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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)
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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

f (x) = Wnσ(Wn–1 · · ·σ(W1x) · · · )

Recipe: huge models + lots of data + compute + simple algorithms
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Convolutional networks
Exploiting structure of natural images (LeCun et al., 1989)

Convolutional Neural Networks in Front of the Scene

The keywords: multi-scale, compositional, invariant, local features.
Picture from Y. LeCun’s tutorial:

Julien Mairal Data Science in the Alps 5/21

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020 3 / 42



Convolutional networksParadigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

(LeCun et al., 1998)
Convolutional networks

Model local neighborhoods at different scales
Provide some invariance through pooling
Useful inductive bias for learning efficiently on natural images
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Convolutional networks

(Simonyan and Zisserman, 2014)

Convolutional networks
Model local neighborhoods at different scales
Provide some invariance through pooling
Useful inductive bias for learning efficiently on natural images
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Understanding deep learning

The challenge of deep learning theory
Over-parameterized (millions of parameters)
Expressive (can approximate any function)
Complex architectures for exploiting problem structure
Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint
View deep networks as functions in some functional space
Non-parametric models, natural measures of complexity (e.g., norms)

What is an appropriate functional space?
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Kernels to the rescue

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Kernels?
Map data x to high-dimensional space, Φ(x) ∈ H (H: “RKHS”)
Functions f ∈ H are linear in features: f (x) = 〈f ,Φ(x)〉 (f can be non-linear in x !)
Learning with a positive definite kernel K (x , x ′) = 〈Φ(x),Φ(x ′)〉

I H can be infinite-dimensional! (kernel trick)
I Need to compute kernel matrix K = [K (xi , xj)]ij ∈ RN×N
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Kernels to the rescue

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Clean and well-developed theory
Tractable methods (convex optimization)
Statistical and approximation properties well understood for many kernels
Costly (kernel matrix of size N2) but approximations are possible
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Kernels for deep models: deep kernel machines

Hierarchical kernels (Cho and Saul, 2009)
Kernels can be constructed hierarchically

K (x , x ′) = 〈Φ(x),Φ(x ′)〉 with Φ(x) = ϕ2(ϕ1(x))

e.g., dot-product kernels on the sphere

K (x , x ′) = κ2(〈ϕ1(x), ϕ1(x ′)〉) = κ2(κ1(x>x ′))

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020 6 / 42



Kernels for deep models: deep kernel machines

Convolutional kernels networks (CKNs) for images (Mairal et al., 2014; Mairal, 2016)

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Good empirical performance with tractable approximations (Nyström)
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Kernels for deep models: infinite-width networks

fθ(x) = 1√
m

m∑
i=1

viσ(w>i x), m→∞

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
θ = (vi )i , fixed random weights wi ∼ N(0, I)

KRF (x , x ′) = Ew∼N(0,I)[σ(w>x)σ(w>x ′)]

Neural tangent kernels (NTK, Jacot et al., 2018)
θ = (vi ,wi )i , initialization θ0 ∼ N(0, I)
Lazy training (Chizat et al., 2019): θ stays close to θ0 when training with large m

fθ(x) ≈ fθ0(x) + 〈θ − θ0,∇θfθ(x)|θ=θ0〉.

Gradient descent for m→∞ ≈ kernel ridge regression with neural tangent kernel
KNTK (x , x ′) = lim

m→∞
〈∇θfθ0(x),∇θfθ0(x ′)〉

RF and NTK extend to deep architectures
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Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives
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Properties of convolutional modelsParadigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

Convolutional architectures:
Capture multi-scale and compositional structure in natural signals
Model local stationarity
Provide some translation invariance

Beyond translation invariance?
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Convolutional architectures:
Capture multi-scale and compositional structure in natural signals
Model local stationarity
Provide some translation invariance

Beyond translation invariance?
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Stability to deformations
Deformations

τ : Ω→ Ω: C1-diffeomorphism
Lτx(u) = x(u − τ(u)): action operator
Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Stability to deformations
Deformations

τ : Ω→ Ω: C1-diffeomorphism
Lτx(u) = x(u − τ(u)): action operator
Much richer group of transformations than translations

Definition of stability
Representation Φ(·) is stable (Mallat, 2012) if:

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation
‖τ‖∞ = supu |τ(u)| controls translation
C2 → 0: translation invariance
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Smoothness and stability with kernels

Geometry of the kernel mapping: f (x) = 〈f ,Φ(x)〉

|f (x)− f (x ′)| ≤ ‖f ‖H · ‖Φ(x)− Φ(x ′)‖H

‖f ‖H controls complexity of the model
Φ(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)

Useful kernels in practice:
Convolutional kernel networks (CKNs, Mairal, 2016) with efficient approximations
Extends to neural tangent kernels (NTKs, Jacot et al., 2018) of infinitely wide
CNNs (Bietti and Mairal, 2019b)
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Construction of convolutional kernels

Construct a sequence of feature maps x1, . . . , xn
x0 : Ω→ H0: initial (continuous) signal

I u ∈ Ω = Rd : location (d = 2 for images)
I x0(u) ∈ H0: value (H0 = R3 for RGB images)

xk : Ω→ Hk : feature map at layer k

xk = AkMkPkxk−1

I Pk : patch extraction operator, extract small patch of feature map xk−1 around each point u
I Mk : non-linear mapping operator, maps each patch to a new point with a pointwise

non-linear function ϕk(·) (kernel mapping)
I Ak : (linear, Gaussian) pooling operator at scale σk

Goal: control stability of these operators through their norms
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CKN construction

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u + v))v∈Sk ∈ Pk = HSk
k–1

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)
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Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u + v))v∈Sk ∈ Pk = HSk
k–1

Sk : patch shape, e.g. box
Pk is linear, and preserves the L2 norm: ‖Pkxk–1‖ = ‖xk–1‖
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

xk–1 : Ω → Hk–1

Pkxk–1(v) ∈ Pk

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

ϕk : Pk → Hk pointwise non-linearity on patches (kernel map)
We assume non-expansivity: for z , z ′ ∈ Pk

‖ϕk(z)‖ ≤ ‖z‖ and ‖ϕk(z)− ϕk(z ′)‖ ≤ ‖z − z ′‖

Mk then satisfies, for x , x ′ ∈ L2(Ω,Pk)

‖Mkx‖ ≤ ‖x‖ and ‖Mkx −Mkx ′‖ ≤ ‖x − x ′‖
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ϕk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z , z ′) = ‖z‖‖z ′‖κk

( 〈z , z ′〉
‖z‖‖z ′‖

)
= 〈ϕk(z), ϕk(z ′)〉.

κk(u) =
∑∞

j=0 bjuj with bj ≥ 0, κk(1) = 1

Commonly used for hierarchical kernels
‖ϕk(z)‖ = Kk(z , z)1/2 = ‖z‖
‖ϕk(z)− ϕk(z ′)‖ ≤ ‖z − z ′‖ if κ′k(1) ≤ 1
=⇒ non-expansive
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ϕk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z , z ′) = ‖z‖‖z ′‖κk

( 〈z , z ′〉
‖z‖‖z ′‖

)
= 〈ϕk(z), ϕk(z ′)〉.

κk(u) =
∑∞

j=0 bjuj with bj ≥ 0, κk(1) = 1

Examples
κexp(〈z , z ′〉) = e〈z,z ′〉−1 (Gaussian kernel on the sphere)
κinv-poly(〈z , z ′〉) = 1

2−〈z,z ′〉

κσ(〈z , z ′〉) = Ew [σ(w>z)σ(w>z ′)] (Random features)
I arc-cosine kernels for the ReLU σ(u) = max(0, u)
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

xk–1 : Ω → Hk–1

MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

hσk : pooling filter at scale σk

hσk (u) := σ−d
k h(u/σk) with h(u) Gaussian

linear, non-expansive operator: ‖Ak‖ ≤ 1

In practice: discretization, sampling at resolution σk after pooling
“Preserves information” when subsampling ≤ patch size
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Recap: Pk , Mk , Ak

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Multilayer construction

Assumption on x0
x0 is typically a discrete signal aquired with physical device.
Natural assumption: x0 = A0x , with x the original continuous signal, A0 local integrator
with scale σ0 (anti-aliasing).

Multilayer representation

Φ(x0) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

Sk , σk grow exponentially in practice (i.e., fixed with subsampling).

Final kernel
KCKN(x , x ′) = 〈Φ(x),Φ(x ′)〉L2(Ω) =

∫
Ω
〈xn(u), x ′n(u)〉du
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Stability to deformations
Theorem (Stability of CKN (Bietti and Mairal, 2019a))
Let Φn(x) = Φ(A0x) and assume ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτx)− Φn(x)‖ ≤
(

Cβ (n + 1) ‖∇τ‖∞ + C
σn
‖τ‖∞

)
‖x‖

Translation invariance: large σn

Stability: small patch sizes (β ≈ patch size, Cβ = O(β3) for images)
Signal preservation: subsampling factor ≈ patch size
=⇒ need several layers with small patches n = O(log(σn/σ0)/ log β)

Achieved by controlling norm of commutator [Lτ ,PkAk–1]
I Extend result by Mallat (2012) for controlling ‖[Lτ ,A]‖
I Need patches Sk adapted to resolution σk–1: diam Sk ≤ βσk–1

Extensions to other transformation groups, e.g. roto-translations
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Stability to deformations for convolutional NTK
Theorem (Stability of NTK (Bietti and Mairal, 2019b))
Let Φn(x) = ΦNTK (A0x), and assume ‖∇τ‖∞ ≤ 1/2

‖Φn(Lτx)− Φn(x)‖

≤
(

Cβn7/4‖∇τ‖1/2∞ + C ′βn2‖∇τ‖∞ +
√

n + 1 C
σn
‖τ‖∞

)
‖x‖,

Comparison with random feature CKN on deformed MNIST digits:
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Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives
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RKHS of patch kernels Kk

Kk(z , z ′) = ‖z‖‖z ′‖κ
( 〈z , z ′〉
‖z‖‖z ′‖

)
, κ(u) =

∞∑
j=0

b2
j uj

RKHS contains homogeneous functions:

f : z 7→ ‖z‖σ(〈g , z〉/‖z‖)

Smooth activations: σ(u) =
∑∞

j=0 ajuj

Norm: ‖f ‖2Hk
≤ C2

σ(‖g‖2) =
∑∞

j=0
a2j
b2

j
‖g‖2j <∞

(Bietti and Mairal, 2019a). Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels Kk
Examples:

σ(u) = u (linear): C2
σ(λ2) = O(λ2)

σ(u) = up (polynomial): C2
σ(λ2) = O(λ2p)

σ ≈ sin, sigmoid, smooth ReLU: C2
σ(λ2) = O(ecλ2)
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x
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f(x
)

f : x (x)
ReLU
sReLU
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f(x
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f : x |x| (wx/|x|)
ReLU, w=1
sReLU, w = 0
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sReLU, w = 1
sReLU, w = 2

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020 24 / 42



Constructing a CNN in the RKHS HCKN

Consider a CNN with filters W ij
k (u), u ∈ Sk

“Smooth homogeneous” activations σ
The CNN can be constructed hierarchically in HCKN

Norm upper bound:

‖fσ‖2H ≤ ‖Wn+1‖22 C2
σ(‖Wn‖22 C2

σ(‖Wn–1‖22 C2
σ(. . . )))

Linear layers: product of spectral norms

(Bietti and Mairal, 2019a)
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Constructing a CNN in the RKHS HCKN

Consider a CNN with filters W ij
k (u), u ∈ Sk

“Smooth homogeneous” activations σ
The CNN can be constructed hierarchically in HCKN

Norm upper bound (linear layers):

‖fσ‖2H ≤ ‖Wn+1‖22 · ‖Wn‖22 · ‖Wn–1‖22 . . . ‖W1‖22

Linear layers: product of spectral norms

(Bietti and Mairal, 2019a)
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Link with generalization

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ H, ‖f ‖H ≤ B} =⇒ RadN(FB) ≤ O
( BR√

N

)

Margin bound for a learned model f̂N with margin (confidence) γ > 0

P(y f̂N(x) < 0) ≤ O
(
‖f̂N‖HR
γ
√

N

)

If f̂N is a CNN: related to recent generalization bounds for neural networks based on
product of spectral norms (e.g., Bartlett et al., 2017; Neyshabur et al., 2018)

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020 26 / 42



Link with generalization

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ H, ‖f ‖H ≤ B} =⇒ RadN(FB) ≤ O
( BR√

N

)

Margin bound for a learned model f̂N with margin (confidence) γ > 0

P(y f̂N(x) < 0) ≤ O
(
‖f̂N‖HR
γ
√

N

)

If f̂N is a CNN: related to recent generalization bounds for neural networks based on
product of spectral norms (e.g., Bartlett et al., 2017; Neyshabur et al., 2018)

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020 26 / 42



Going further for the non-convolutional case

Fully-connected models =⇒ dot-product kernels

K (x , y) = κ(x>y) for x , y ∈ Sp–1

Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
Rotation-invariant kernel on the sphere
=⇒ RKHS description in the L2(Sp–1) basis of spherical harmonics Yk,j
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Precise description of the RKHS (Mercer decomposition)
Rotation-invariant kernel on the sphere
=⇒ RKHS description in the L2(Sp–1) basis of spherical harmonics Yk,j

Example (3/6)

Definition (Spherical harmonics)

A homogeneous polynomial of degree k � 0 in Rd whose Laplacian
vanishes is called a homogeneous harmonic of order k .

A spherical harmonic of order k is a homogeneous harmonic of order
k on the unit sphere Sd�1

The set Yk(d) of spherical harmonics is a vector space of dimension

N(n, k) = dim (Yk(d)) =
(2k + d � 2)(k + d � 3)!

k!(d � 2)!
.

237 / 652
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Fully-connected models =⇒ dot-product kernels

K (x , y) = κ(x>y) for x , y ∈ Sp–1

Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
Rotation-invariant kernel on the sphere
=⇒ RKHS description in the L2(Sp–1) basis of spherical harmonics Yk,j

H =

f =
∞∑

k=0

N(p,k)∑
j=1

ak,jYk,j(·) s.t. ‖f ‖2H :=
∑
k,j

a2k,j
µk

<∞


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Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)
Decay of µk ↔ regularity of functions in the RKHS
Leads to sufficient conditions for RKHS membership
Rates of approximation for Lipschitz functions

NTK vs random features (Bietti and Mairal, 2019b)
f has p/2 η-bounded derivatives =⇒ f ∈ HNTK , ‖f ‖HNTK ≤ O(η)
p/2 + 1 needed for RF (Bach, 2017)
=⇒ HNTK is (slightly) “larger” than HRF

Similar improvement for approximation of Lipschitz functions
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Some experiments on Cifar10

Convolutional kernels with 3x3 patches + kernel ridge regression (very costly!)

Conv. layers subsampling kernel test acc.
2 2-5 ReLU RF 86.63%
2 2-5 ReLU NTK 87.19%

2 2-5 exp, σ = 0.6 87.93%
3 2-2-2 exp, σ = 0.6 88.2%

16 (Li et al., 2019) last layer only ReLU RF 87.28%
16 (Li et al., 2019) last layer only ReLU NTK 86.77%

Li et al. (2019): no pooling before last layer, more complicated pre-processing
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Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives
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Regularizing deep learning models in practice

Two issues with today’s deep learning models:
Poor performance on small datasets
Lack of robustness to adversarial perturbations

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020 31 / 42



Regularizing deep learning models in practice

Two issues with today’s deep learning models:
Poor performance on small datasets
Lack of robustness to adversarial perturbations

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted

6

clean + noise → “ostrich”
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Regularizing deep learning models in practice

Two issues with today’s deep learning models:
Poor performance on small datasets
Lack of robustness to adversarial perturbations

(a real ostrich)
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Regularizing deep learning models in practice

Two issues with today’s deep learning models:
Poor performance on small datasets
Lack of robustness to adversarial perturbations

New approach to regularization (Bietti et al., 2019):
View generic CNN fθ as an element of a RKHS H

I CNNs fθ with ReLUs are (approximately) in the RKHS for CKNs
Regularize using ‖fθ‖H

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020 31 / 42



Better models through regularization

Controlling upper bounds: spectral norm penalties/constraints

Controlling lower bounds using ‖f ‖H = sup‖u‖H≤1〈f , u〉
=⇒ consider tractable subsets of the unit ball using properties of Φ

‖f ‖H ≥ sup
x ,‖δ‖≤1

(adversarial perturbations)

‖f ‖H ≥ sup
x ,‖τ‖≤C

f (Lτx)− f (x) (adversarial deformations)

‖f ‖H ≥ sup
x
‖∇f (x)‖2 (gradient penalty)

Best performance by combining upper + lower bound approaches

(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularization on small datasets: image classification
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372
373
374
375
376
377
378
379
380
381
382
383
384

A Kernel Perspective for Regularizing Deep Neural Networks

Table 2. Regularization on 300 or 1 000 examples from MNIST,
using deformations from Infinite MNIST. (⇤) indicates that random
deformations were included as training examples, while kfk2

⌧ and
kD⌧fk2 use them as part of the regularization penalty.

Method 300 VGG 1k VGG
Weight decay 89.32 94.08
SN projection 90.69 95.01
grad-`2 93.63 96.67
kfk2

� penalty 94.17 96.99
krfk2 penalty 94.08 96.82
Weight decay (⇤) 92.41 95.64
grad-`2 (⇤) 95.05 97.48
kD⌧fk2 penalty 94.18 96.98
kfk2

⌧ penalty 94.42 97.13
kfk2

⌧ + krfk2 94.75 97.40
kfk2

⌧ + kfk2
� 95.23 97.66

kfk2
⌧ + kfk2

� (⇤) 95.53 97.56
kfk2

⌧ + kfk2
� + SN proj 95.20 97.60

kfk2
⌧ + kfk2

� + SN proj (⇤) 95.40 97.77

erage pooling after each 3x3 convolution layer, in order to
more closely match the architecture assumptions of Bietti
& Mairal (2018) for deformation stability. We consider two
lower bound penalties that leverage the digit transformations
in Infinite MNIST: one based on “adversarial” deformations
around each digit, denoted kfk2

⌧ ; and a tangent propaga-
tion (Simard et al., 1998) variant, denoted kD⌧fk2, which
provides an approximation to kfk2

⌧ for small deformations
based on gradients along a few tangent vector directions
given by deformations (see Appendix B for details). Table 2
shows the obtained test accuracy for subsets of MNIST of
size 300 and 1 000. Overall, we find that combining both
adversarial penalties kfk2

⌧ and kfk2
� performs best, which

suggests that it is helpful to obtain tighter lower approxi-
mations of the RKHS norm by considering perturbations of
different kinds. Explicitly controlling the spectral norms can
further improve performance, as does training on deformed
digits, which may yield better margins by exploiting the
additional knowledge that small deformations preserve la-
bels. Note that data augmentation alone (with some weight
decay) does quite poorly in this case, even compared to our
lower bound penalties which do not use deformations.

Protein homology detection. Remote homology detec-
tion between protein sequences is an important problem
to understand protein structure. Given a protein sequence,
the goal is to predict whether it belongs to a superfamily
of interest. We consider the Structural Classification Of
Proteins (SCOP) version 1.67 dataset (Murzin et al., 1995),
which we process as described in Appendix A.3 in order to
obtain 102 balanced binary classification tasks with 100 pro-
tein sequences each, thus resulting in a low-sample regime.
Protein sequences were also cut to 400 amino acids.

Sequences are represented with a one-hot encoding

Table 3. Regularization on protein homology detection tasks, with
or without data augmentation (DA). Fixed hyperparameters are
selected using the first half of the datasets, and we report the
average auROC50 score on the second half. See Section A.3 in the
appendix for more details and statistical testing.

Method No DA DA
No weight decay 0.446 0.500
Weight decay 0.501 0.546
SN proj 0.591 0.632
PGD-`2 0.575 0.595
grad-`2 0.540 0.552
kfk2

� 0.600 0.608
krfk2 0.585 0.611
PGD-`2 + SN proj 0.596 0.627
grad-`2 + SN proj 0.592 0.624
kfk2

� + SN proj 0.630 0.644
krfk2 + SN proj 0.603 0.625

strategy—that is, a sequence of length l is represented as a
binary matrix in {0, 1}20⇥l, where 20 is the number of dif-
ferent amino acids (alphabet size of the sequences). Such a
structure can then be processed by convolutional neural net-
works (Alipanahi et al., 2015). In this paper, we do not try to
optimize the structure of the network for the task, since our
goal is only to evaluate the effect of regularization strategies.
Therefore, we use a simple convolutional network with 3
convolutional layers followed by global max-pooling and
a final fully-connected layer (we use filters of size 5, and a
max-pooling layer after the second convolutional layer).

Training was done using Adam with a learning rate fixed to
0.01, and a weight decay parameter tuned for each method.
Since hyper-parameter selection per dataset is difficult due
to the low sample size, we use the same parameters across
datasets. This allows us to use the first 51 datasets as a
validation set for hyper-parameter tuning, and we report
average performance with these fixed choices on the remain-
ing 51 datasets. The standard performance measure for this
task is the auROC50 score (area under the ROC curve up to
50% false positives). We note that the selection of hyper-
parameters has a transductive component, since some of the
sequences in the test datasets may also appear in the datasets
used for validation (possibly with a different label).

The results are shown in Table 3. The procedure used
for data augmentation (right column) is described in Ap-
pendix A.3. We found that the most effective approach is
the adversarial perturbation penalty, together with SN con-
straints. In particular, we found it to outperform the gradient
penalty krfk2, perhaps because in this case gradient penal-
ties are only computed on a discrete set of possible points
given by one-hot encodings, while adversarial perturbations
may increase stability to wider regions, potentially covering
different possible encoded sequences.

(Bietti, Mialon, Chen, and Mairal, 2019)
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Protein homology detection. Remote homology detec-
tion between protein sequences is an important problem
to understand protein structure. Given a protein sequence,
the goal is to predict whether it belongs to a superfamily
of interest. We consider the Structural Classification Of
Proteins (SCOP) version 1.67 dataset (Murzin et al., 1995),
which we process as described in Appendix A.3 in order to
obtain 102 balanced binary classification tasks with 100 pro-
tein sequences each, thus resulting in a low-sample regime.
Protein sequences were also cut to 400 amino acids.

Table 3. Regularization on protein homology detection tasks, with
or without data augmentation (DA). Fixed hyperparameters are
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average auROC50 score on the second half.
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Sequences are represented with a one-hot encoding
strategy—that is, a sequence of length l is represented as a
binary matrix in {0, 1}20⇥l, where 20 is the number of dif-
ferent amino acids (alphabet size of the sequences). Such a
structure can then be processed by convolutional neural net-
works (Alipanahi et al., 2015). In this paper, we do not try to
optimize the structure of the network for the task, since our
goal is only to evaluate the effect of regularization strategies.
Therefore, we use a simple convolutional network with 3
convolutional layers followed by global max-pooling and
a final fully-connected layer (we use filters of size 5, and a
max-pooling layer after the second convolutional layer).

Training was done using Adam with a learning rate fixed to
0.01, and a weight decay parameter tuned for each method.
Since hyper-parameter selection per dataset is difficult due
to the low sample size, we use the same parameters across
datasets. This allows us to use the first 51 datasets as a
validation set for hyper-parameter tuning, and we report
average performance with these fixed choices on the remain-
ing 51 datasets. The standard performance measure for this
task is the auROC50 score (area under the ROC curve up to
50% false positives). We note that the selection of hyper-
parameters has a transductive component, since some of the
sequences in the test datasets may also appear in the datasets
used for validation (possibly with a different label).

The results are shown in Table 3. The procedure used
for data augmentation (right column) is described in Ap-
pendix A.3. We found that the most effective approach is
the adversarial perturbation penalty, together with SN con-
straints. In particular, we found it to outperform the gradient
penalty krfk2, perhaps because in this case gradient penal-
ties are only computed on a discrete set of possible points
given by one-hot encodings, while adversarial perturbations
may increase stability to wider regions, potentially covering
different possible encoded sequences.

(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularization for robustness
Links with robust optimization/adversarial training

Robust optimization yields another lower bound (hinge/logistic loss)

1
N

N∑
i=1

sup
‖δ‖2≤ε

`(yi , f (xi + δ)) ≤ 1
N

N∑
i=1

`(yi , f (xi )) + ε‖f ‖H

But: may only encourage local robustness around training data

Global vs local robustness
Controlling ‖f ‖H allows a more global form of robustness
Guarantees on adversarial generalization with `2 perturbations

I Extension of margin-based bound, by using ‖f ‖H ≥ ‖f ‖Lip near the decision boundary
But: may cause a loss in accuracy in practice

(Bietti, Mialon, Chen, and Mairal, 2019)
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Robustness trade-offs on Cifar10
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Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives
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Conclusions

Benefits of convolutional kernels
Translation invariance + deformation stability with small patches and pooling
Extensions to other groups (roto-translations)
RKHS contains CNNs with smooth activations

New practical regularization strategies
Regularization of generic CNNs using RKHS norm
State-of-the-art performance on adversarial robustness

Links with over-parameterized optimization: neural tangent kernels
NTK for CNNs takes a similar form to CKNs
Weaker stability guarantees than RF, but better approximation properties
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Perspectives

Further study of convolutional kernels
More precise approximation guarantees?
More empirical evaluation; usefulness in practice?

Beyond kernels for deep learning
Kernels do not fully explain success of deep learning
Simple, tractable, interpretable models that improve on kernels?
Inductive bias of optimization beyond “lazy training”? lazy only for some layers?
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Bonus: contextual bandit bake-off

Contextual bandits
Simple setting for real-world reinforcement learning (“one-step RL”)
Observe context (user info), choose action (ad/news story), observe reward (click?)
=⇒ exploration/exploitation trade-off
Several algorithms with theoretical guarantees, little empirical evaluation

The bake-off (Bietti, Agarwal, and Langford, 2020?)
Large-scale evaluation on 500+ datasets from supervised learning
Focus on practical methods that leverage supervised ML algorithms
All methods implemented in Vowpal Wabbit!
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Contextual bandit bake-off: takeaways and perspectives
Findings

Methods with strong assumptions tend to dominate: RegCB and even Greedy (!)
Many theoretically analyzed methods tend to over-explore but are more robust to
difficult datasets when appropriately modified: Cover
Importance of design choices (reward estimators, encoding, ability to run offline
experiments)

Perspectives
Simple is good: better understanding of greedy?
Robustness with adaptivity: can we get robust methods that are competitive with
greedy/RegCB in favorable scenarios?
Closer to the real world: how to deal with non-stationarity? e.g., feedback loops in
recommendation systems. Need better data models?
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Thanks!
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Bake-off results
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Figure: Comparison between three competitive approaches: RegCB (confidence based), Cover-NU
(variant of Online Cover) and Greedy. The plots show relative loss compared to supervised learning
(lower is better) on all datasets with 5 actions or more. Red points indicate datasets with a statistically
significant difference in loss between two methods. A greedy approach can outperform exploration
methods in many cases; yet both Greedy and RegCB may fail to explore efficiently on some other
datasets where Cover-NU dominates.
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Bake-off results
Stat. significant “win-loss” difference. Fixed hyperparameters.

↓ vs → G RO C-nu B-g εG
G - -7 10 50 54
RO 7 - 26 49 68
C-nu -10 -26 - 22 57
B-g -50 -49 -22 - 17
εG -54 -68 -57 -17 -

-1/0 encoding

↓ vs → G RO C-nu B-g εG
G - -64 -17 36 52
RO 64 - 45 100 120
C-nu 17 -45 - 45 75
B-g -36 -100 -45 - 19
εG -52 -120 -75 -19 -

0/1 encoding
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Discretization and signal preservation
The multilayer convolutional kernel

I0 : ⌦0 ! H0I0(!0) 2 H0

P!1 2 P0 (patch)

Kernel trick

I0.5(!1) = '1(P!1) 2 H1
I0.5 : ⌦0 ! H1

I1 : ⌦1 ! H1

Linear pooling

I1(!2) 2 H1

How do we go from I0.5 : ⌦0 ! H1 to I1 : ⌦1 ! H1?

Linear pooling!
Julien Mairal Towards deep kernel machines 28/51
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Discretization and signal preservation

x̄k : subsampling factor sk after pooling with scale σk ≈ sk :

x̄k [n] = AkMkPk x̄k–1[nsk ]

Claim: We can recover x̄k−1 from x̄k if subsampling sk ≤ patch size
How? Kernels! Recover patches with linear functions (contained in RKHS)

〈fw ,MkPkx(u)〉 = fw (Pkx(u)) = 〈w ,Pkx(u)〉

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020 50 / 42



Discretization and signal preservation

x̄k : subsampling factor sk after pooling with scale σk ≈ sk :

x̄k [n] = AkMkPk x̄k–1[nsk ]

Claim: We can recover x̄k−1 from x̄k if subsampling sk ≤ patch size

How? Kernels! Recover patches with linear functions (contained in RKHS)

〈fw ,MkPkx(u)〉 = fw (Pkx(u)) = 〈w ,Pkx(u)〉

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020 50 / 42



Discretization and signal preservation

x̄k : subsampling factor sk after pooling with scale σk ≈ sk :

x̄k [n] = AkMkPk x̄k–1[nsk ]

Claim: We can recover x̄k−1 from x̄k if subsampling sk ≤ patch size
How? Kernels! Recover patches with linear functions (contained in RKHS)

〈fw ,MkPkx(u)〉 = fw (Pkx(u)) = 〈w ,Pkx(u)〉

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020 50 / 42



Signal recovery: example in 1D

xk−1

Pkxk−1(u) ∈ Pk

MkPkxk−1

dot-product kernel

AkMkPkxk−1

linear pooling

downsampling

xk

recovery with linear measurements

Akxk−1

deconvolution

xk−1
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Beyond the translation group

Global invariance to other groups?

Rotations, reflections, roto-translations, ...
Group action Lgx(u) = x(g−1u)
Equivariance in inner layers + (global) pooling in last layer
Similar construction to Cohen and Welling (2016); Kondor and Trivedi (2018)
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G-equivariant layer construction

Feature maps x(u) defined on u ∈ G (G : locally compact group)
I Input needs special definition when G 6= Ω

Patch extraction:
Px(u) = (x(uv))v∈S

Non-linear mapping: equivariant because pointwise!
Pooling (µ: left-invariant Haar measure):

Ax(u) =
∫

G
x(uv)h(v)dµ(v) =

∫
G

x(v)h(u−1v)dµ(v)
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Group invariance and stability

Roto-translation group G = R2 o SO(2) (translations + rotations)
Stability w.r.t. translation group
Global invariance to rotations (only global pooling at final layer)

I Inner layers: patches and pooling only on translation group
I Last layer: global pooling on rotations
I Cohen and Welling (2016): pooling on rotations in inner layers hurts performance on Rotated

MNIST
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