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Convolutional networks
Exploiting structure of natural images (LeCun et al., 1989)

Convolutional Neural Networks in Front of the Scene

The keywords: multi-scale, compositional, invariant, local features.
Picture from Y. LeCun’s tutorial:

Julien Mairal Data Science in the Alps 5/21
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Convolutional networks
Paradigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

(LeCun et al., 1998)
Convolutional networks

Model local neighborhoods at different scales
Provide some invariance through pooling
Useful inductive bias for learning efficiently on natural images
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Understanding deep learning
The challenge of deep learning theory

Over-parameterized (millions of parameters)
Expressive (can approximate any function)
Complex architectures for exploiting problem structure
Yet, easy to optimize to zero training error with (stochastic) gradient descent!

Which function does optimization find?

A functional space viewpoint
View deep networks as functions in some functional space
Non-parametric models, natural measures of complexity (e.g., norms)
Optimization performs implicit regularization towards

min
f

Ω(f ) s.t. yi = f (xi ), i = 1, . . . , n

What is an appropriate functional space / norm?
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Kernels to the rescue

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Kernels?
Map data x to high-dimensional space, Φ(x) ∈ H (H: “RKHS”)
Functions f ∈ H are linear in features: f (x) = 〈f ,Φ(x)〉 (f can be non-linear in x !)
Learning with a positive definite kernel K (x , x ′) = 〈Φ(x),Φ(x ′)〉

I H can be infinite-dimensional! (kernel trick)
I Need to compute kernel matrix K = [K (xi , xj)]ij ∈ RN×N
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Kernels to the rescue

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Clean and well-developed theory
Tractable methods (convex optimization)
Statistical and approximation properties well understood for many kernels
Costly (kernel matrix of size N2) but approximations are possible
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Kernels for deep models: deep kernel machines

Hierarchical kernels (Cho and Saul, 2009)
Kernels can be constructed hierarchically

K (x , x ′) = 〈Φ(x),Φ(x ′)〉 with Φ(x) = ϕ2(ϕ1(x))

e.g., dot-product kernels on the sphere

K (x , x ′) = κ2(〈ϕ1(x), ϕ1(x ′)〉) = κ2(κ1(x>x ′))
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Kernels for deep models: deep kernel machines

Convolutional kernels networks (CKNs) for images (Mairal et al., 2014; Mairal, 2016)

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Good empirical performance with tractable approximations (Nyström)
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Kernels for deep models: infinite-width networks

fθ(x) = 1√
m

m∑
i=1

viσ(w>i x), m→∞

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
θ = (vi )i , fixed random weights wi ∼ N(0, I)

KRF (x , x ′) = Ew∼N(0,I)[σ(w>x)σ(w>x ′)]

Neural tangent kernels (NTK, Jacot et al., 2018)
θ = (vi ,wi )i , initialization θ0 ∼ N(0, I)
Lazy training (Chizat et al., 2019): θ stays close to θ0 when training with large m

fθ(x) ≈ fθ0(x) + 〈θ − θ0,∇θfθ(x)|θ=θ0〉.

Gradient descent for m→∞ ≈ kernel ridge regression with neural tangent kernel

KNTK (x , x ′) = lim
m→∞

〈∇θfθ0(x),∇θfθ0(x ′)〉

RF and NTK extend to deep architectures
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Approximation and regularization with kernels

What functions can we represent with a bounded RKHS norm?

Translation-invariant kernel: K (x , y) = κ(x − y)

‖f ‖2H = 1
(2π)d

∫
Rd

|f̂ (ω)|2
κ̂(ω) dω.

Dot-product kernel: K (x , y) = κ(〈x , y〉) (e.g., RF/NTK for fully-connected networks)

f (x) =
∑
k≥0

N(d ,k)∑
j=1

fk,jYk,j(x), x ∈ Sd−1

‖f ‖2H =
∑
k≥0

N(d ,k)∑
j=1

f 2k,j
µk(κ) .

Example: polynomials decays µk ∼ k−2β (e.g., ReLU RF/NTK) ⇔ ‖f ‖H ≈ ‖∇βf ‖L2(Sd−1)
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Issues with fully-connected kernels

Architecture/depth plays minor role (Bietti and Bach, 2021)
Curse of dimensionality (unless target is very smooth)

Learning on high-dimensional signals/images
Architecture is important (e.g., for stability, Bietti and Mairal, 2019a)
Q: How do convolutional kernels break the curse of dimensionality?
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Simple structured kernels on patches

Signal x : “pixels” x [u] ∈ Rp for u ∈ Ω = {0, . . . , |Ω| − 1} (Ω circular)
Patches xu = (x [u + v ])v∈S ∈ Rp|S|, e.g., S = {−1, 0, 1}
Dot-product kernel k on patches with RKHS H

One-layer convolutional kernel, no pooling

K (x , x ′) =
∑
u∈Ω

k(xu, x ′u)

Functions in RKHS: f (x) =
∑

u gu(xu). Penalty: ‖g‖2L2(Ω,H) =
∑

u ‖gu‖2H
Much smaller RKHS than fully-connected architecture!
For target f ∗(x) = g∗(xū), breaks curse of dimensionality (p|Ω| → p|S|)
Still missing: invariance, expressivity on larger visual neighborhoods
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For target f ∗(x) = g∗(xū), breaks curse of dimensionality (p|Ω| → p|S|)
Still missing: invariance, expressivity on larger visual neighborhoods

Alberto Bietti Approximation with Convolutional Kernels April 26, 2021 9 / 18



Simple structured kernels on patches

Signal x : “pixels” x [u] ∈ Rp for u ∈ Ω = {0, . . . , |Ω| − 1} (Ω circular)
Patches xu = (x [u + v ])v∈S ∈ Rp|S|, e.g., S = {−1, 0, 1}
Dot-product kernel k on patches with RKHS H

One-layer convolutional kernel, no pooling

K (x , x ′) =
∑
u∈Ω

k(xu, x ′u)

Functions in RKHS: f (x) =
∑

u gu(xu). Penalty: ‖g‖2L2(Ω,H) =
∑

u ‖gu‖2H
Much smaller RKHS than fully-connected architecture!
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One-layer convolutional kernel with pooling

h[u]: pooling filter (e.g., Gaussian)
Ah: (circular) convolution operator Ahx [u] =

∑
v∈Ω h[u − v ]x [v ]

Φ(x)[u] = ϕ(xu) ∈ H (ϕ: kernel mapping of k)

1-layer convolutional kernel

K (x , x ′) =
∑
u∈Ω

∑
v ,v ′

h[u − v ]h[u − v ′]k(xv , x ′v ′) = 〈AhΦ(x),AhΦ(x ′)〉L2(Ω,H)

Functions in RKHS: Same functions f (x) =
∑

u g [u](xu), different penalty: ‖A†hg‖2L2(Ω,H).

=⇒ Encourages spatial smoothness: for gz [u] := g [u](z), we have

Â†hgz [w ] = ĝz [w ]
ĥ[w ]

Large pooling ↔ fast decay of ĥ[w ] ↔ stronger penalty on high frequencies of gz .
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Generalization benefits of pooling
Translation-invariant target f ∗(x) =

∑
u g(xu), with g ∈ H.

Learn using kernel Kh with pooling with filter h ≥ 0, ‖h‖1 = 1, e.g.:
no pooling: h[u] = δu,0

global pooling: h[u] = 1/|Ω|
Ah(g , . . . , g) = (g , . . . , g) =⇒ same RKHS norm for any h!

Basic generalization bound with 1-Lipschitz loss on F = {‖f ‖Kh ≤ B}

E L(fn)−min
f ∈F

L(f ) . B
√
Ex [Kh(x , x)]√

n

Under simple data models, Ex [k(xu, xu)] = 1, Ex [k(xu, xv )] ≤ ε� 1 for u 6= v
no pooling: E[Kh(x , x)] = |Ω|
global pooling: E[Kh(x , x)] ≤ 1 + ε|Ω| =⇒ need ∼ |Ω| fewer samples!
General h: E[Kh(x , x)] ≤ |Ω|‖h‖22 + ε|Ω|(1− ‖h‖22)

Alberto Bietti Approximation with Convolutional Kernels April 26, 2021 11 / 18



Generalization benefits of pooling
Translation-invariant target f ∗(x) =

∑
u g(xu), with g ∈ H.

Learn using kernel Kh with pooling with filter h ≥ 0, ‖h‖1 = 1, e.g.:
no pooling: h[u] = δu,0

global pooling: h[u] = 1/|Ω|
Ah(g , . . . , g) = (g , . . . , g) =⇒ same RKHS norm for any h!

Basic generalization bound with 1-Lipschitz loss on F = {‖f ‖Kh ≤ B}

E L(fn)−min
f ∈F

L(f ) . B
√
Ex [Kh(x , x)]√

n

Under simple data models, Ex [k(xu, xu)] = 1, Ex [k(xu, xv )] ≤ ε� 1 for u 6= v
no pooling: E[Kh(x , x)] = |Ω|
global pooling: E[Kh(x , x)] ≤ 1 + ε|Ω|

=⇒ need ∼ |Ω| fewer samples!
General h: E[Kh(x , x)] ≤ |Ω|‖h‖22 + ε|Ω|(1− ‖h‖22)

Alberto Bietti Approximation with Convolutional Kernels April 26, 2021 11 / 18



Generalization benefits of pooling
Translation-invariant target f ∗(x) =

∑
u g(xu), with g ∈ H.

Learn using kernel Kh with pooling with filter h ≥ 0, ‖h‖1 = 1, e.g.:
no pooling: h[u] = δu,0

global pooling: h[u] = 1/|Ω|
Ah(g , . . . , g) = (g , . . . , g) =⇒ same RKHS norm for any h!

Basic generalization bound with 1-Lipschitz loss on F = {‖f ‖Kh ≤ B}

E L(fn)−min
f ∈F

L(f ) . B
√
Ex [Kh(x , x)]√

n

Under simple data models, Ex [k(xu, xu)] = 1, Ex [k(xu, xv )] ≤ ε� 1 for u 6= v
no pooling: E[Kh(x , x)] = |Ω|
global pooling: E[Kh(x , x)] ≤ 1 + ε|Ω| =⇒ need ∼ |Ω| fewer samples!

General h: E[Kh(x , x)] ≤ |Ω|‖h‖22 + ε|Ω|(1− ‖h‖22)

Alberto Bietti Approximation with Convolutional Kernels April 26, 2021 11 / 18



Generalization benefits of pooling
Translation-invariant target f ∗(x) =

∑
u g(xu), with g ∈ H.

Learn using kernel Kh with pooling with filter h ≥ 0, ‖h‖1 = 1, e.g.:
no pooling: h[u] = δu,0

global pooling: h[u] = 1/|Ω|
Ah(g , . . . , g) = (g , . . . , g) =⇒ same RKHS norm for any h!

Basic generalization bound with 1-Lipschitz loss on F = {‖f ‖Kh ≤ B}

E L(fn)−min
f ∈F

L(f ) . B
√
Ex [Kh(x , x)]√

n

Under simple data models, Ex [k(xu, xu)] = 1, Ex [k(xu, xv )] ≤ ε� 1 for u 6= v
no pooling: E[Kh(x , x)] = |Ω|
global pooling: E[Kh(x , x)] ≤ 1 + ε|Ω| =⇒ need ∼ |Ω| fewer samples!
General h: E[Kh(x , x)] ≤ |Ω|‖h‖22 + ε|Ω|(1− ‖h‖22)

Alberto Bietti Approximation with Convolutional Kernels April 26, 2021 11 / 18



More layers

Same construction, replace x ∈ L2(Ω,Rp) by AΦ(x) ∈ L2(Ω,H)
Dot-product kernel can still be defined with inputs in a Hilbert space

K (x , x ′) = 〈Ψ(x),Ψ(x ′)〉, with Ψ(x) = ALMLPL · · ·A1M1P1x

x`−1

P`x`−1[u] ∈ H|S`|
`−1

M`P`x`−1

dot-product kernel

linear pooling

downsampling

x` = A`M`P`x`−1

P` with patch shape S`, A` with Gaussian pooling h` at scale σ`
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Some experiments on Cifar10

2-layers, 3x3 patches, pooling/downsampling sizes (2,5). Patch kernels κ1, κ2.

κ1 κ2 Test acc. (10k examples) Test acc. (50k examples)
Exp Exp 80.5% 87.9% (84.1%)
Exp Poly3 80.5% 87.7% (84.1%)
Exp Poly2 79.4% 86.9% (83.4%)
Poly2 Exp 77.4% - (81.5%)
Poly2 Poly2 75.1% - (81.2%)
Exp - (Lin) 74.2% - (76.3%)

In parentheses: Nyström approximation of the kernel (Mairal, 2016) with [256,4096] filters,
instead of the full kernel.
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Two-layer convolutional kernel

Quadratic patch kernel k2(z , z ′) = (z>z ′)2 = 〈z ⊗ z , z ′ ⊗ z ′〉(H⊗H)|S2|×|S2|

H⊗H: contains functions g(xu, xv ) of 2 patches (Wahba, 1990)

RKHS of 2-layer convolutional kernel (patch size |S2| = 1): Contains functions

f (x) =
∑

u,v∈Ω
G [u, v ](xu, xv ),

with G [u, v ] = 0 if |u − v | > diam(supp(h1)). Penalty:

‖A†2 diag((A1 ⊗ A1)†G)‖2L2(Ω2,H⊗H)

(A1 ⊗ A1)†: encourages 2D smoothness of “image” G [u, v ], bandwidth σ1
A†2: encourage 1D smoothness along diagonal of G , bandwidth σ2
σ1 > σ2 =⇒ G [u, v ] can depend more strongly on u − v than u or v
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Two-layer convolutional kernel

RKHS of 2-layer convolutional kernel (any patch size |S2|): Contains functions

f (x) =
∑

p,q∈S2

∑
u,v∈Ω

Gpq[u, v ](xu, xv ),

with Gpq[u, v ] = 0 if |u − v − (p − q)| > diam(supp(h1)). Penalty:∑
p,q∈S2

‖A†2 diag((LpA1 ⊗ LqA1)†Gpq)‖2L2(Ω2,H⊗H)
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“Variance” term:
√
Ex [K (x , x)] ≤ |Ω||S2|2

∑
v 〈h2, Lv hw 〉〈h1, Lv h1〉2 + O(ε)
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“Variance” term:
√
Ex [K (x , x)] ≤ |Ω||S2|2

∑
v 〈h2, Lv hw 〉〈h1, Lv h1〉2 + O(ε)

Extensions:
κ2 higher-degree polynomial =⇒ higher-order interactions
more layers: also higher-order interactions, but more structured penalty
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More experiments: 3 layers

3-layers, 3x3 patches, pooling/downsampling sizes (2,2,2), patch kernels κ1, κ2 and κ3.
κ1 κ2 κ3 Test ac. (10k) Test ac. (50k)
Exp Exp Exp 80.7% 88.2%
Exp Poly2 Poly2 80.5% 87.9%
Exp Poly4 Lin 80.2% -
Exp Lin Poly4 79.2% -
Exp Lin Lin 74.1% -

Shankar et al. (2020) also obtains 88.2% but using 10 layers
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More experiments: larger patches

2-layers, 3x3 patches at first layer, pooling/downsampling sizes (2,5)
patch kernels κ1/κ2 and different patch sizes at the second layer.

κ1 κ2 |S2| Test ac. (10k) Test ac. (50k)
Exp Exp 5x5 81.1% 88.3%
Exp Poly4 5x5 81.3% 88.3%
Exp Poly3 5x5 81.1% -
Exp Poly2 7x7 80.1% -
Exp Poly2 5x5 80.1% -
Exp Poly2 3x3 79.4% -
Exp Poly2 1x1 76.3% -
ReLU ReLU 3x3 78.51% 86.6%
NTK (NTK) 3x3 79.24% 87.2%
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Conclusion and perspectives

Learning with convolutional kernels
Additive interaction models on patches
Pooling is important for encouraging spatial regularities, and better sample complexity
2/3 layers seems enough on Cifar10

What is missing compared to full DL?
Feature selection: avoid dependence on dimensionality (of the patch) by finding good
weights at the first layer

I Bach (2017)
I Finding good filters (e.g. Gabors) could also avoid the need for explicit pooling

Hierarchy: efficiently find hierarchical compositions of functions
I Allen-Zhu and Li (2020): SGD can do it under strong assumptions
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Stability to deformations

Deformations
τ : Ω→ Ω: C1-diffeomorphism
Lτx(u) = x(u − τ(u)): action operator
Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Stability to deformations

Deformations
τ : Ω→ Ω: C1-diffeomorphism
Lτx(u) = x(u − τ(u)): action operator
Much richer group of transformations than translations

Definition of stability
Representation Φ(·) is stable (Mallat, 2012) if:

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation
‖τ‖∞ = supu |τ(u)| controls translation
C2 → 0: translation invariance
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Smoothness and stability with kernels

Geometry of the kernel mapping: f (x) = 〈f ,Φ(x)〉

|f (x)− f (x ′)| ≤ ‖f ‖H · ‖Φ(x)− Φ(x ′)‖H

‖f ‖H controls complexity of the model
Φ(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)

Useful kernels in practice:
Convolutional kernel networks (CKNs, Mairal, 2016) with efficient approximations
Extends to neural tangent kernels (NTKs, Jacot et al., 2018) of infinitely wide
CNNs (Bietti and Mairal, 2019b)
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Construction of convolutional kernels

Construct a sequence of feature maps x1, . . . , xn
x0 : Ω→ H0: initial (continuous) signal

I u ∈ Ω = Rd : location (d = 2 for images)
I x0(u) ∈ H0: value (H0 = R3 for RGB images)

xk : Ω→ Hk : feature map at layer k

xk = AkMkPkxk−1

I Pk : patch extraction operator, extract small patch of feature map xk−1 around each point u
I Mk : non-linear mapping operator, maps each patch to a new point with a pointwise

non-linear function ϕk(·) (kernel mapping)
I Ak : (linear, Gaussian) pooling operator at scale σk

Goal: control stability of these operators through their norms
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CKN construction

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u + v))v∈Sk ∈ Pk = HSk
k–1

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)
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Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u + v))v∈Sk ∈ Pk = HSk
k–1

Sk : patch shape, e.g. box
Pk is linear, and preserves the L2 norm: ‖Pkxk–1‖ = ‖xk–1‖
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

xk–1 : Ω → Hk–1

Pkxk–1(v) ∈ Pk

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

ϕk : Pk → Hk pointwise non-linearity on patches (kernel map)
We assume non-expansivity: for z , z ′ ∈ Pk

‖ϕk(z)‖ ≤ ‖z‖ and ‖ϕk(z)− ϕk(z ′)‖ ≤ ‖z − z ′‖

Mk then satisfies, for x , x ′ ∈ L2(Ω,Pk)

‖Mkx‖ ≤ ‖x‖ and ‖Mkx −Mkx ′‖ ≤ ‖x − x ′‖
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ϕk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z , z ′) = ‖z‖‖z ′‖κk

( 〈z , z ′〉
‖z‖‖z ′‖

)
= 〈ϕk(z), ϕk(z ′)〉.

κk(u) =
∑∞

j=0 bjuj with bj ≥ 0, κk(1) = 1

Commonly used for hierarchical kernels
‖ϕk(z)‖ = Kk(z , z)1/2 = ‖z‖
‖ϕk(z)− ϕk(z ′)‖ ≤ ‖z − z ′‖ if κ′k(1) ≤ 1
=⇒ non-expansive
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ϕk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z , z ′) = ‖z‖‖z ′‖κk

( 〈z , z ′〉
‖z‖‖z ′‖

)
= 〈ϕk(z), ϕk(z ′)〉.

κk(u) =
∑∞

j=0 bjuj with bj ≥ 0, κk(1) = 1

Examples
κexp(〈z , z ′〉) = e〈z,z ′〉−1 (Gaussian kernel on the sphere)
κinv-poly(〈z , z ′〉) = 1

2−〈z,z ′〉

κσ(〈z , z ′〉) = Ew [σ(w>z)σ(w>z ′)] (Random features)
I arc-cosine kernels for the ReLU σ(u) = max(0, u)
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

xk–1 : Ω → Hk–1

MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

hσk : pooling filter at scale σk

hσk (u) := σ−d
k h(u/σk) with h(u) Gaussian

linear, non-expansive operator: ‖Ak‖ ≤ 1

In practice: discretization, sampling at resolution σk after pooling
“Preserves information” when subsampling ≤ patch size
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Recap: Pk , Mk , Ak

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Multilayer construction

Assumption on x0
x0 is typically a discrete signal aquired with physical device.
Natural assumption: x0 = A0x , with x the original continuous signal, A0 local integrator
with scale σ0 (anti-aliasing).

Multilayer representation

Φ(x0) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

Sk , σk grow exponentially in practice (i.e., fixed with subsampling).

Final kernel
KCKN(x , x ′) = 〈Φ(x),Φ(x ′)〉L2(Ω) =

∫
Ω
〈xn(u), x ′n(u)〉du
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Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a))
Let Φn(x) = Φ(A0x) and assume ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτx)− Φn(x)‖ ≤
(

Cβ (n + 1) ‖∇τ‖∞ + C
σn
‖τ‖∞

)
‖x‖

Translation invariance: large σn

Stability: small patch sizes (β ≈ patch size, Cβ = O(β3) for images)
Signal preservation: subsampling factor ≈ patch size
=⇒ need several layers with small patches n = O(log(σn/σ0)/ log β)
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Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019b))
Let Φn(x) = ΦNTK (A0x), and assume ‖∇τ‖∞ ≤ 1/2

‖Φn(Lτx)− Φn(x)‖

≤
(

Cβn7/4‖∇τ‖1/2∞ + C ′βn2‖∇τ‖∞ +
√

n + 1 C
σn
‖τ‖∞

)
‖x‖,

Comparison with random feature CKN on deformed MNIST digits:
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