let $\Phi_n(x) = \Phi(A_0 x)$ and assume $\|\nabla \tau\|_{\infty} \le 1/2$,

$$\|\Phi_n(L_{\tau}x) - \Phi_n(x)\| \le \left(C_{\beta}(n+1) \|\nabla \tau\|_{\infty} + \frac{C}{\sigma_n} \|\tau\|_{\infty}\right) \|x\|$$

- Translation invariance: large σ_n
- Stability: small patch sizes (eta pprox patch size, $C_eta = O(eta^3)$ for images)
- \bullet Signal preservation: subsampling factor \approx patch size

 \implies need several layers with small patches $n = O(\log(\sigma_n/\sigma_0)/\log\beta)$

Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019))
Let
$$\Phi_n(x) = \Phi^{NTK}(A_0x)$$
, and assume $\|\nabla \tau\|_{\infty} \le 1/2$
 $\|\Phi_n(L_{\tau}x) - \Phi_n(x)\|$
 $\le \left(C_{\beta}n^{7/4}\|\nabla \tau\|_{\infty}^{1/2} + C'_{\beta}n^2\|\nabla \tau\|_{\infty} + \sqrt{n+1}\frac{C}{\sigma_n}\|\tau\|_{\infty}\right)\|x\|,$

Comparison with random feature CKN on deformed MNIST digits:

Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019))
Let
$$\Phi_n(x) = \Phi^{NTK}(A_0x)$$
, and assume $\|\nabla \tau\|_{\infty} \le 1/2$
 $\|\Phi_n(L_{\tau}x) - \Phi_n(x)\|$
 $\le \left(C_{\beta}n^{7/4}\|\nabla \tau\|_{\infty}^{1/2} + C_{\beta}'n^2\|\nabla \tau\|_{\infty} + \sqrt{n+1}\frac{C}{\sigma_n}\|\tau\|_{\infty}\right)\|x\|,$

Comparison with random feature CKN on deformed MNIST digits:

Experiments with convolutional kernels on Cifar10

Convolutional kernels with 3x3 patches + kernel ridge regression (danger: lots of compute!)

Conv. layers	subsampling	kernel	test acc.
2	2-5	ReLU RF	86.63%
2	2-5	ReLU NTK	87.19%

Experiments with convolutional kernels on Cifar10

Convolutional kernels with 3x3 patches + kernel ridge regression (danger: lots of compute!)

Conv. layers	subsampling	kernel	test acc.
2	2-5	ReLU RF	86.63%
2	2-5	ReLU NTK	87.19%
2	2-5	exp, $\sigma = 0.6$	87.93%
3	2-2-2	exp, $\sigma=$ 0.6	88.2%

Experiments with convolutional kernels on Cifar10

Convolutional kernels with 3x3 patches + kernel ridge regression (danger: lots of compute!)

Conv. Javors	subsampling	kornol	tost acc
COIIV. Tayers	subsampling	Kerner	lest acc.
2	2-5	ReLU RF	86.63%
2	2-5	ReLU NTK	87.19%
2	2-5	exp, $\sigma=$ 0.6	87.93%
3	2-2-2	exp, $\sigma=$ 0.6	88.2%
16 (Li et al., 2019)	last layer only	ReLU RF	87.28%
16 (Li et al., 2019)	last layer only	ReLU NTK	86.77%
10	every 3 layers	exp	88.2%

Li et al. (2019): no pooling before last layer, more complicated pre-processing Shankar et al. (2020): similar performance to us (88.2%), reaches 90% when adding flips

Approximation with convolutional networks

- What functions does the RKHS contain? What is their norm?
- Role of **convolution** vs **fully-connected**?
- Role of **depth**?

Approximation with convolutional networks

- What functions does the RKHS contain? What is their norm?
- Role of **convolution** vs **fully-connected**?
- Role of **depth**?
- Limitations of kernels?

Prelude: "teacher" CNNs with smooth activations are in the RKHS

- Consider a CNN with filters $W_k^{ij}(u), u \in S_k$
- Smooth activations σ with smoothness controlled by some $C_{\kappa,\sigma}(\cdot)$
- The CNN can be constructed hierarchically in \mathcal{H}_{CKN}
- Complexity is controlled by the RKHS norm:

$$\|f_{\sigma}\|_{\mathcal{H}}^{2} \leq \|W_{n+1}\|_{2}^{2} C_{\kappa,\sigma}^{2}(\|W_{n}\|_{2}^{2} C_{\kappa,\sigma}^{2}(\|W_{n-1}\|_{2}^{2} C_{\kappa,\sigma}^{2}(\ldots)))$$

(B. and Mairal, 2019)

Prelude: "teacher" CNNs with smooth activations are in the RKHS

- Consider a CNN with filters $W_k^{ij}(u), u \in S_k$
- Smooth activations σ with smoothness controlled by some $C_{\kappa,\sigma}(\cdot)$
- The CNN can be constructed hierarchically in $\mathcal{H}_{\textit{CKN}}$
- Complexity is controlled by the RKHS norm (linear layers):

$$\|f_{\sigma}\|_{\mathcal{H}}^{2} \leq \|W_{n+1}\|_{2}^{2} \cdot \|W_{n}\|_{2}^{2} \cdot \|W_{n-1}\|_{2}^{2} \dots \|W_{1}\|_{2}^{2}$$

• Linear layers: product of spectral norms

Prelude: "teacher" CNNs with smooth activations are in the RKHS

- Consider a CNN with filters $W_k^{ij}(u), u \in S_k$
- Smooth activations σ with smoothness controlled by some $C_{\kappa,\sigma}(\cdot)$
- The CNN can be constructed hierarchically in \mathcal{H}_{CKN}
- Complexity is controlled by the RKHS norm (linear layers):

$$\|f_{\sigma}\|_{\mathcal{H}}^{2} \leq \|W_{n+1}\|_{2}^{2} \cdot \|W_{n}\|_{2}^{2} \cdot \|W_{n-1}\|_{2}^{2} \dots \|W_{1}\|_{2}^{2}$$

- Linear layers: product of spectral norms
- Can we give a more precise characterization of the RKHS?

Fully-connected models \implies dot-product kernels

$$K(x,y) = \kappa(x^ op y)$$
 for $x,y \in \mathbb{S}^{d-1}$

• Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)

• NTK for infinitely wide networks (Jacot et al., 2018)

Fully-connected models \implies dot-product kernels

$$\mathcal{K}(x,y) = \kappa(x^{ op}y) ext{ for } x,y \in \mathbb{S}^{d-1}$$

- Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
- NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)

- Rotation-invariant kernel on the sphere
- \Longrightarrow RKHS description in the $L^2(\mathbb{S}^{d-1})$ basis of spherical harmonics $Y_{k,j}$

Fully-connected models \implies dot-product kernels

$$\mathcal{K}(x,y) = \kappa(x^{ op}y) ext{ for } x,y \in \mathbb{S}^{d-1}$$

- Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
- NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)

- Rotation-invariant kernel on the sphere
- \Longrightarrow RKHS description in the $L^2(\mathbb{S}^{d-1})$ basis of spherical harmonics $Y_{k,j}$

$$\kappa(x^{ op}y) = \sum_{k=0}^{\infty} \mu_k \sum_{j=1}^{N(d,k)} Y_{k,j}(x) Y_{k,j}(y), \quad ext{ for } x, y \in \mathbb{S}^{d-1}$$

Fully-connected models \implies dot-product kernels

$$\mathcal{K}(x,y) = \kappa(x^ op y) ext{ for } x,y \in \mathbb{S}^{d-1}$$

- Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
- NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)

- Rotation-invariant kernel on the sphere
- \Longrightarrow RKHS description in the $L^2(\mathbb{S}^{d-1})$ basis of spherical harmonics $Y_{k,j}$

$$\mathcal{H} = \left\{ f = \sum_{k=0}^{\infty} \sum_{j=1}^{N(d,k)} a_{k,j} Y_{k,j}(\cdot) \text{ s.t. } \|f\|_{\mathcal{H}}^2 := \sum_{k,j} \frac{a_{k,j}^2}{\mu_k} < \infty \right\}$$

Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)

- Decay of $\mu_k \leftrightarrow$ regularity of functions in the RKHS
- Polynomial decays $\mu_k \approx k^{-2\beta}$: similar to Sobolev space of order β , norm:

$$\|f\|_{\mathcal{H}} \approx \|\Delta_{\mathbb{S}^{d-1}}^{\beta/2} f\|_{L^2(\mathbb{S}^{d-1})}$$

- Leads to sufficient conditions for RKHS membership
- Rates of approximation for Lipschitz functions

Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)

- Decay of $\mu_k \leftrightarrow$ regularity of functions in the RKHS
- Polynomial decays $\mu_k \approx k^{-2\beta}$: similar to Sobolev space of order β , norm:

$$\|f\|_{\mathcal{H}} \approx \|\Delta_{\mathbb{S}^{d-1}}^{\beta/2} f\|_{L^2(\mathbb{S}^{d-1})}$$

- Leads to sufficient conditions for RKHS membership
- Rates of approximation for Lipschitz functions

NTK vs random features (Bietti and Mairal, 2019)

- f has $\beta = p/2 \eta$ -bounded derivatives $\implies f \in \mathcal{H}_{NTK}$, $\|f\|_{\mathcal{H}_{NTK}} \leq O(\eta)$
- $\beta = p/2 + 1$ needed for RF (Bach, 2017)
- $\bullet \implies \mathcal{H}_{\textit{NTK}} \text{ is (slightly) "larger" than } \mathcal{H}_{\textit{RF}}$
- Similar improvement for approximation of Lipschitz functions

Deep fully-connected ReLU networks: limitations

$$\kappa_L(x^{\top}y) = \underbrace{\kappa \circ \cdots \circ \kappa}_{L \text{ times}}(x^{\top}y)$$

Deep = Shallow (B. and Bach, 2021)

- $\, \bullet \,$ RF or NTK kernels for deep and shallow networks have the same decay! (thus same ${\cal H})$
- Proof using differentiability of κ : we have $\mu_k \sim k^{d-2\nu+1}$ when

$$\kappa(1-t) = poly(t) + c_1 t^{\nu} + o(t^{\nu})$$

 $\kappa(-1+t) = poly(t) + c_{-1} t^{\nu} + o(t^{\nu}).$

• Such expansions are preserved when taking composition with ReLU/arc-cosine kernel

Deep fully-connected ReLU networks: limitations

$$\kappa_L(x^{\top}y) = \underbrace{\kappa \circ \cdots \circ \kappa}_{L \text{ times}}(x^{\top}y)$$

Deep = Shallow (B. and Bach, 2021)

- $\, \bullet \,$ RF or NTK kernels for deep and shallow networks have the same decay! (thus same ${\cal H})$
- Proof using differentiability of κ : we have $\mu_k \sim k^{d-2\nu+1}$ when

$$\kappa(1-t) = poly(t) + c_1 t^{\nu} + o(t^{\nu})$$

 $\kappa(-1+t) = poly(t) + c_{-1} t^{\nu} + o(t^{\nu}).$

• Such expansions are preserved when taking composition with ReLU/arc-cosine kernel

Consequences

- \implies kernel regime cannot explain power of depth in fully-connected nets
- \implies power of deep kernels comes from architecture
Deep = shallow: numerical experiments

Figure 1: (left, middle) expected squared error vs sample size n for kernel ridge regression estimators with different kernels on f_1^* and with two different budgets on optimization difficulty λ_{\min} (the minimum regularization parameter allowed). (right) ridge regression with one or two layers of random ReLU features on f_2^* , with different scalings of the number of "neurons" at each layer in terms of n.

Deep = shallow: numerical experiments

MNIST

F-MNIST

т	DD	NUTLIZ	1	Т	DD	NITT
L	RF	NTK		L	RF [*]	NTK
2	98.60 ± 0.03	98.49 ± 0.02		2	90.75 ± 0.11	90.65 ± 0.07
3	98.67 ± 0.03	98.53 ± 0.02		3	90.87 ± 0.16	90.62 ± 0.08
4	98.66 ± 0.02	98.49 ± 0.01		4	90.89 ± 0.13	90.55 ± 0.07
5	98.65 ± 0.04	98.46 ± 0.02		5	90.88 ± 0.08	90.50 ± 0.05

(on 50k samples)

Approximating functions on signals: motivation

Curse of dimensionality

- Natural signals are very high-dimensional ($d \approx |\Omega|$, where Ω is the domain)
- Approximating general f^* requires exponentially large norm or very high smoothness

Approximating functions on signals: motivation

Curse of dimensionality

- Natural signals are very high-dimensional ($d \approx |\Omega|$, where Ω is the domain)
- Approximating general f^* requires exponentially large norm or very high smoothness

Adding structure: localized functions e.g., $f^*(x) = g^*(Px[u_0])$

- With fully-connected kernel, still need norm exp. large in d
- For basic convolutional kernel, norm only scales with the dimension of the patch $P_X[u_0]$:

$$K(x, x') = \langle MPx, MPx' \rangle = \sum_{u \in \Omega} k(Px[u], Px'[u])$$

• See also Ciliberto et al. (2019) for similar part-based kernels for structured prediction

Warmup: one layer with pooling

$$K(x, x') = \langle AMPx, AMPx' \rangle_{L^2(\Omega, \mathcal{H})}$$

(\mathcal{H} : RKHS of patch kernels)

• RKHS consists of functions of the form (patches denoted $x_u = Px[u] \in \mathbb{R}^p$)

$$f(x) = \sum_{u \in \Omega} G[u](x_u), \qquad G[u] \in \mathcal{H}$$

Warmup: one layer with pooling

$$K(x, x') = \langle AMPx, AMPx' \rangle_{L^2(\Omega, \mathcal{H})}$$

(\mathcal{H} : RKHS of patch kernels)

• RKHS consists of functions of the form (patches denoted $x_u = Px[u] \in \mathbb{R}^p$)

$$f(x) = \sum_{u \in \Omega} G[u](x_u), \qquad G[u] \in \mathcal{H}$$

• Squared RKHS norm given by the minimum over such decompositions of

$$\|A^{-\top}G\|^2_{L^2(\Omega,\mathcal{H})} = \|(A^{-\top}\otimes \Gamma)G\|^2_{L^2(\Omega)\otimes L^2(\mathbb{S}^{p-1})}$$

- G viewed in $L^2(\Omega) \otimes L^2(\mathbb{S}^{p-1})$ as $(u, z) \mapsto G[u](z)$
- $\Gamma = T^{-1/2}$ regularization operator of \mathcal{H} , e.g., $\Gamma = \Delta_{\mathbb{S}^{p-1}}^{\beta/2}$
- \implies A (pooling) encourages smoothness of $u \mapsto G[u](z)$
- \implies Γ (kernel) encourages smoothness of $z \mapsto G[u](z)$

Beyond one layer: empirical study

			· /
κ_1	κ_2	Test acc. (10k)	Test acc. (full)
Exp	Exp	80.5%	87.9% (84.1%)
Exp	Poly3	80.5%	87.7% (84.1%)
Exp	Poly2	79.4%	86.9% (83.4%)
Poly2	Exp	77.4%	- (81.5%)
Poly2	Poly2	75.1%	- (81.2%)
Exp	- (Lin)	74.2%	- (76.3%)

Cifar10 with full kernel (or Nyström in parentheses)

One layer is not enough

Polynomial kernel can be enough for second layer

Interlude: kernel tensor products

 κ_2 polynomial \implies products of patch kernels

 $\mathcal{K}((x_1,x_2),(x_1',x_2')) = k(x_1,x_1')k(x_2,x_2') = \langle \varphi(x_1) \otimes \varphi(x_2),\varphi(x_1') \otimes \varphi(x_2') \rangle_{\mathcal{H} \otimes \mathcal{H}}$

• RKHS $\mathcal{H} \otimes \mathcal{H}$ contains closure of functions $f(x_1, x_2) = \sum_{j=1}^m f_{1,j}(x_1) f_{2,j}(x_2)$

Interlude: kernel tensor products

 κ_2 polynomial \implies products of patch kernels

 $\mathcal{K}((x_1, x_2), (x_1', x_2')) = k(x_1, x_1')k(x_2, x_2') = \langle \varphi(x_1) \otimes \varphi(x_2), \varphi(x_1') \otimes \varphi(x_2') \rangle_{\mathcal{H} \otimes \mathcal{H}}$

- RKHS $\mathcal{H} \otimes \mathcal{H}$ contains closure of functions $f(x_1, x_2) = \sum_{j=1}^m f_{1,j}(x_1) f_{2,j}(x_2)$
- RKHS is often **much smaller** than a dot-product kernel on $x = (x_1, x_2)$
- Helpful for modeling interactions between variables/patches (Wahba, 1990; Lin, 2000; Scetbon and Harchaoui, 2020)

Interlude: kernel tensor products

κ_2 polynomial \implies products of patch kernels

 $\mathcal{K}((x_1,x_2),(x_1',x_2')) = k(x_1,x_1')k(x_2,x_2') = \langle \varphi(x_1) \otimes \varphi(x_2),\varphi(x_1') \otimes \varphi(x_2') \rangle_{\mathcal{H} \otimes \mathcal{H}}$

- RKHS $\mathcal{H} \otimes \mathcal{H}$ contains closure of functions $f(x_1, x_2) = \sum_{j=1}^m f_{1,j}(x_1) f_{2,j}(x_2)$
- RKHS is often **much smaller** than a dot-product kernel on $x = (x_1, x_2)$
- Helpful for modeling interactions between variables/patches (Wahba, 1990; Lin, 2000; Scetbon and Harchaoui, 2020)
- Here, the **architecture** determines which interactions matter, and **pooling** will further encourage **spatial regularities** among interaction terms

Kernel $K(x, x') = \langle \Phi(x), \Phi(x') \rangle$, with

$$\Phi(x) = A_2 M_2 P_2 A_1 M_1 P_1 x \in L^2\left(\Omega, (\mathcal{H} \otimes \mathcal{H})^{|\mathcal{S}_2| \times |\mathcal{S}_2|}\right)$$

Kernel $K(x, x') = \langle \Phi(x), \Phi(x') \rangle$, with

$$\Phi(x) = A_2 M_2 P_2 A_1 M_1 P_1 x \in L^2\left(\Omega, (\mathcal{H} \otimes \mathcal{H})^{|\mathcal{S}_2| \times |\mathcal{S}_2|}\right)$$

RKHS functions of the form

$$f(x) = \sum_{p,q \in S_2} \sum_{u,v \in \Omega} G_{pq}[u,v](x_u,x_v)$$

Kernel $K(x, x') = \langle \Phi(x), \Phi(x') \rangle$, with

$$\Phi(x) = A_2 M_2 P_2 A_1 M_1 P_1 x \in L^2\left(\Omega, (\mathcal{H} \otimes \mathcal{H})^{|\mathcal{S}_2| \times |\mathcal{S}_2|}\right)$$

RKHS functions of the form

$$f(x) = \sum_{p,q \in S_2} \sum_{u,v \in \Omega} G_{pq}[u,v](x_u,x_v)$$

Under **localization** constraint: $G_{pq} \in \text{Range}((L_pA_1 \otimes L_qA_1)^{\top} \operatorname{diag}(\cdot))$

Figure 2. Display of the response of the operator E_{pq} to Dirac inputs $x = \delta_u$ centered at two different locations u. These are bumps centered on points of the p - q diagonal, corresponding to interactions between two patches, at distance around p - q.

Kernel $K(x, x') = \langle \Phi(x), \Phi(x') \rangle$, with

$$\Phi(x) = A_2 M_2 P_2 A_1 M_1 P_1 x \in L^2\left(\Omega, (\mathcal{H} \otimes \mathcal{H})^{|\mathcal{S}_2| \times |\mathcal{S}_2|}\right)$$

RKHS functions of the form

$$f(x) = \sum_{p,q \in S_2} \sum_{u,v \in \Omega} G_{pq}[u,v](x_u,x_v)$$

Under localization constraint: $G_{pq} \in \text{Range}((L_pA_1 \otimes L_qA_1)^{\top} \operatorname{diag}(\cdot))$ **RKHS norm** given by the penalty

$$\sum_{p,q\in S_2} \|A_2^{-\top}\operatorname{diag}((L_pA_1\otimes L_qA_1)^{-\top}G_{pq})\|_{L^2(\Omega,\mathcal{H}\otimes\mathcal{H})}^2.$$

(L_pA₁ ⊗ L_qA₁)^{-⊤}G encourages 2D smoothness of (u, v) → G[u, v](z, z')
A₂^{-⊤} imposes even stronger 1D smoothness on diagonal u − v = p − q

- Higher-order polynomials \implies higher-order interactions
- More layers: also capture higher-order interactions, with different structure

- Higher-order polynomials \implies higher-order interactions
- More layers: also capture higher-order interactions, with different structure
- Empirically, on Cifar10, 2 layers with degree-4 kernels at 2nd layer suffice for best performance

Conclusions

Benefits of convolutional kernels

- Translation invariance + deformation stability with small patches and pooling
- $\bullet \implies \mathsf{benefits} \text{ of depth for stability}$
- Approximation benefits of \geq 2 layers by efficiently capturing interactions
- Limitations of depth for fully-connected models in kernel regimes

Conclusions

Benefits of convolutional kernels

- ${\scriptstyle \bullet}$ Translation invariance + deformation stability with small patches and pooling
- \implies benefits of depth for stability
- Approximation benefits of \geq 2 layers by efficiently capturing interactions
- Limitations of depth for fully-connected models in kernel regimes

Future directions

- Empirically, any benefits of depth beyond 2 layers?
- Statistical analysis through covariance operator

Conclusions

Benefits of convolutional kernels

- ${\scriptstyle \bullet}\,$ Translation invariance + deformation stability with small patches and pooling
- \implies benefits of depth for stability
- Approximation benefits of \geq 2 layers by efficiently capturing interactions
- Limitations of depth for fully-connected models in kernel regimes

Future directions

- Empirically, any benefits of depth beyond 2 layers?
- Statistical analysis through covariance operator

Perspectives: beyond kernels

- Kernels provide a nice tractable model, but a limited picture of deep learning
- Feature selection through mean-field/"active" regime, at least at first layer
- Benefits of depth beyond simple interaction models, e.g., through hierarchy

Convolutional NTK kernel mapping

Define

$$M(x,y)(u) = \begin{pmatrix} \varphi_0(x(u)) \otimes y(u) \\ \varphi_1(x(u)) \end{pmatrix}$$

Theorem (NTK feature map for CNN) $K_{NTK}(x, x') = \langle \Phi(x), \Phi(x') \rangle_{L^{2}(\Omega)},$ with $\Phi(x)(u) = A_{n}M(x_{n}, y_{n})(u)$, where $y_{1}(u) = x_{1}(u) = P_{1}x(u)$ and $x_{k}(u) = P_{k}A_{k-1}\varphi_{1}(x_{k-1})(u)$ $y_{k}(u) = P_{k}A_{k-1}M(x_{k-1}, y_{k-1})(u).$

Discretization and signal preservation

• \bar{x}_k : subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:

 $\bar{x}_k[n] = A_k M_k P_k \bar{x}_{k-1}[ns_k]$

Discretization and signal preservation

• \bar{x}_k : subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:

$$\bar{x}_k[n] = A_k M_k P_k \bar{x}_{k-1}[ns_k]$$

• Claim: We can recover \bar{x}_{k-1} from \bar{x}_k if subsampling $s_k \leq$ patch size

Discretization and signal preservation

• \bar{x}_k : subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:

$$\bar{x}_k[n] = A_k M_k P_k \bar{x}_{k-1}[ns_k]$$

- Claim: We can recover \bar{x}_{k-1} from \bar{x}_k if subsampling $s_k \leq$ patch size
- How? Kernels! Recover patches with linear functions (contained in RKHS)

$$\langle f_w, M_k P_k x(u) \rangle = f_w(P_k x(u)) = \langle w, P_k x(u) \rangle$$

Signal recovery: example in 1D

Global invariance to other groups?

- Rotations, reflections, roto-translations, ...
- Group action $L_g x(u) = x(g^{-1}u)$
- Equivariance in inner layers + (global) pooling in last layer
- Similar construction to Cohen and Welling (2016); Kondor and Trivedi (2018)

G-equivariant layer construction

- Feature maps x(u) defined on $u \in G$ (G: locally compact group)
 - ▶ Input needs special definition when $G \neq \Omega$
- Patch extraction:

$$Px(u) = (x(uv))_{v \in S}$$

- Non-linear mapping: equivariant because pointwise!
- **Pooling** (μ : left-invariant Haar measure):

$$Ax(u) = \int_{\mathcal{G}} x(uv)h(v)d\mu(v) = \int_{\mathcal{G}} x(v)h(u^{-1}v)d\mu(v)$$

Group invariance and stability

Roto-translation group $G = \mathbb{R}^2 \rtimes SO(2)$ (translations + rotations)

- **Stability** w.r.t. translation group
- Global invariance to rotations (only global pooling at final layer)
 - Inner layers: patches and pooling only on translation group
 - Last layer: global pooling on rotations
 - Cohen and Welling (2016): pooling on rotations in inner layers hurts performance on Rotated MNIST