On the Sample Complexity of Learning under Invariance and Geometric Stability

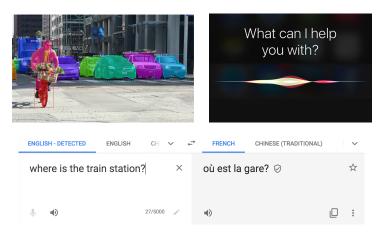
Alberto Bietti

NYU

Applied Math & Stats Seminar. JHU, Oct. 7, 2021.

Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)



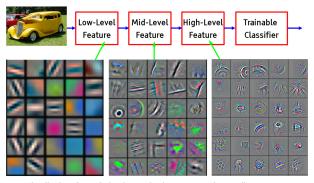
Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

$$f(x) = W_n \sigma(W_{n-1} \cdots \sigma(W_1 x) \cdots)$$

Recipe: huge models + lots of data + compute + simple algorithms

Exploiting data structure through architectures

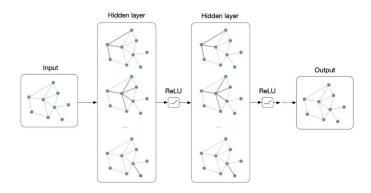


Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Modern architectures (CNNs, GNNs, Transformers, ...)

- Provide some invariance through pooling
- Model (local) interactions at different scales, hierarchically
- Useful inductive biases for learning efficiently on structured data

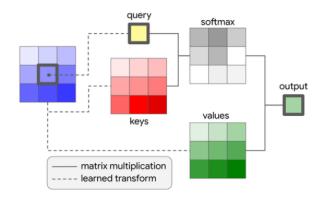
Exploiting data structure through architectures



Modern architectures (CNNs, GNNs, Transformers, ...)

- Provide some invariance through pooling
- Model (local) interactions at different scales, hierarchically
- Useful inductive biases for learning efficiently on structured data

Exploiting data structure through architectures



Modern architectures (CNNs, GNNs, Transformers, ...)

- Provide some invariance through pooling
- Model (local) interactions at different scales, hierarchically
- Useful inductive biases for learning efficiently on structured data

Understanding deep learning

The challenge of deep learning theory

- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize with (stochastic) gradient descent!

Understanding deep learning

The challenge of deep learning theory

- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint

- View deep networks as functions in some functional space
- Non-parametric models, natural measures of complexity (e.g., norms)

Understanding deep learning

The challenge of deep learning theory

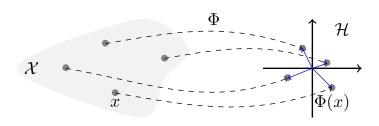
- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint

- View deep networks as functions in some functional space
- Non-parametric models, natural measures of complexity (e.g., norms)

What is an appropriate functional space?

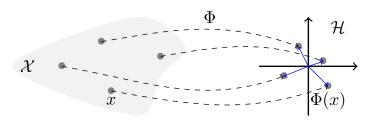
Kernels to the rescue



Kernels?

- Map data x to high-dimensional space, $\Phi(x) \in \mathcal{H}$ (\mathcal{H} : "RKHS")
- Functions $f \in \mathcal{H}$ are linear in features: $f(x) = \langle f, \Phi(x) \rangle$ (f can be non-linear in x!)
- Learning with a positive definite kernel $K(x,x')=\langle \Phi(x),\Phi(x')\rangle$
 - ► H can be infinite-dimensional! (kernel trick)
 - ▶ Need to compute kernel matrix $K = [K(x_i, x_i)]_{ii} \in \mathbb{R}^{N \times N}$

Kernels to the rescue



Clean and well-developed theory

- Tractable methods (convex optimization)
- Statistical and approximation properties well understood for many kernels
- ullet Costly (kernel matrix of size N^2) but approximations are possible

Infinite-width networks (Neal, 1996; Rahimi and Recht, 2007; Jacot et al., 2018)

- e.g., one-layer network: $f(x) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \rho(w_i^\top x)$
- Random Feature kernel: $w_i \sim \mathcal{N}(0, I)$, v_i trained

$$K_{\rho}(x, x') = \mathbb{E}_{w}[\rho(w^{\top}x)\rho(w^{\top}x')] = \kappa_{\rho}(x^{\top}x') \text{ when } x, x' \in \mathbb{S}^{d-1}$$

• Neural Tangent kernel: "lazy training" of both layers near random initialization

Hierarchical kernels (Cho and Saul, 2009)

Kernels can be constructed hierarchically

$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle$$
 with $\Phi(x) = \varphi_2(\varphi_1(x))$

• e.g., dot-product kernels on the sphere

$$K(x, x') = \kappa_2(\langle \varphi_1(x), \varphi_1(x') \rangle) = \kappa_2(\kappa_1(x^\top x'))$$

ullet For $\kappa_{
ho}$, corresponds to infinite-width limit of deep fully-connected net

Hierarchical kernels (Cho and Saul, 2009)

Kernels can be constructed hierarchically

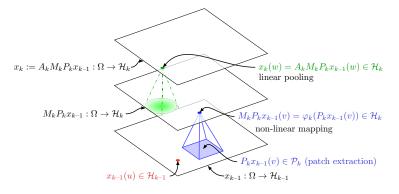
$$K(x, x') = \langle \Phi(x), \Phi(x') \rangle$$
 with $\Phi(x) = \varphi_2(\varphi_1(x))$

• e.g., dot-product kernels on the sphere

$$K(x, x') = \kappa_2(\langle \varphi_1(x), \varphi_1(x') \rangle) = \kappa_2(\kappa_1(x^\top x'))$$

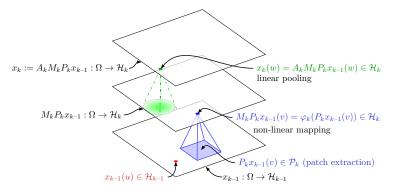
- ullet For $\kappa_{
 ho}$, corresponds to infinite-width limit of deep fully-connected net
- But: deep = shallow (same RKHS), limited picture (B. and Bach, 2021; Chen and Xu, 2021):
- Can more structure lead to richer spaces?

Convolutional kernels for images (Mairal et al., 2014; Mairal, 2016; Shankar et al., 2020)



Good empirical performance with tractable approximations (Nyström)

Convolutional kernels for images (Mairal et al., 2014; Mairal, 2016; Shankar et al., 2020)



Good empirical performance with tractable approximations (Nyström)

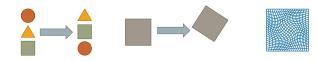
Study generalization benefits of architectures for certain functions through kernels

Outline

1 Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)

2 Locality and depth (B., 2021)

Geometric priors

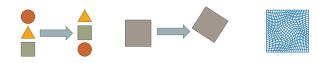


Functions $f: \mathcal{X} \to \mathbb{R}$ that are "smooth" along known transformations of input x

- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)[u] = x[\sigma^{-1}(u)]$$

Geometric priors



Functions $f: \mathcal{X} \to \mathbb{R}$ that are "smooth" along known transformations of input x

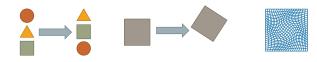
- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)[u] = x[\sigma^{-1}(u)]$$

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

$$f(\sigma \cdot x) = f(x), \quad \sigma \in G$$

Geometric priors



Functions $f: \mathcal{X} \to \mathbb{R}$ that are "smooth" along known transformations of input x

- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)[u] = x[\sigma^{-1}(u)]$$

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

$$f(\sigma \cdot x) = f(x), \quad \sigma \in G$$

Geometric stability: For other sets G (e.g., local shifts, deformations), we want

$$f(\sigma \cdot x) \approx f(x), \quad \sigma \in G$$

$$S_G f(x) := \frac{1}{|G|} \sum_{\sigma \in G} f(\sigma \cdot x)$$

$$S_G f(x) := \frac{1}{|G|} \sum_{\sigma \in G} f(\sigma \cdot x)$$

Assumptions on a target function f^*

- *G*-invariant: $S_G f^* = f^*$
- G-stable: $f^* = S_G g^*$, for some g^* (more generally, $f^* = S_G^r g^*$)

$$S_G f(x) := \frac{1}{|G|} \sum_{\sigma \in G} f(\sigma \cdot x)$$

Assumptions on a target function f^*

- G-invariant: $S_G f^* = f^*$
- G-stable: $f^* = S_G g^*$, for some g^* (more generally, $f^* = S_G^r g^*$)

Dot-product kernels with pooling (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

$$K(x,x') = \kappa(\langle x,x'\rangle), \qquad K_G(x,x') = \frac{1}{|G|} \sum_{\sigma \in G} \kappa(\langle \sigma \cdot x,x'\rangle)$$

• If $\kappa = \kappa_{\rho}$, corresponds to pooling $f(x) = \frac{1}{|G|} \sum_{\sigma \in G} \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_{i} \rho(\langle w_{i}, \sigma \cdot x \rangle)$

$$S_G f(x) := \frac{1}{|G|} \sum_{\sigma \in G} f(\sigma \cdot x)$$

Assumptions on a target function f^*

- *G*-invariant: $S_G f^* = f^*$
- G-stable: $f^* = S_G g^*$, for some g^* (more generally, $f^* = S_G^r g^*$)

Dot-product kernels with pooling (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

$$K(x,x') = \kappa(\langle x,x'\rangle), \qquad K_G(x,x') = \frac{1}{|G|} \sum_{\sigma \in G} \kappa(\langle \sigma \cdot x,x'\rangle)$$

• If $\kappa = \kappa_{\rho}$, corresponds to pooling $f(x) = \frac{1}{|G|} \sum_{\sigma \in G} \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_{i} \rho(\langle w_{i}, \sigma \cdot x \rangle)$

How do these interact with generic smoothness properties of f^* ?

Harmonic analysis on the sphere

- \bullet au: uniform distribution on the sphere \mathbb{S}^{d-1}
- $L^2(\tau)$ basis of **spherical harmonics** $Y_{k,j}$
- ullet N(d,k) harmonics of degree k, form a basis of $V_{d,k}$

Harmonic analysis on the sphere

- ullet au: uniform distribution on the sphere \mathbb{S}^{d-1}
- $L^2(\tau)$ basis of **spherical harmonics** $Y_{k,j}$
- N(d, k) harmonics of degree k, form a basis of $V_{d,k}$

Dot-product kernels and their RKHS $K(x,x') = \kappa(\langle x,x'\rangle)$

$$\mathcal{H} = \left\{ f = \sum_{k=0}^{\infty} \sum_{j=1}^{N(d,k)} a_{k,j} Y_{k,j}(\cdot) \text{ s.t. } ||f||_{\mathcal{H}}^2 := \sum_{k,j} \frac{a_{k,j}^2}{\mu_k} < \infty \right\}$$

- integral operator: $T_K f(x) = \int \kappa(\langle x, y \rangle) f(y) d\tau(y)$
- $\mu_k = c_d \int_{-1}^1 \kappa(t) P_{d,k}(t) (1-t^2)^{\frac{d-3}{2}} dt$: eigenvalues of T_K , with multiplicity N(d,k)
- $P_{d,k}$: Legendre/Gegenbauer polynomial

Harmonic analysis on the sphere

- ullet au: uniform distribution on the sphere \mathbb{S}^{d-1}
- $L^2(\tau)$ basis of **spherical harmonics** $Y_{k,j}$
- N(d, k) harmonics of degree k, form a basis of $V_{d,k}$

Dot-product kernels and their RKHS $K(x,x') = \kappa(\langle x,x'\rangle)$

$$\mathcal{H} = \left\{ f = \sum_{k=0}^{\infty} \sum_{j=1}^{N(d,k)} a_{k,j} Y_{k,j}(\cdot) \text{ s.t. } ||f||_{\mathcal{H}}^2 := \sum_{k,j} \frac{a_{k,j}^2}{\mu_k} < \infty \right\}$$

- integral operator: $T_K f(x) = \int \kappa(\langle x, y \rangle) f(y) d\tau(y)$
- $\mu_k = c_d \int_{-1}^1 \kappa(t) P_{d,k}(t) (1-t^2)^{\frac{d-3}{2}} dt$: eigenvalues of T_K , with multiplicity N(d,k)
- $P_{d,k}$: Legendre/Gegenbauer polynomial
- decay \leftrightarrow regularity: $\mu_k \asymp k^{-2\beta} \leftrightarrow \|f\|_{\mathcal{H}} = \|T_K^{-1/2}f\|_{L^2(\tau)} \approx \|\Delta_{\mathbb{S}^{d-1}}^{\beta/2}f\|_{L^2(\tau)}$

Key properties of S_G for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)

- S_G acts as projection from $V_{d,k}$ (dim N(d,k)) to $\overline{V}_{d,k}$ (dim $\overline{N}(d,k)$)
- The number of invariant spherical harmonics \overline{N} can be estimated using:

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_{\mathsf{x}}[P_{d,k}(\langle \sigma \cdot \mathsf{x}, \mathsf{x} \rangle)].$$

• We have $T_{K_G} = S_G T_K$

Key properties of S_G for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)

- S_G acts as projection from $V_{d,k}$ (dim N(d,k)) to $\overline{V}_{d,k}$ (dim $\overline{N}(d,k)$)
- The number of invariant spherical harmonics \overline{N} can be estimated using:

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x [P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

• We have $T_{K_G} = S_G T_K$

Previous work (Mei et al., 2021)

- High-dimensional regime $d \to \infty$ with $n \asymp d^s$
- ullet $\gamma_d(k) = \Theta_d(d^{-lpha}) \implies$ sample complexity gain by factor d^lpha
- ullet Studied for translations: gains by a factor d

Key properties of S_G for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)

- S_G acts as projection from $V_{d,k}$ (dim N(d,k)) to $\overline{V}_{d,k}$ (dim $\overline{N}(d,k)$)
- The number of invariant spherical harmonics \overline{N} can be estimated using:

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x [P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

• We have $T_{K_G} = S_G T_K$

Previous work (Mei et al., 2021)

- High-dimensional regime $d \to \infty$ with $n \asymp d^s$
- ullet $\gamma_d(k) = \Theta_d(d^{-lpha}) \implies$ sample complexity gain by factor d^lpha
- Studied for translations: gains by a factor d
- Beyond translations? What about groups/sets G exponential in d?

Key properties of S_G for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)

- S_G acts as projection from $V_{d,k}$ (dim N(d,k)) to $\overline{V}_{d,k}$ (dim $\overline{N}(d,k)$)
- The number of invariant spherical harmonics \overline{N} can be estimated using:

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x [P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

• We have $T_{K_G} = S_G T_K$

Previous work (Mei et al., 2021)

- High-dimensional regime $d \to \infty$ with $n \asymp d^s$
- $\bullet \ \gamma_d(k) = \Theta_d(d^{-lpha}) \implies$ sample complexity gain by factor d^lpha
- Studied for translations: gains by a factor d
- Beyond translations? What about groups/sets G exponential in d?
- tl;dr: we consider d fixed, $n \to \infty$, show (asymptotic) gains by a factor |G|

Counting invariant harmonics

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_{\mathsf{x}}[P_{d,k}(\langle \sigma \cdot \mathsf{x}, \mathsf{x} \rangle)].$$

Proposition ((B., Venturi, and Bruna, 2021))

As $k \to \infty$, we have

$$\gamma_d(k) = \frac{1}{|G|} + O(k^{-d+\chi}),$$

where χ is the maximal number of cycles of any permutation $\sigma \in G \setminus \{Id\}$.

Counting invariant harmonics

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_{x} [P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

Proposition ((B., Venturi, and Bruna, 2021))

As $k \to \infty$, we have

$$\gamma_d(k) = \frac{1}{|G|} + O(k^{-d+\chi}),$$

where χ is the maximal number of cycles of any permutation $\sigma \in G \setminus \{Id\}$.

- Relies on singularity analysis of density of $\langle \sigma \cdot x, x \rangle$ (Saldanha and Tomei, 1996)
 - ▶ Decay \leftrightarrow nature of singularities \leftrightarrow eigenvalue multiplicities \leftrightarrow cycle statistics
- χ can be large (=d-1) for some groups $(e.g., \sigma=(1\ 2))$
- Can use upper bounds with faster decays but larger constants

Counting invariant harmonics: examples

Translations (cyclic group)

$$\gamma_d(k) = d^{-1} + O(k^{-d/2+6})$$

Only linear gain in d, but with a fast rate

Counting invariant harmonics: examples

Translations (cyclic group)

$$\gamma_d(k) = d^{-1} + O(k^{-d/2+6})$$

Only linear gain in d, but with a fast rate

Block translations: $d = s \cdot r$, with r cycles of length s

$$\gamma_d(k) = \frac{1}{s^r} + O(k^{-s/2+1})$$

For s=2, exponential gains $(|G|=2^{d/2})$ but slow rate

Counting invariant harmonics: examples

Translations (cyclic group)

$$\gamma_d(k) = d^{-1} + O(k^{-d/2+6})$$

Only linear gain in d, but with a fast rate

Block translations: $d = s \cdot r$, with r cycles of length s

$$\gamma_d(k) = \frac{1}{s^r} + O(k^{-s/2+1})$$

For s = 2, exponential gains $(|G| = 2^{d/2})$ but slow rate

Full permutation group: For any *s*,

$$\gamma_d(k) \le \frac{2}{(s+1)!} + O(k^{-d/2 + \max(s/2,6)})$$

For s = d/2, exponential gains with fast rate

Sample complexity of invariant kernel: assumptions

Kernel Ridge Regression

$$\hat{f}_{\lambda} := \arg\min_{f \in \mathcal{H}_G} \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}_G}^2$$

Problem assumptions

- (data) $x \sim \tau$, $\mathbb{E}[y|x] = f^*(x)$, $Var(y|x) \leq \sigma^2$
- (G-invariance) f^* is G-invariant

Sample complexity of invariant kernel: assumptions

Kernel Ridge Regression

$$\hat{f}_{\lambda} := \arg\min_{f \in \mathcal{H}_G} \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}_G}^2$$

Problem assumptions

- (data) $x \sim \tau$, $\mathbb{E}[y|x] = f^*(x)$, $Var(y|x) \le \sigma^2$
- (G-invariance) f^* is G-invariant
- (capacity) $\lambda_m(T_K) \leq C_K m^{-\alpha}$
 - ▶ e.g., $\alpha = \frac{2s}{d-1}$ for Sobolev space of order s with $s > \frac{d-1}{2}$

Sample complexity of invariant kernel: assumptions

Kernel Ridge Regression

$$\hat{f}_{\lambda} := \arg\min_{f \in \mathcal{H}_G} \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}_G}^2$$

Problem assumptions

- (data) $x \sim \tau$, $\mathbb{E}[y|x] = f^*(x)$, $Var(y|x) \le \sigma^2$
- (G-invariance) f^* is G-invariant
- (capacity) $\lambda_m(T_K) \leq C_K m^{-\alpha}$
 - e.g., $\alpha = \frac{2s}{d-1}$ for Sobolev space of order s with $s > \frac{d-1}{2}$
- (source) $||T_K^{-r}f^*||_{L^2} \leq C_{f^*}$
 - e.g., if $2\alpha r = \frac{2s}{d-1}$, f^* belongs to Sobolev space of order s

Theorem ((B., Venturi, and Bruna, 2021))

Let $\ell_n := \sup\{\ell : \sum_{k \leq \ell} \overline{N}(d,k) \lesssim \nu_d(\ell)^{\frac{2\alpha r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}} \}$, where $\nu_d(\ell) := \sup_{k \geq \ell} \gamma_d(k)$.

$$\mathbb{E} \|\hat{f} - f^*\|_{L^2(d\tau)}^2 \le C \left(\frac{\nu_d(\ell_n)}{n}\right)^{\frac{2\alpha r}{2\alpha r + 1}}$$

Theorem ((B., Venturi, and Bruna, 2021))

Let $\ell_n := \sup\{\ell : \sum_{k \leq \ell} \overline{N}(d,k) \lesssim \nu_d(\ell)^{\frac{2\alpha r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}} \}$, where $\nu_d(\ell) := \sup_{k \geq \ell} \gamma_d(k)$.

$$\mathbb{E} \|\hat{f} - f^*\|_{L^2(d\tau)}^2 \le C \left(\frac{\nu_d(\ell_n)}{n}\right)^{\frac{2\alpha r}{2\alpha r + 1}}$$

Theorem ((B., Venturi, and Bruna, 2021))

Let $\ell_n := \sup\{\ell : \sum_{k \leq \ell} \overline{N}(d,k) \lesssim \nu_d(\ell)^{\frac{2\alpha r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}} \}$, where $\nu_d(\ell) := \sup_{k \geq \ell} \gamma_d(k)$.

$$\mathbb{E} \|\hat{f} - f^*\|_{L^2(d\tau)}^2 \le C \left(\frac{\nu_d(\ell_n)}{n}\right)^{\frac{2\alpha r}{2\alpha r+1}}$$

- We have $\nu_d(\ell_n)=rac{1}{|G|}+O\left(n^{rac{-eta}{(d-1)(2lpha r+1)+2etalpha r}}
 ight)$ when $\gamma_d(k)=1/|G|+O(k^{-eta})$
- \implies Improvement in sample complexity by a factor |G|!

Theorem ((B., Venturi, and Bruna, 2021))

Let $\ell_n := \sup\{\ell : \sum_{k \leq \ell} \overline{N}(d,k) \lesssim \nu_d(\ell)^{\frac{2\alpha r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}} \}$, where $\nu_d(\ell) := \sup_{k \geq \ell} \gamma_d(k)$.

$$\mathbb{E} \|\hat{f} - f^*\|_{L^2(d\tau)}^2 \le C \left(\frac{\nu_d(\ell_n)}{n}\right)^{\frac{2\alpha r}{2\alpha r+1}}$$

- We have $\nu_d(\ell_n)=rac{1}{|G|}+O\left(n^{rac{-eta}{(d-1)(2lpha r+1)+2etalpha r}}
 ight)$ when $\gamma_d(k)=1/|G|+O(k^{-eta})$
- \implies Improvement in sample complexity by a factor |G|!
- C may depend on d, but is **optimal** in a minimax sense over non-invariant f^*

Theorem ((B., Venturi, and Bruna, 2021))

Let $\ell_n := \sup\{\ell : \sum_{k \leq \ell} \overline{N}(d,k) \lesssim \nu_d(\ell)^{\frac{2\alpha r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}} \}$, where $\nu_d(\ell) := \sup_{k \geq \ell} \gamma_d(k)$.

$$\mathbb{E} \|\hat{f} - f^*\|_{L^2(d\tau)}^2 \le C \left(\frac{\nu_d(\ell_n)}{n}\right)^{\frac{2\alpha r}{2\alpha r+1}}$$

- We have $\nu_d(\ell_n)=rac{1}{|G|}+O\left(n^{rac{-eta}{(d-1)(2lpha r+1)+2etalpha r}}
 ight)$ when $\gamma_d(k)=1/|G|+O(k^{-eta})$
- \implies Improvement in sample complexity by a factor |G|!
- ullet C may depend on d, but is **optimal** in a minimax sense over non-invariant f^*
- Main ideas:
 - ► Approximation error: same as non-invariant kernel
 - ▶ Estimation error: pick ℓ_n such that $\mathcal{N}_{K_G}(\lambda_n) \lesssim \nu_d(\ell_n) \mathcal{N}_K(\lambda_n)$ ($\mathcal{N}(\lambda_n)$: degrees of freedom)

Synthetic experiments

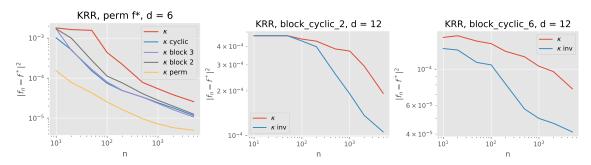
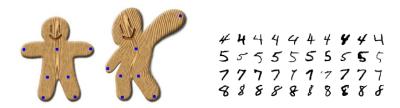


Figure: Comparison of KRR with invariant and non-invariant kernels.

Geometric stability to deformations

Deformations

- $\phi: \Omega \to \Omega$: C^1 -diffeomorphism (e.g., $\Omega = \mathbb{R}^2$)
- $\phi \cdot x(u) = x(\phi^{-1}(u))$: action operator
- Much richer group of transformations than translations



Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)

Geometric stability to deformations

Deformations

- $\phi: \Omega \to \Omega$: C^1 -diffeomorphism (e.g., $\Omega = \mathbb{R}^2$)
- $\phi \cdot x(u) = x(\phi^{-1}(u))$: action operator
- Much richer group of transformations than translations

Geometric stability

• A function $f(\cdot)$ is **stable** (Mallat, 2012) if:

$$f(\phi \cdot x) \approx f(x)$$
 when $\|\nabla \phi - I\|_{\infty} \le \epsilon$

• In particular, near-invariance to translations $(\nabla \phi = I)$

Geometric stability to deformations

Deformations

- $\phi: \Omega \to \Omega$: C^1 -diffeomorphism (e.g., $\Omega = \mathbb{R}^2$)
- $\phi \cdot x(u) = x(\phi^{-1}(u))$: action operator
- Much richer group of transformations than translations

Toy model for deformations ("small $\|\nabla \sigma - Id\|$ ")

$$G_{\epsilon} := \{ \sigma \in \mathcal{S}_d : |\sigma(u) - \sigma(u') - (u - u')| \le \varepsilon |u - u'| \}$$

- For $\epsilon = 2$, we have $\gamma_d(k) \leq \tau^d + O(k^{-\Theta(d)})$, with $\tau < 1$
 - ▶ gains by a factor **exponential** in *d* with a fast rate

Stability

ullet S_G is no longer a projection, but its eigenvalues $\lambda_{k,j}$ on $V_{d,k}$ satisfy

$$\gamma_d(k) := \frac{\sum_{j=1}^{N(d,k)} \lambda_{k,j}}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x [P_{d,k}(\langle \sigma \cdot x, x \rangle)]$$

• Source condition adapted to S_G : $f^* = S_G^r T_K^r g^*$ with $\|g^*\|_{L^2} \leq C_{f^*}$

Theorem ((B., Venturi, and Bruna, 2021))

Let
$$\ell_n := \sup\{\ell : \sum_{k \leq \ell} N(d,k) \lesssim \nu_d(\ell)^{\frac{2r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}} \}$$
, where $\nu_d(\ell) := \sup_{k \geq \ell} \gamma_d(k)$.

$$\mathbb{E} \|\hat{f} - f^*\|_{L^2(\tau)}^2 \le C \left(\frac{\nu_d(\ell_n)^{1/\alpha}}{n} \right)^{\frac{2\alpha r}{2\alpha r + 1}}$$

Discussion

Curse of dimensionality

- For Lipschitz targets, cursed rate $n^{-\frac{2\alpha r}{2\alpha r+1}} = n^{-\frac{2}{2+d-1}}$ (unimprovable)
- Improving this rate requires more structural assumptions, which may be exploited with adaptivity (Bach, 2017), or better architectures (up next!)

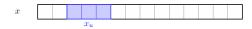
Limitations

- Gains are asymptotic, can we get non-asymptotic?
- For large groups, pooling is computationally costly
 - ► More structure may help, e.g., stability through depth (B. and Mairal, 2019; Bruna and Mallat, 2013; Mallat, 2012)

Outline

1 Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)

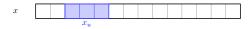
2 Locality and depth (B., 2021)



One-layer local convolutional kernel: localized patches $x_u = (x[u], \dots, x[u+s])$ (1D)

$$K(x,x') = \sum_{u \in \Omega} k(x_u,x'_u)$$

- RKHS \mathcal{H}_K contains functions $f(x) = \sum_{u \in \Omega} g_u(x_u)$ with $g_u \in \mathcal{H}_k$
- No curse: smoothness requirement on g_u scales with s instead of d



One-layer local convolutional kernel: localized patches $x_u = (x[u], \dots, x[u+s])$ (1D)

$$K(x,x') = \sum_{u \in \Omega} \sum_{v,v' \in \Omega} h[u-v]h[u-v']k(x_v,x'_{v'})$$

- RKHS \mathcal{H}_K contains functions $f(x) = \sum_{u \in \Omega} g_u(x_u)$ with $g_u \in \mathcal{H}_k$
- No curse: smoothness requirement on g_u scales with s instead of d
- ullet Pooling: same functions, RKHS norm encourages similarities between the g_u

Generalization bound

• Slow rate for non-parametric regression, $f^* \in \mathcal{H}_K$

$$\mathbb{E} R(\hat{f}_n) - R(f^*) \lesssim \|f^*\|_{\mathcal{H}_K} \sqrt{\frac{\mathbb{E}_{\times} K(\times, \times)}{n}}$$

- For invariant targets $f^* = \sum_{u \in \Omega} g^*(x_u)$: $\|f^*\|_{\mathcal{H}_K}$ independent of pooling
- If $\mathbb{E}_x k(x_u, x_v) \ll 1$ for $u \neq v$:
 - ▶ No pooling: $\mathbb{E}_x K(x,x) = |\Omega|$
 - ▶ Global pooling: $\mathbb{E}_x K(x,x) \approx 1 \implies$ gain by factor $|\Omega|$

Generalization bound

• Slow rate for non-parametric regression, $f^* \in \mathcal{H}_K$

$$\mathbb{E} R(\hat{f}_n) - R(f^*) \lesssim \|f^*\|_{\mathcal{H}_K} \sqrt{\frac{\mathbb{E}_{\times} K(\times, \times)}{n}}$$

- For invariant targets $f^* = \sum_{u \in \Omega} g^*(x_u)$: $\|f^*\|_{\mathcal{H}_K}$ independent of pooling
- If $\mathbb{E}_x k(x_u, x_v) \ll 1$ for $u \neq v$:
 - ▶ No pooling: $\mathbb{E}_x K(x,x) = |\Omega|$
 - ▶ Global pooling: $\mathbb{E}_x K(x,x) \approx 1 \implies$ gain by factor $|\Omega|$
 - ► General pooling filter $||h||_1 = 1$: $\mathbb{E}_x K(x,x) \approx ||h||_2^2 |\Omega|$

Generalization bound

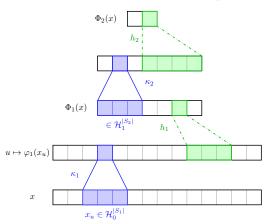
• Slow rate for non-parametric regression, $f^* \in \mathcal{H}_K$

$$\mathbb{E} R(\hat{f}_n) - R(f^*) \lesssim \|f^*\|_{\mathcal{H}_K} \sqrt{\frac{\mathbb{E}_{\mathsf{x}} K(\mathsf{x}, \mathsf{x})}{n}}$$

- For invariant targets $f^* = \sum_{u \in \Omega} g^*(x_u)$: $||f^*||_{\mathcal{H}_K}$ independent of pooling
- If $\mathbb{E}_x k(x_u, x_v) \ll 1$ for $u \neq v$:
 - ▶ No pooling: $\mathbb{E}_x K(x,x) = |\Omega|$
 - ▶ Global pooling: $\mathbb{E}_x K(x,x) \approx 1 \implies$ gain by factor $|\Omega|$
 - ► General pooling filter $||h||_1 = 1$: $\mathbb{E}_x K(x,x) \approx ||h||_2^2 |\Omega|$
- Fast rates possible (with no overlap, or see (Favero et al., 2021) for the hypercube)

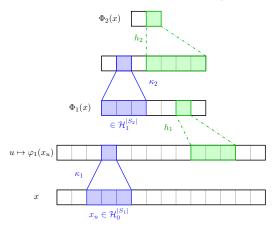
Multi-layer convolutional kernels

Convolutional Kernel Networks (Mairal, 2016) $K_2(x, x') = \langle \Phi_2(x), \Phi_2(x') \rangle$



Multi-layer convolutional kernels

Convolutional Kernel Networks (Mairal, 2016) $K_2(x, x') = \langle \Phi_2(x), \Phi_2(x') \rangle$

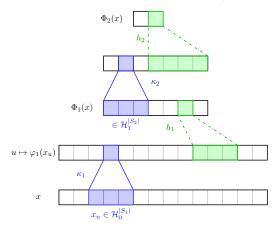


- Consider $\kappa_2(u) = u^2$
- Associated feature map (for $|S_2| = 2$):

$$\varphi_2\begin{pmatrix} z_1\\z_2 \end{pmatrix} = \begin{pmatrix} z_1 \otimes z_1 & z_1 \otimes z_2\\z_2 \otimes z_1 & z_2 \otimes z_2 \end{pmatrix} \in (\mathcal{H}_1 \otimes \mathcal{H}_1)^{|S_2|^2}$$

Multi-layer convolutional kernels

Convolutional Kernel Networks (Mairal, 2016) $K_2(x,x') = \langle \Phi_2(x), \Phi_2(x') \rangle$



(10)
$$K_2(x, x') = \langle \Psi_2(x), \Psi_2(x') \rangle$$

- Consider $\kappa_2(u) = u^2$
- Associated feature map (for $|S_2| = 2$):

$$\varphi_2\begin{pmatrix} z_1\\z_2 \end{pmatrix} = \begin{pmatrix} z_1 \otimes z_1 & z_1 \otimes z_2\\z_2 \otimes z_1 & z_2 \otimes z_2 \end{pmatrix} \in (\mathcal{H}_1 \otimes \mathcal{H}_1)^{|S_2|^2}$$

- Captures interactions between different patches (Wahba, 1990)
- Pooling h_1 : extends range of interactions
- Pooling h_2 : builds invariance

Some experiments on Cifar10

2-layers, 3x3 patches, pooling/downsampling sizes (2,5). Patch kernels κ_1 , κ_2 .

κ_1 κ_2		Test acc.	
Exp	Exp	87.9%	
Exp	Poly3	3 87.7%	
Exp	Poly2	86.9%	
Poly2	Exp	85.1%	
Poly2	Poly2	82.2%	
Exp	- (Lin)	80.9%	

Some experiments on Cifar10

2-layers, 3x3 patches, pooling/downsampling sizes (2,5). Patch kernels κ_1 , κ_2 .

κ_1	κ_2	Test acc.	
Exp	Exp	Exp 87.9%	
Exp	Poly3	oly3 87.7%	
Exp	Poly2	86.9%	
Poly2	Exp	85.1%	
Poly2	Poly2	82.2%	
Exp	- (Lin)	80.9%	

Best performance: 88.3% (2-layers, larger patches at 2nd layer).

Shankar et al. (2020): 88.2% with more layers.

Structured interaction models via depth and pooling

RKHS with quadratic κ_2 : Contains functions

$$f(x) = \sum_{p,q \in S_2} \sum_{u,v \in \Omega} g_{u,v}^{pq}(x_u, x_v),$$

with
$$g_{u,v}^{pq} = 0$$
 if $|u - v - (p - q)| > \text{diam}(\text{supp}(h_1))$.

Structured interaction models via depth and pooling

RKHS with quadratic κ_2 : Contains functions

$$f(x) = \sum_{p,q \in S_2} \sum_{u,v \in \Omega} g_{u,v}^{pq}(x_u, x_v),$$

with
$$g_{u,v}^{pq} = 0$$
 if $|u - v - (p - q)| > \text{diam}(\text{supp}(h_1))$.

- Additive and interaction model with $g_{u,v}^{pq} \in \mathcal{H}_k \otimes \mathcal{H}_k$ (still no curse if $s \ll d$)
- Pooling layers encourage similarities between different $g_{u,v}^{pq}$

Structured interaction models via depth and pooling

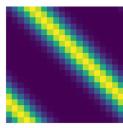
RKHS with quadratic κ_2 : Contains functions

$$f(x) = \sum_{p,q \in S_2} \sum_{u,v \in \Omega} g_{u,v}^{pq}(x_u, x_v),$$

with
$$g_{u,v}^{pq} = 0$$
 if $|u - v - (p - q)| > \text{diam}(\text{supp}(h_1))$.

- Additive and interaction model with $g_{u,v}^{pq} \in \mathcal{H}_k \otimes \mathcal{H}_k$ (still no curse if $s \ll d$)
- Pooling layers encourage similarities between different $g_{u,v}^{pq}$

- ► *h*₁ captures "2D" invariance
- ► h₂ captures invariance along diagonals



Improvements in generalization

$$\mathbb{E} R(\hat{f}_n) - R(f^*) \lesssim \|f^*\|_{\mathcal{H}_K} \sqrt{\frac{\mathbb{E}_x K(x,x)}{n}}$$

- Consider $f^*(x) = \sum_{u,v \in \Omega} g^*(x_u,x_v)$ with $g^* \in \mathcal{H}_k \otimes \mathcal{H}_k$
- Assume $\mathbb{E}_x[k(x_u, x_{u'})k(x_v, x_{v'})] \leq \epsilon$ if $u \neq u'$ or $v \neq v'$

Improvements in generalization

$$\mathbb{E} R(\hat{f}_n) - R(f^*) \lesssim \|f^*\|_{\mathcal{H}_K} \sqrt{\frac{\mathbb{E}_x K(x,x)}{n}}$$

- Consider $f^*(x) = \sum_{u,v \in \Omega} g^*(x_u,x_v)$ with $g^* \in \mathcal{H}_k \otimes \mathcal{H}_k$
- Assume $\mathbb{E}_x[k(x_u, x_{u'})k(x_v, x_{v'})] \leq \epsilon$ if $u \neq u'$ or $v \neq v'$
- Obtained bound for different pooling layers (h_1, h_2) and patch sizes $(|S_2|)$:

h_1	h ₂	$ S_2 $	$ f^* _{\mathcal{K}}$	$\mathbb{E}_{x} K(x,x)$	Bound $(\epsilon = 0)$
δ	δ	$ \Omega $	$ \Omega \ g\ $	$ \Omega ^3 + \epsilon \Omega ^3$	$ g \Omega ^{2.5}/\sqrt{n}$
δ	1	$ \Omega $	$ \Omega \ g\ $	$ \Omega ^2 + \epsilon \Omega ^3$	$ g \Omega ^2/\sqrt{n}$
1	1	$ \Omega $	$\sqrt{ \Omega }\ g\ $	$ \Omega + \epsilon \Omega ^3$	$\ g\ \Omega /\sqrt{n}$
1	δ or ${f 1}$	1	$\sqrt{ \Omega }\ g\ $	$ \Omega ^{-1} + \epsilon \Omega $	$\ g\ /\sqrt{n}$

Note: larger polynomial improvements in $|\Omega|$ possible with higher-order interactions.

Conclusion and perspectives

Summary

- Improved sample complexity for invariance and stability through pooling
- Locality breaks the curse of dimensionality
- Depth and pooling in convolutional models captures rich interaction models with invariances

Future directions

- Empirical benefits for kernels beyond two-layers?
- Invariance groups need to be built-in, can we adapt to them?
- Adaptivity to structures in multi-layer models:
 - ► Low-dimensional structures (Gabor) at first layer?
 - More structured interactions at second layer?
 - ► Can optimization achieve these?

Conclusion and perspectives

Summary

- Improved sample complexity for invariance and stability through pooling
- Locality breaks the curse of dimensionality
- Depth and pooling in convolutional models captures rich interaction models with invariances

Future directions

- Empirical benefits for kernels beyond two-layers?
- Invariance groups need to be built-in, can we adapt to them?
- Adaptivity to structures in multi-layer models:
 - ► Low-dimensional structures (Gabor) at first layer?
 - More structured interactions at second layer?
 - ► Can optimization achieve these?

Thank you!

References I

- A. B. Approximation and learning with deep convolutional models: a kernel perspective. arXiv preprint arXiv:2102.10032, 2021.
- A. B. and F. Bach. Deep equals shallow for relu networks in kernel regimes. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021.
- A. B. and J. Mairal. Group invariance, stability to deformations, and complexity of deep convolutional representations. *Journal of Machine Learning Research (JMLR)*, 20(25):1–49, 2019.
- A. B., L. Venturi, and J. Bruna. On the sample complexity of learning with geometric stability. *arXiv* preprint arXiv:2106.07148, 2021.
- F. Bach. Breaking the curse of dimensionality with convex neural networks. *Journal of Machine Learning Research (JMLR)*, 18(19):1–53, 2017.
- J. Bruna and S. Mallat. Invariant scattering convolution networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, 35(8):1872–1886, 2013.
- L. Chen and S. Xu. Deep neural tangent kernel and laplace kernel have the same rkhs. In *Proceedings* of the International Conference on Learning Representations (ICLR), 2021.
- Y. Cho and L. K. Saul. Kernel methods for deep learning. In *Advances in Neural Information Processing Systems (NIPS)*, 2009.

References II

- A. Favero, F. Cagnetta, and M. Wyart. Locality defeats the curse of dimensionality in convolutional teacher-student scenarios. *arXiv preprint arXiv:2106.08619*, 2021.
- B. Haasdonk and H. Burkhardt. Invariant kernel functions for pattern analysis and machine learning. *Machine learning*, 68(1):35–61, 2007.
- A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2018.
- J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks. In *Advances in Neural Information Processing Systems (NIPS)*, 2016.
- J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. Convolutional kernel networks. In *Advances in Neural Information Processing Systems (NIPS)*, 2014.
- S. Mallat. Group invariant scattering. *Communications on Pure and Applied Mathematics*, 65(10): 1331–1398, 2012.
- S. Mei, T. Misiakiewicz, and A. Montanari. Learning with invariances in random features and kernel models. In *Conference on Learning Theory (COLT)*, 2021.
- Y. Mroueh, S. Voinea, and T. A. Poggio. Learning with group invariant features: A kernel perspective. In *Advances in Neural Information Processing Systems (NIPS)*, 2015.
- R. M. Neal. Bayesian learning for neural networks. Springer, 1996.

References III

- A. Rahimi and B. Recht. Random features for large-scale kernel machines. In *Advances in Neural Information Processing Systems (NIPS)*, 2007.
- N. C. Saldanha and C. Tomei. The accumulated distribution of quadratic forms on the sphere. *Linear algebra and its applications*, 245:335–351, 1996.
- V. Shankar, A. Fang, W. Guo, S. Fridovich-Keil, L. Schmidt, J. Ragan-Kelley, and B. Recht. Neural kernels without tangents. *arXiv preprint arXiv:2003.02237*, 2020.
- G. Wahba. Spline models for observational data, volume 59. Siam, 1990.