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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)
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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

f (x) = Wnσ(Wn–1 · · ·σ(W1x) · · · )

Recipe: huge models + lots of data + compute + simple algorithms
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Exploiting data structure through architecturesConvolutional Neural Networks in Front of the Scene

The keywords: multi-scale, compositional, invariant, local features.
Picture from Y. LeCun’s tutorial:

Julien Mairal Data Science in the Alps 5/21Modern architectures (CNNs, GNNs, Transformers, ...)
Provide some invariance through pooling
Model (local) interactions at different scales, hierarchically
Useful inductive biases for learning efficiently on structured data
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Understanding deep learning

The challenge of deep learning theory
Over-parameterized (millions of parameters)
Expressive (can approximate any function)
Complex architectures for exploiting problem structure
Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint
View deep networks as functions in some functional space
Non-parametric models, natural measures of complexity (e.g., norms)

What is an appropriate functional space?
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Kernels to the rescue

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Kernels?
Map data x to high-dimensional space, Φ(x) ∈ H (H: “RKHS”)
Functions f ∈ H are linear in features: f (x) = 〈f ,Φ(x)〉 (f can be non-linear in x !)
Learning with a positive definite kernel K (x , x ′) = 〈Φ(x),Φ(x ′)〉

I H can be infinite-dimensional! (kernel trick)
I Need to compute kernel matrix K = [K (xi , xj)]ij ∈ RN×N
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Kernels to the rescue

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Clean and well-developed theory
Tractable methods (convex optimization)
Statistical and approximation properties well understood for many kernels
Costly (kernel matrix of size N2) but approximations are possible
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Kernels for neural network architectures

Infinite-width networks (Neal, 1996; Rahimi and Recht, 2007; Jacot et al., 2018)
e.g., one-layer network: f (x) = 1√

m
∑m

i=1 viρ(w>i x)
Random Feature kernel: wi ∼ N (0, I), vi trained

Kρ(x , x ′) = Ew [ρ(w>x)ρ(w>x ′)] = κρ(x>x ′) when x , x ′ ∈ Sd−1

Neural Tangent kernel: “lazy training” of both layers near random initialization

Alberto Bietti Sample complexity under invariance JHU, Oct 7, 2021 6 / 27



Kernels for neural network architectures

Hierarchical kernels (Cho and Saul, 2009)
Kernels can be constructed hierarchically

K (x , x ′) = 〈Φ(x),Φ(x ′)〉 with Φ(x) = ϕ2(ϕ1(x))

e.g., dot-product kernels on the sphere

K (x , x ′) = κ2(〈ϕ1(x), ϕ1(x ′)〉) = κ2(κ1(x>x ′))

For κρ, corresponds to infinite-width limit of deep fully-connected net

But: deep = shallow (same RKHS), limited picture (B. and Bach, 2021; Chen and Xu,
2021):
Can more structure lead to richer spaces?
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Kernels for neural network architectures

Convolutional kernels for images (Mairal et al., 2014; Mairal, 2016; Shankar et al., 2020)

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Good empirical performance with tractable approximations (Nyström)

Study generalization benefits of architectures for certain functions through kernels
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Outline

1 Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)

2 Locality and depth (B., 2021)
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Geometric priors

Invariant Function Classes

• These domain transformations are lifted to linear transformations (a.k.a. 
group representations):

$ " ! = "($"#!)
' ∶ Ω → Ω ' ∶ #(Ω) → #(Ω)

Functions f : X → R that are “smooth” along known transformations of input x
e.g., translations, rotations, permutations, deformations
We consider: permutations σ ∈ G

(σ · x)[u] = x [σ−1(u)]

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

f (σ · x) = f (x), σ ∈ G

Geometric stability: For other sets G (e.g., local shifts, deformations), we want

f (σ · x) ≈ f (x), σ ∈ G
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Geometric priors: symmetrization/pooling operator

SG f (x) := 1
|G |

∑
σ∈G

f (σ · x)

Assumptions on a target function f ∗

G-invariant: SG f ∗ = f ∗

G-stable: f ∗ = SGg∗, for some g∗ (more generally, f ∗ = Sr
Gg∗)

Dot-product kernels with pooling (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

K (x , x ′) = κ(〈x , x ′〉), KG(x , x ′) = 1
|G |

∑
σ∈G

κ(〈σ · x , x ′〉)

If κ = κρ, corresponds to pooling f (x) = 1
|G|
∑
σ∈G

1√
m
∑m

i=1 viρ(〈wi , σ · x〉)

How do these interact with generic smoothness properties of f ∗?
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Harmonic analysis on the sphere

τ : uniform distribution on the sphere Sd−1

L2(τ) basis of spherical harmonics Yk,j

N(d , k) harmonics of degree k, form a basis of Vd ,k

Example (3/6)

Definition (Spherical harmonics)

A homogeneous polynomial of degree k � 0 in Rd whose Laplacian
vanishes is called a homogeneous harmonic of order k .

A spherical harmonic of order k is a homogeneous harmonic of order
k on the unit sphere Sd�1

The set Yk(d) of spherical harmonics is a vector space of dimension

N(n, k) = dim (Yk(d)) =
(2k + d � 2)(k + d � 3)!

k!(d � 2)!
.

237 / 652

Dot-product kernels and their RKHS K (x , x ′) = κ(〈x , x ′〉)

H =

f =
∞∑

k=0

N(d ,k)∑
j=1

ak,jYk,j(·) s.t. ‖f ‖2H :=
∑
k,j

a2k,j
µk

<∞


integral operator: TK f (x) =

∫
κ(〈x , y〉)f (y)dτ(y)

µk = cd
∫ 1
−1 κ(t)Pd ,k(t)(1−t2)

d−3
2 dt: eigenvalues of TK , with multiplicity N(d , k)

Pd ,k : Legendre/Gegenbauer polynomial

decay ↔ regularity: µk � k−2β ↔ ‖f ‖H = ‖T−1/2K f ‖L2(τ) ≈ ‖∆
β/2
Sd−1f ‖L2(τ)
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Invariant harmonics
Key properties of SG for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)

SG acts as projection from Vd ,k (dim N(d , k)) to V d ,k (dim N(d , k))
The number of invariant spherical harmonics N can be estimated using:

γd (k) := N(d , k)
N(d , k) = 1

|G |
∑
σ∈G

Ex [Pd ,k(〈σ · x , x〉)].

We have TKG = SGTK

Previous work (Mei et al., 2021)
High-dimensional regime d →∞ with n � d s

γd (k) = Θd (d−α) =⇒ sample complexity gain by factor dα

Studied for translations: gains by a factor d
Beyond translations? What about groups/sets G exponential in d?
tl;dr: we consider d fixed, n→∞, show (asymptotic) gains by a factor |G |
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Counting invariant harmonics

γd (k) := N(d , k)
N(d , k) = 1

|G |
∑
σ∈G

Ex [Pd ,k(〈σ · x , x〉)].

Proposition ((B., Venturi, and Bruna, 2021))
As k →∞, we have

γd (k) = 1
|G | + O(k−d+χ),

where χ is the maximal number of cycles of any permutation σ ∈ G \ {Id}.

Relies on singularity analysis of density of 〈σ · x , x〉 (Saldanha and Tomei, 1996)
I Decay ↔ nature of singularities ↔ eigenvalue multiplicities ↔ cycle statistics

χ can be large (= d − 1) for some groups (e.g., σ = (1 2))
Can use upper bounds with faster decays but larger constants
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Counting invariant harmonics: examples
Translations (cyclic group)

γd (k) = d−1 + O(k−d/2+6)

Only linear gain in d , but with a fast rate

Block translations: d = s · r , with r cycles of length s

γd (k) = 1
sr + O(k−s/2+1)

For s = 2, exponential gains (|G | = 2d/2) but slow rate

Full permutation group: For any s,

γd (k) ≤ 2
(s + 1)! + O(k−d/2+max(s/2,6))

For s = d/2, exponential gains with fast rate
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Sample complexity of invariant kernel: assumptions

Kernel Ridge Regression

f̂λ := arg min
f ∈HG

1
n

n∑
i=1

(yi − f (xi ))2 + λ‖f ‖2HG

Problem assumptions
(data) x ∼ τ , E[y |x ] = f ∗(x), Var(y |x) ≤ σ2

(G-invariance) f ∗ is G-invariant

(capacity) λm(TK ) ≤ CK m−α
I e.g., α = 2s

d−1 for Sobolev space of order s with s > d−1
2

(source) ‖T−r
K f ∗‖L2 ≤ Cf ∗

I e.g., if 2αr = 2s
d−1 , f ∗ belongs to Sobolev space of order s
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Sample complexity of invariant kernel: generalization

Theorem ((B., Venturi, and Bruna, 2021))

Let `n := sup{` :
∑

k≤` N(d , k) . νd (`)
2αr

2αr+1 n
1

2αr+1 }, where νd (`) := supk≥` γd (k).

E ‖f̂ − f ∗‖2L2(dτ) ≤ C
(
νd (`n)

n

) 2αr
2αr+1

Replace νd (`n) by 1 for non-invariant kernel.

We have νd (`n) = 1
|G| + O

(
n

−β
(d−1)(2αr+1)+2βαr

)
when γd (k) = 1/|G |+ O(k−β)

=⇒ Improvement in sample complexity by a factor |G |!
C may depend on d , but is optimal in a minimax sense over non-invariant f ∗
Main ideas:

I Approximation error: same as non-invariant kernel
I Estimation error: pick `n such that NKG (λn) . νd (`n)NK (λn) (N (λn): degrees of freedom)
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Synthetic experiments
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Figure: Comparison of KRR with invariant and non-invariant kernels.
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Geometric stability to deformations

Deformations
φ : Ω→ Ω: C1-diffeomorphism (e.g., Ω = R2)
φ · x(u) = x(φ−1(u)): action operator
Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)

Alberto Bietti Sample complexity under invariance JHU, Oct 7, 2021 17 / 27



Geometric stability to deformations

Deformations
φ : Ω→ Ω: C1-diffeomorphism (e.g., Ω = R2)
φ · x(u) = x(φ−1(u)): action operator
Much richer group of transformations than translations

Geometric stability
A function f (·) is stable (Mallat, 2012) if:

f (φ · x) ≈ f (x) when ‖∇φ− I‖∞ ≤ ε

In particular, near-invariance to translations (∇φ = I)
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Geometric stability to deformations

Deformations
φ : Ω→ Ω: C1-diffeomorphism (e.g., Ω = R2)
φ · x(u) = x(φ−1(u)): action operator
Much richer group of transformations than translations

Toy model for deformations (“small ‖∇σ − Id‖”)

Gε := {σ ∈ Sd : |σ(u)− σ(u′)− (u − u′)| ≤ ε|u − u′|}

For ε = 2, we have γd (k) ≤ τd + O(k−Θ(d)), with τ < 1
I gains by a factor exponential in d with a fast rate

Alberto Bietti Sample complexity under invariance JHU, Oct 7, 2021 17 / 27



Stability

SG is no longer a projection, but its eigenvalues λk,j on Vd ,k satisfy

γd (k) :=
∑N(d ,k)

j=1 λk,j

N(d , k) = 1
|G |

∑
σ∈G

Ex [Pd ,k(〈σ · x , x〉)]

Source condition adapted to SG : f ∗ = Sr
GT r

K g∗ with ‖g∗‖L2 ≤ Cf ∗

Theorem ((B., Venturi, and Bruna, 2021))

Let `n := sup{` :
∑

k≤` N(d , k) . νd (`)
2r

2αr+1 n
1

2αr+1 }, where νd (`) := supk≥` γd (k).

E ‖f̂ − f ∗‖2L2(τ) ≤ C
(
νd (`n)1/α

n

) 2αr
2αr+1
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Discussion

Curse of dimensionality
For Lipschitz targets, cursed rate n−

2αr
2αr+1 = n−

2
2+d−1 (unimprovable)

Improving this rate requires more structural assumptions, which may be exploited with
adaptivity (Bach, 2017), or better architectures (up next!)

Limitations
Gains are asymptotic, can we get non-asymptotic?
For large groups, pooling is computationally costly

I More structure may help, e.g., stability through depth (B. and Mairal, 2019; Bruna and
Mallat, 2013; Mallat, 2012)
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Outline

1 Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)

2 Locality and depth (B., 2021)
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Breaking the curse of dimensionality with locality

x

xu

One-layer local convolutional kernel: localized patches xu = (x [u], . . . , x [u + s]) (1D)

K (x , x ′) =
∑
u∈Ω

k(xu, x ′u)

RKHS HK contains functions f (x) =
∑

u∈Ω gu(xu) with gu ∈ Hk

No curse: smoothness requirement on gu scales with s instead of d

Pooling: same functions, RKHS norm encourages similarities between the gu
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One-layer local convolutional kernel: localized patches xu = (x [u], . . . , x [u + s]) (1D)

K (x , x ′) =
∑
u∈Ω

∑
v ,v ′∈Ω

h[u − v ]h[u − v ′]k(xv , x ′v ′)
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Breaking the curse of dimensionality with locality

Generalization bound
Slow rate for non-parametric regression, f ∗ ∈ HK

ER(f̂n)− R(f ∗) . ‖f ∗‖HK

√
Ex K (x , x)

n

For invariant targets f ∗ =
∑

u∈Ω g∗(xu): ‖f ∗‖HK independent of pooling
If Ex k(xu, xv )� 1 for u 6= v :

I No pooling: Ex K (x , x) = |Ω|
I Global pooling: Ex K (x , x) ≈ 1 =⇒ gain by factor |Ω|

I General pooling filter ‖h‖1 = 1: Ex K (x , x) ≈ ‖h‖22|Ω|
Fast rates possible (with no overlap, or see (Favero et al., 2021) for the hypercube)
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Multi-layer convolutional kernels

Convolutional Kernel Networks (Mairal, 2016) K2(x , x ′) = 〈Φ2(x),Φ2(x ′)〉

x

xu ∈ H|S1|
0

u 7→ ϕ1(xu)

κ1

h1

Φ1(x)

∈ H|S2|
1

κ2

h2

Φ2(x)

Consider κ2(u) = u2

Associated feature map (for |S2| = 2):

ϕ2

(
z1
z2

)
=
(

z1 ⊗ z1 z1 ⊗ z2
z2 ⊗ z1 z2 ⊗ z2

)
∈ (H1⊗H1)|S2|2

Captures interactions between different
patches (Wahba, 1990)
Pooling h1: extends range of
interactions
Pooling h2: builds invariance
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Some experiments on Cifar10

2-layers, 3x3 patches, pooling/downsampling sizes (2,5). Patch kernels κ1, κ2.

κ1 κ2 Test acc.
Exp Exp 87.9%
Exp Poly3 87.7%
Exp Poly2 86.9%
Poly2 Exp 85.1%
Poly2 Poly2 82.2%
Exp - (Lin) 80.9%

Best performance: 88.3% (2-layers, larger patches at 2nd layer).

Shankar et al. (2020): 88.2% with more layers.
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Structured interaction models via depth and pooling

RKHS with quadratic κ2: Contains functions

f (x) =
∑

p,q∈S2

∑
u,v∈Ω

gpq
u,v (xu, xv ),

with gpq
u,v = 0 if |u − v − (p − q)| > diam(supp(h1)).

Additive and interaction model with gpq
u,v ∈ Hk ⊗Hk (still no curse if s � d)

Pooling layers encourage similarities between different gpq
u,v

I h1 captures “2D” invariance
I h2 captures invariance along

diagonals
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Improvements in generalization

ER(f̂n)− R(f ∗) . ‖f ∗‖HK

√
Ex K (x , x)

n

Consider f ∗(x) =
∑

u,v∈Ω g∗(xu, xv ) with g∗ ∈ Hk ⊗Hk

Assume Ex [k(xu, xu′)k(xv , xv ′)] ≤ ε if u 6= u′ or v 6= v ′

Obtained bound for different pooling layers (h1, h2) and patch sizes (|S2|):

h1 h2 |S2| ‖f ∗‖K Ex K (x , x) Bound (ε = 0)
δ δ |Ω| |Ω|‖g‖ |Ω|3 + ε|Ω|3 ‖g‖|Ω|2.5/

√
n

δ 1 |Ω| |Ω|‖g‖ |Ω|2 + ε|Ω|3 ‖g‖|Ω|2/
√

n
1 1 |Ω|

√
|Ω|‖g‖ |Ω|+ ε|Ω|3 ‖g‖|Ω|/

√
n

1 δ or 1 1
√
|Ω|‖g‖ |Ω|−1 + ε|Ω| ‖g‖/

√
n

Note: larger polynomial improvements in |Ω| possible with higher-order interactions.
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Conclusion and perspectives

Summary
Improved sample complexity for invariance and stability through pooling
Locality breaks the curse of dimensionality
Depth and pooling in convolutional models captures rich interaction models with
invariances

Future directions
Empirical benefits for kernels beyond two-layers?
Invariance groups need to be built-in, can we adapt to them?
Adaptivity to structures in multi-layer models:

I Low-dimensional structures (Gabor) at first layer?
I More structured interactions at second layer?
I Can optimization achieve these?

Thank you!
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