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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)
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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

F(x) = Wao(Wpy -+ o(Wix)---)

Recipe: huge models + lots of data + compute + simple algorithms
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Convolutional networks

Exploiting structure of natural images (LeCun et al., 1989)

Low-Level Mid-Level| [High-Level Trainable
R ) R
Feature Feature Feature Classifier
)\

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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Convolutional networks

- C3: 1 maps 16@10x10
INPUT S@Eg:éuare maps S4:1. maps 16@5x5
S2: 1. may
B@14x14

|
‘ ! | Full connection | Gaussian connections
Canvolutions L Canvelut Full i

(LeCun et al., 1998)
Convolutional networks
o Model local neighborhoods at different scales
o Provide some invariance through pooling

o Useful inductive bias for learning efficiently on natural images
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Convolutional networks

224x224x3
224x224%64

2828512 14x14x512 7x7x512

1x1x4096 1x1x4096 1x1x1000 1x1x1000

(Simonyan and Zisserman, 2014)

Convolutional networks
o Model local neighborhoods at different scales
o Provide some invariance through pooling

o Useful inductive bias for learning efficiently on natural images
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Understanding deep learning

The challenge of deep learning theory
o Over-parameterized (millions of parameters)

©

Expressive (can approximate any function)
Complex architectures for exploiting problem structure
Yet, easy to optimize with (stochastic) gradient descent!

©

©
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Understanding deep learning

The challenge of deep learning theory
o Over-parameterized (millions of parameters)

©

Expressive (can approximate any function)
Complex architectures for exploiting problem structure
Yet, easy to optimize with (stochastic) gradient descent!

©

©

A functional space viewpoint
o View deep networks as functions in some functional space

o Non-parametric models, natural measures of complexity (e.g., norms)
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Understanding deep learning

The challenge of deep learning theory
o Over-parameterized (millions of parameters)

©

Expressive (can approximate any function)

©

Complex architectures for exploiting problem structure

©

Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint
o View deep networks as functions in some functional space
o Non-parametric models, natural measures of complexity (e.g., norms)

What is an appropriate functional space?
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Kernels to the rescue

v

Kernels?

o Map data x to high-dimensional space, ®(x) € H (H: “RKHS")
o Functions f € H are linear in features: f(x) = (f, ®(x)) (f can be non-linear in x!)
o Learning with a positive definite kernel K(x, x") = (®(x), ®(x'))

» H can be infinite-dimensional! (kernel trick)
» Need to compute kernel matrix K = [K(x;, x;)]; € RV*N
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Kernels to the rescue

v

Clean and well-developed theory

o Tractable methods (convex optimization)

o Statistical and approximation properties well understood for many kernels

o Costly (kernel matrix of size N?) but approximations are possible
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Kernels for deep models: deep kernel machines

Hierarchical kernels (Cho and Saul, 2009)

o Kernels can be constructed hierarchically
K(x,x") = (&(x), ®(x')) with ®(x) = p2(p1(x))
o e.g., dot-product kernels on the sphere

K(x,x') = ma((1(x), p1(x'))) = ma(kr(x " x"))
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Kernels for deep models: deep kernel machines

Convolutional kernels networks (CKNs) for images (Mairal et al., 2014; Mairal, 2016)

xy = Ap My Prag-q : Q — Hy zp(w) = Ag My Py (w) € Hy,

linear pooling

MyPrxy: Q= Hy My Ppg1(v) = pr(Prrg1(v)) € Hy,

non-linear mapping

Pray—1(v) € Py (patch extraction)
vy1(u) € Hi1

T Q= Hia

o Good empirical performance with tractable approximations (Nystréom)
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Kernels for deep models: infinite-width networks

1
f —7§ o (w; —
9(x) \F,- lvo(w, x), m — oo

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
o 6 = (vj);, fixed random weights w; ~ N(0, /)

Kre(x,x") = Ew~n(o,1) [O'(WTX)O'(WTX/)]
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Kernels for deep models: infinite-width networks

1 m
fo(x) = —= vio(w x), m — 00
()= D v )
Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
o 0 = (v;);, fixed random weights w; ~ N(0, /)
Kre(x,x") = Ew~n(o,1) [O'(WTX)O'(WTX/)]
Neural tangent kernels (NTK, Jacot et al., 2018)

o 6§ = (v;, w;)j, initialization 6y ~ N(0, /)
o Lazy training (Chizat et al., 2019): 6 stays close to 6y when training with large m

fo(x) ~ fay (x) + (0 — 0o, Vo To(x)lo=0,)-
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Kernels for deep models: infinite-width networks

1 m
fo(x) = —= vio(w x), m — 00
()= D v )
Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
o 0 = (v;);, fixed random weights w; ~ N(0, /)
Kre(x,x") = Ew~n(o,1) [O’(WTX)O'(WTX/)]
Neural tangent kernels (NTK, Jacot et al., 2018)

o 6§ = (v;, w;)j, initialization 6y ~ N(0, /)
o Lazy training (Chizat et al., 2019): 6 stays close to 6y when training with large m

fo(x) = foo(x) + (6 — o, Vg (x)[o=a,)-
o Gradient descent for m — oo = kernel ridge regression with neural tangent kernel

Kni(x, x') (Vofao(x), Vafay(x'))

= lim
m—00
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Kernels for deep models: infinite-width networks

1
f —7§ o (w; —
9(x) \F,- lvo(w, x), m — oo

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
o 0 = (v;);, fixed random weights w; ~ N(0, /)
Kre(x,x") = Ew~n(o,1) [O'(WTX)O'(WTX/)]
Neural tangent kernels (NTK, Jacot et al., 2018)
o 0 = (vj,w;);, initialization 6y ~ N(0, /)
o Lazy training (Chizat et al., 2019): 6 stays close to 6y when training with large m

fo(x) ~ fay (x) + (0 — 0o, Vo To(x)lo=0,)-

o Gradient descent for m — oo = kernel ridge regression with neural tangent kernel

AT /
KNTK(X7 X ) = njinoo<v9f90(x)7 VQng(X )>
RF and NTK extend to deep architectures
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Outline

(@ Convolutional kernels and their stability
(@ Approximation and complexity
(3 Applications to regularization and robustness

(@ Conclusions and perspectives
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QOutline

(@ Convolutional kernels and their stability
2) Approximation and complexity
3) Applications to regularization and robustness

4) Conclusions and perspectives



Properties of convolutional models

C3 1L maps 16E10x10

C1: feature maps N
P A 2 54:1. maps 16355

|
| Full connectian Gaussian connestions

Canvelutions Subsampling Convelutions  Subsampling Full connection

Convolutional architectures:
o Capture multi-scale and compositional structure in natural signals
o Model local stationarity

o Provide some translation invariance
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Properties of convolutional models

C3 1L maps 16E10x10

C1: feature maps N
P A 2 54:1. maps 16355

|
| Full connectian Gaussian connestions

Canvelutions Subsampling Convelutions  Subsampling Full connection

Convolutional architectures:
o Capture multi-scale and compositional structure in natural signals
o Model local stationarity
o Provide some translation invariance

Beyond translation invariance?
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Stability to deformations

Deformations
o 7:Q — Q: Cl-diffeomorphism
o Lyx(u) = x(u—7(u)): action operator

o Much richer group of transformations than translations

FHAYYqhdyyn
555555556¢
77172117777
335584088 &

o Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Stability to deformations

Deformations
o 7:Q — Q: Cl-diffeomorphism
o Lyx(u) = x(u—7(u)): action operator

o Much richer group of transformations than translations

Definition of stability
o Representation ®(-) is stable (Mallat, 2012) if:

[8(Lrx) = P < (Gl VTlloo + CallTlloo) IX]]

0 |V7||oo = sup, ||V7(u)| controls deformation
0 ||7]|co = sup, |T(u)| controls translation

o (5 — 0: translation invariance
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Smoothness and stability with kernels

Geometry of the kernel mapping: f(x) = (f, ®(x))

[F(x) = £ < Nl - [[D(x) = (X[

o ||f]|4 controls complexity of the model

o ®(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)
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Smoothness and stability with kernels

Geometry of the kernel mapping: f(x) = (f, ®(x))

[F(x) = £ < Nl - [[D(x) = (X[

o ||f]|4 controls complexity of the model

o ®(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)

Useful kernels in practice:
o Convolutional kernel networks (CKNs, Mairal, 2016) with efficient approximations

o Extends to neural tangent kernels (NTKs, Jacot et al., 2018) of infinitely wide
CNNs (Bietti and Mairal, 2019b)
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Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xo: Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R? for RGB images)
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Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xo: Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R? for RGB images)

o xi : Q — Hy: feature map at layer k

Prxi—1

» Py: patch extraction operator, extract small patch of feature map xx_1 around each point u
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Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xo: Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R? for RGB images)

o xi : Q — Hy: feature map at layer k

My Piexi—1

» Py: patch extraction operator, extract small patch of feature map xx_1 around each point u
» My non-linear mapping operator, maps each patch to a new point with a pointwise
non-linear function @ (-) (kernel mapping)
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Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xo: Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R? for RGB images)

o xi : Q — Hy: feature map at layer k
Xk = Ak My Prxic—1
» Py: patch extraction operator, extract small patch of feature map xx_1 around each point u
» My non-linear mapping operator, maps each patch to a new point with a pointwise

non-linear function @ (-) (kernel mapping)
» A (linear, Gaussian) pooling operator at scale oy
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Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xo: Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R? for RGB images)

o xi : Q — Hy: feature map at layer k
Xk = Ak My Prxic—1
» Py: patch extraction operator, extract small patch of feature map xx_1 around each point u
» My non-linear mapping operator, maps each patch to a new point with a pointwise
non-linear function @ (-) (kernel mapping)

» A (linear, Gaussian) pooling operator at scale oy

Goal: control stability of these operators through their norms
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CKN construction

r = A M Py : Q — Hy Jfk(u,‘) = Akj\']kl";‘»;bkq(u,‘) € Hy

linear pooling

]\/fkpkil'k 1: QO — H}c :\[]‘»Pkl,]ﬁ 1(17) = \,9].»(P}L]< 1(1})) S Hk

non-linear mapping

Prxj1(v) € Pr (patch extraction)

Tk 1(’[1) S Hk 1 Th-1 : Q- Hk—l
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Patch extraction operator Py

Pixi-1(u) i= (xke1(u + v))ves, € Pr = HY,

Pray-1(v) € Pr (patch extraction)

Tp1(u) € Hi Tpo1:Q — Hieq
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Patch extraction operator Py

Pixi-1(u) i= (xke1(u + v))ves, € Pr = HY,

o Sk: patch shape, e.g. box
o Py is linear, and preserves the L2 norm: ||Pyxi—1|| =[xkl
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Non-linear mapping operator M

MkPka_l(U) = gOk(Pka_l(U)) € Hy

MpPrap 1 : Q — Hy My Prag1(v) = @p(Prag1(v)) € Hi

non-linear mapping

Prxy1(v) € Py
Tl - Q— Hi
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Non-linear mapping operator M

MkPka_l(U) = (,Ok(Pka_l(U)) € Hy

o ¢k : Px — Hy pointwise non-linearity on patches (kernel map)
o We assume non-expansivity: for z, 2 € P

lex(@)F < 1zl and  Jlow(z) — er(2)I] < [z = 2|
o My then satisfies, for x,x" € L%(Q, Px)

IMx|| < [Ix]l and [[Mix = Mix'|| < [lx = X'|
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i from kernels

Kernel mapping of homogeneous dot-product kernels:

Kz, 2) = Nl e (5500 ) = (oula). @)

121112

ki(u) =272 bjw with bj > 0, kk(1) = 1

o Commonly used for hierarchical kernels
lek(2)ll = Ki(z,2)"% = | 2]

lor(z) = pu(@) < llz = [ if w3 (1) < 1
0 =—> non-expansive

©

©
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i from kernels

Kernel mapping of homogeneous dot-product kernels:

Kz, 2) = Nl e (5500 ) = (oula). @)

121112
ki(u) =272 bjw with b; > 0, kk(1) =1

Examples
o hel(z.2)) = ¢
o Hinv—poly(<zaz/>) = ﬁ

o ko((z,2")) = En[o(w' z)o(w'2')] (Random features)

» arc-cosine kernels for the ReLU o(u) = max(0, u)

2.2)=1 (Gaussian kernel on the sphere)
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Pooling operator Ay

xk(u) = AkMkPka_l(u) = /]Rd ho’k(u — V)MkPka_l(V)dV € Hy

Ty = Ak]\/fkpk"l?k,1 1 Q= Hy Tk (11') = AL M. Pyxy, |<U') € Hy

linear pooling

My Prxyq - Q— Hi

Tho1 0 Q= Hpq
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Pooling operator Ay

xk(u) = AkMkPka_l(u) = /]Rd hak(u — V)MkPka_l(V)dV € Hy

o hg,: pooling filter at scale oy
o hy,(u) := o %h(u/ok) with h(u) Gaussian

o linear, non-expansive operator: ||Ax| <1
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Pooling operator Ay

xk(u) = AkMkPka_l(u) = /]Rd ho’k(u — V)MkPka_l(V)dV € Hy

©

hs,: pooling filter at scale o
hoi(u) := o @h(u/ok) with h(u) Gaussian

o linear, non-expansive operator: ||Ax| <1

©

()

In practice: discretization, sampling at resolution oy after pooling
o "Preserves information” when subsampling < patch size
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Recap: Pk, Mk, Ak

r = A M Py : Q — Hy Jfk(u,‘) = Akj\']kl";‘»;bkq(u,‘) € Hy

linear pooling

]\/fkpkil'k 1 QO — H}c :\[]‘»Pkl,]ﬁ 1(17) = \,9]\»<P;Lk 1(1})) S Hk

kernel mapping

Prxj1(v) € Pr (patch extraction)

Tk 1(’[1) S Hk 1 Th-1 : Q- Hk—l
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Multilayer construction

Assumption on xg
o xp is typically a discrete signal aquired with physical device.

o Natural assumption: xp = Apx, with x the original continuous signal, Ag local integrator
with scale o (anti-aliasing).
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Multilayer construction

Assumption on xg
o xp is typically a discrete signal aquired with physical device.

o Natural assumption: xp = Apx, with x the original continuous signal, Ag local integrator
with scale o (anti-aliasing).

Multilayer representation

®(x0) = AsMuPrAn_ 1My 1Pp_1 --- AIMiP1xg € L2(Q,H,).

o Sy, ok grow exponentially in practice (i.e., fixed with subsampling).
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Multilayer construction

Assumption on xg

o xp is typically a discrete signal aquired with physical device.

o Natural assumption: xp = Apx, with x the original continuous signal, Ag local integrator
with scale o (anti-aliasing).

Multilayer representation

®(x0) = AsMuPrAn_ 1My 1Pp_1 --- AIMiP1xg € L2(Q,H,).

o Sy, ok grow exponentially in practice (i.e., fixed with subsampling).
Final kernel

Kan(x. X) = (©(). 9(X )1z = [ (xalu),x3(u)

’r'n
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Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a))
Let ®,(x) = P(Aox) and assume ||VT| < 1/2,

C
[@n(Lrx) = Sa] < ( €3 (n+ 1) [Vl + = e ) e

o Translation invariance: large o,
o Stability: small patch sizes (3 & patch size, C5 = O(8®) for images)
o Signal preservation: subsampling factor = patch size

— need several layers with small patches n = O(log(o,/00)/ logf3)
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Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a))
Let ®,(x) = P(Aox) and assume ||VT| < 1/2,

1@a(Lrx) = 0a00) < (€5 1+ )97 + = lile )

n

©

Translation invariance: large o,

©

Stability: small patch sizes (3 ~ patch size, C5 = O(33) for images)

©

Signal preservation: subsampling factor ~ patch size

— need several layers with small patches n = O(log(o,/00)/ logf3)

©

Achieved by controlling norm of commutator [L;, PxAk-_1]
» Extend result by Mallat (2012) for controlling ||[L., A]|l
» Need patches Sy adapted to resolution o_1: diam Sy < Bok_;
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Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a))
Let ®,(x) = P(Aox) and assume ||VT| < 1/2,

1@a(Lrx) = 0a00) < (€5 1+ )97 + = lile )

n

©

Translation invariance: large o,

©

Stability: small patch sizes (3 ~ patch size, C5 = O(33) for images)

©

Signal preservation: subsampling factor ~ patch size

— need several layers with small patches n = O(log(o,/00)/ logf3)

©

Achieved by controlling norm of commutator [L;, PxAk-_1]
» Extend result by Mallat (2012) for controlling ||[L., A]|l
» Need patches Sy adapted to resolution o_1: diam Sy < Bok_;

o Extensions to other transformation groups, e.g. roto-translations
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Stability to deformations for convolutional NTK
Theorem (Stability of NTK (Bietti and Mairal, 2019b))
Let ®,(x) = ®NTK(Agx), and assume ||V 7| o < 1/2

[@(Lrx) — S0
C
< (Con" 92 + o2Vl + v+ T 7l ) Il

Comparison with random feature CKN on deformed MNIST digits:

Foundations of DL through kernel methods

Alberto Bietti

MSR NY, January 2020 22 /42



Stability to deformations for convolutional NTK
Theorem (Stability of NTK (Bietti and Mairal, 2019b))
Let ®,(x) = ®NTK(Agx), and assume ||V 7| o < 1/2

[®n(Lrx) = Pa(x)]

C
< (G972 + o2Vl + v+ T 7l ) Il

Comparison with random feature CKN on deformed MNIST digits:

0] (V]

] ]

S I —— deformations S 03- —moommmmmss e
i ~—— deformations + translation ks

5 0.2 same label 5

o ~ = all labels 0 02

2 =

= =

© 0.1- ©

o] / o] 0.1- /
bt s

c // c //
g 0.0-, ; ; . goo-, ; ; ;
€ 0 1 2 3 S 0 1 2 3

deformation size deformation size
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QOutline

1) Convolutional kernels and their stability
(@ Approximation and complexity
3) Applications to regularization and robustness

4) Conclusions and perspectives



RKHS of patch kernels K

12111121}

Kule.) = el e ((220 ) )= B
j=0

o RKHS contains homogeneous functions:

frze|zllo((g,2)/lzIl)

(Bietti and Mairal, 2019a). Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels K

12111121}

Kule.) = el e ((220 ) )= B
j=0

o RKHS contains homogeneous functions:

frze|zllo((g,2)/lzIl)

o Smooth activations: o(u) = Y72, aj’

2 o
o Norm: |[£]I3, < C2(llgll*) = X720 ngl\g!\zf <o

(Bietti and Mairal, 2019a). Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels K
Examples:
o o(u) = u (linear): C2(\2) = O(\?)
o o(u) = uP (polynomial): C2(\?) = O(\?P)
o o & sin, sigmoid, smooth ReLU: C2(A2) = O(e")

f:xp o(x) fix e |x|o(wx/|x])
2.090 — ReLu 41— RelLU, w=1
—— sRelU —— sRelU,w=20
1.5 3{ — sReLU,w=0.5
—— sRelU,w=1
_ —— sRelU,w =2
X 1.0 Z 2
0.5 1 14
0.0 1 0
-20 -15 -1.0 =05 0.0 05 1.0 15 20 -20 -15 -10 -05 0.0 05 10 15 2.0
X X
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Constructing a CNN in the RKHS H cxy

()

Consider a CNN with filters W,ij(u), u€ Sk
“Smooth homogeneous” activations o

©

o The CNN can be constructed hierarchically in Hcxy

©

Norm upper bound:

113 < Wasall3 CIWal3 CUIWaall3 C(---)))

(Bietti and Mairal, 2019a)
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Constructing a CNN in the RKHS H cxy

Consider a CNN with filters W,ij(u), u€ Sk
“Smooth homogeneous” activations o

()

©

o The CNN can be constructed hierarchically in Hcxy

o Norm upper bound (linear layers):
1113, < [ Wasa |13 - [Wall3 - [[Waall3 - . [[WA]13
o Linear layers: product of spectral norms

(Bietti and Mairal, 2019a)
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Link with generalization
o Simple bound on Rademacher complexity for linear/kernel methods:

BR
Fg ={f € H,||fllx < B} = Radn(F, gO()
5= {f € H.[Ifl < B} = Rad(Fs) <O ( 7
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Link with generalization

o Simple bound on Rademacher complexity for linear/kernel methods:

BR
Fg ={f € H,||fllx < B} = Radn(F, gO()
5= {f € H.[Ifl < B} = Rad(Fs) <O ( 7

o Margin bound for a learned model 7y with margin (confidence) v > 0

||?NHHR>
N

P(yhu(x) < 0) < O (

o If fiy is a CNN: related to recent generalization bounds for neural networks based on
product of spectral norms (e.g., Bartlett et al., 2017; Neyshabur et al., 2018)

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020

26 / 42



Going further for the non-convolutional case

Fully-connected models —> dot-product kernels
K(x,y) = r(x"y) for x,y € SP*

o Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
o NTK for infinitely wide networks (Jacot et al., 2018)

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020

27 / 42



Going further for the non-convolutional case

Fully-connected models —> dot-product kernels
K(x,y) = r(x"y) for x,y € SP*

o Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
o NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
o Rotation-invariant kernel on the sphere
o = RKHS description in the L2(SP!) basis of spherical harmonics Yy ;

ote
NESTH
*HESTH®

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020

27 / 42



Going further for the non-convolutional case
Fully-connected models —> dot-product kernels
K(x,y) = r(x"y) for x,y € SP*

o Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
o NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
o Rotation-invariant kernel on the sphere
o = RKHS description in the L2(SP!) basis of spherical harmonics Yy ;

p;k)
Z,ukz Yiej(x)Yij(y): for x,y € SP1
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Going further for the non-convolutional case
Fully-connected models —> dot-product kernels
K(x,y) = r(x"y) for x,y € SP*

o Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
o NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
o Rotation-invariant kernel on the sphere
o = RKHS description in the L2(SP!) basis of spherical harmonics Yy ;

k=0 j=1 k.

OONP’k) ai'
f—ZZakJYkJ)St HfH/H—ZT:<OO
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Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)
o Decay of uy <+ regularity of functions in the RKHS
o Leads to sufficient conditions for RKHS membership

o Rates of approximation for Lipschitz functions
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Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)
o Decay of uy <+ regularity of functions in the RKHS
o Leads to sufficient conditions for RKHS membership

o Rates of approximation for Lipschitz functions

NTK vs random features (Bietti and Mairal, 2019b)
o f has p/2 n-bounded derivatives = f € Hyrk, ||fll1ym < O(n)
o p/2+ 1 needed for RF (Bach, 2017)
o = Hprk is (slightly) “larger” than Hgr
o Similar improvement for approximation of Lipschitz functions
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Some experiments on Cifarl0

Convolutional kernels with 3x3 patches + kernel ridge regression (very costly!)

Conv. layers ‘ subsampling ‘ kernel ‘ test acc.
2 2-5 ReLU RF 86.63%
2 2-5 ReLU NTK | 87.19%
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Convolutional kernels with 3x3 patches + kernel ridge regression (very costly!)

Conv. layers subsampling kernel ‘ test acc.
2 2-5 ReLU RF 86.63%
2 2-5 ReLU NTK | 87.19%
2 2-5 exp, 0 = 0.6 | 87.93%
3 2-2-2 exp, 0 =0.6 | 88.2%
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Some experiments on Cifarl0

Convolutional kernels with 3x3 patches + kernel ridge regression (very costly!)

Conv. layers subsampling kernel test acc.

2 2-5 ReLU RF 86.63%

2 2-5 ReLU NTK | 87.19%

2 2-5 exp, 0 = 0.6 | 87.93%

3 222 exp, 0 = 0.6 | 88.2%

16 (Li et al., 2019) | last layer only | ReLU RF | 87.28%
16 (Li et al., 2019) | last layer only | ReLU NTK | 86.77%

Li et al. (2019): no pooling before last layer, more complicated pre-processing
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Outline

(3 Applications to regularization and robustness
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Regularizing deep learning models in practice

Two issues with today’s deep learning models:
o Poor performance on small datasets

o Lack of robustness to adversarial perturbations
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Regularizing deep learning models in practice

Two issues with today’s deep learning models:
o Poor performance on small datasets
o Lack of robustness to adversarial perturbations

—
[
§

clean + noise — “ostrich”
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Regularizing deep learning models in practice

Two issues with today’s deep learning models:
o Poor performance on small datasets

o Lack of robustness to adversarial perturbations

(a real ostrich)
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Regularizing deep learning models in practice

Two issues with today’s deep learning models:
o Poor performance on small datasets

o Lack of robustness to adversarial perturbations

New approach to regularization (Bietti et al., 2019):
o View generic CNN fy as an element of a RKHS H
» CNNs fy with ReLUs are (approximately) in the RKHS for CKNs

o Regularize using ||f||»
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Better models through regularization

o Controlling upper bounds: spectral norm penalties/constraints

(Bietti, Mialon, Chen, and Mairal, 2019)
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o = consider tractable subsets of the unit ball using properties of ¢
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Better models through regularization

o Controlling upper bounds: spectral norm penalties/constraints
o Controlling lower bounds using ||f||% = supjj,,<1(f; u)
o = consider tractable subsets of the unit ball using properties of ¢

Ifllxg > sup (f,P(x+3J)—D(x))y (adversarial perturbations)
x,[lolI<1

(Bietti, Mialon, Chen, and Mairal, 2019)
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o Controlling lower bounds using ||f||% = supjj,,<1(f; u)
o = consider tractable subsets of the unit ball using properties of ¢

I fll3 > ﬁ;||p<1 f(x+06)— f(x) (adversarial perturbations)

(Bietti, Mialon, Chen, and Mairal, 2019)
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Better models through regularization

o Controlling upper bounds: spectral norm penalties/constraints
o Controlling lower bounds using ||f||% = supjj,,<1(f; u)
o = consider tractable subsets of the unit ball using properties of ¢
|fllg > sup f(x+0)—1f(x) (adversarial perturbations)
x[|6]]<1

[ fll > Hsqu<C f(L;x) — f(x) (adversarial deformations)

(Bietti, Mialon, Chen, and Mairal, 2019)
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o Controlling upper bounds: spectral norm penalties/constraints
o Controlling lower bounds using ||f||% = supjj,,<1(f; u)
o = consider tractable subsets of the unit ball using properties of ¢
|fllg > sup f(x+0)—1f(x) (adversarial perturbations)
x[|6]]<1

[ fll > Hsqu<C f(L;x) — f(x) (adversarial deformations)

|l > sup||VFf(x)|l2 (gradient penalty)

(Bietti, Mialon, Chen, and Mairal, 2019)
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Better models through regularization

o Controlling upper bounds: spectral norm penalties/constraints
o Controlling lower bounds using ||f||3; = supy,,,<1(f, u)
o = consider tractable subsets of the unit ball using properties of ¢
|fllg > sup f(x+0)—1f(x) (adversarial perturbations)
x[|6]]<1

[ fll > Hsqu<C f(L;x) — f(x) (adversarial deformations)

|l > sup||VFf(x)|l2 (gradient penalty)

o Best performance by combining upper + lower bound approaches

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020

32 /42



Regularization on small datasets: image classification

Table 2. Regularization on 300 or 1000 examples from MNIST,
using deformations from Infinite MNIST. (%) indicates that random
deformations were included as training examples, while || f||2 and
| D+ f]|? use them as part of the regularization penalty.

[ Method [ 300 VGG | Tk VGG |
Weight decay 89.32 94.08
SN projection 90.69 95.01
grad-(; 93.63 96.67
[ 7113 penalty 94.17 96.99
IV £]|? penalty 94.08 96.82
Weight decay () 92.41 05.64
grad-fa (%) 95.05 97.48
1D f1I* penalty 94.18 96.98
|| £]13 penalty 94.42 97.13
I£112 + IV F1? 94.75 97.40
I3 + 117113 95.23 97.66
I+ 17115 ¢ 95.53 97.56
L1 + 117115 + SN proj 95.20 97.60
13 + [[£]I5 + SN proj (x) |  95.40 97.77

(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularization on small datasets: protein homology detection

Table 3. Regularization on protein homology detection tasks, with
or without data augmentation (DA). Fixed hyperparameters are
selected using the first half of the datasets, and we report the
average auROCS50 score on the second half.

[ Method [ NoDA | DA |
No weight decay 0.446 | 0.500
Weight decay 0.501 0.546
SN proj 0.591 | 0.632
PGD-{3 0.575 | 0.595
grad-£o 0.540 | 0.552
713 0.600 | 0.608
IV £II? 0.585 | 0.611
PGD-¢5 + SN proj | 0.596 | 0.627
grad-£2 + SN proj 0.592 | 0.624
l£113 + SN proj 0.630 | 0.644
IV£]? +SNproj | 0.603 | 0.625

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020

34 / 42



Regularization for robustness

Links with robust optimization/adversarial training

o Robust optimization yields another lower bound (hinge/logistic loss)
1 1 U
N > sup Uyi, f(xi+6)) < N > Uy £(xi) + €l Fllx
i=1 lI8]l2<e i=1

o But: may only encourage local robustness around training data

(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularization for robustness

Links with robust optimization/adversarial training
o Robust optimization yields another lower bound (hinge/logistic loss)

1 N N

1
N > sup Uyi, f(xi+6)) < N > Ui, (%) + el fllu
i=1 ll6]|2<e i=1

o But: may only encourage local robustness around training data

Global vs local robustness

o Controlling ||f|| allows a more global form of robustness
o Guarantees on adversarial generalization with ¢, perturbations
» Extension of margin-based bound, by using ||f||2; > ||f||Lip near the decision boundary

o But: may cause a loss in accuracy in practice

(Bietti, Mialon, Chen, and Mairal, 2019)
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Robustness trade-offs on Cifarl0

adversarial accuracy

(Bietti, Mialon, Chen, and Mairal, 2019)

0.75 -/ =¢

P
Z

070- @

7~

0.65 -
0.75

L2, Etest = 0.1

PGD-£;

grad-f>

172 ,\‘\} %(
ik # oY
171 / o
PGD-£+

SN proj

SN proj

SN pen
(SVD)

clean

0.80 0.85 0.90
standard accuracy

Alberto Bietti

L2, Etest = 1.0

0.4 0.6 0.8
standard accuracy

Foundations of DL through kernel methods

L2, Etest = 1.5

0.3-

0.2-

0.1-

0.0-
0.4 0.6 0.8
standard accuracy

MSR NY, January 2020 36 / 42



Robustness trade-offs on Cifarl0
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(Bietti, Mialon, Chen, and Mairal, 2019)
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QOutline

1) Convolutional kernels and their stability
2) Approximation and complexity
3) Applications to regularization and robustness

(@ Conclusions and perspectives



Conclusions

Benefits of convolutional kernels
o Translation invariance + deformation stability with small patches and pooling
o Extensions to other groups (roto-translations)
o RKHS contains CNNs with smooth activations
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New practical regularization strategies
o Regularization of generic CNNs using RKHS norm

o State-of-the-art performance on adversarial robustness
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Conclusions

Benefits of convolutional kernels
o Translation invariance + deformation stability with small patches and pooling
o Extensions to other groups (roto-translations)
o RKHS contains CNNs with smooth activations

New practical regularization strategies
o Regularization of generic CNNs using RKHS norm

o State-of-the-art performance on adversarial robustness

Links with over-parameterized optimization: neural tangent kernels
o NTK for CNNs takes a similar form to CKNs

o Weaker stability guarantees than RF, but better approximation properties
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Perspectives

Further study of convolutional kernels
o More precise approximation guarantees?

o More empirical evaluation; usefulness in practice?
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Perspectives

Further study of convolutional kernels
o More precise approximation guarantees?

o More empirical evaluation; usefulness in practice?

Beyond kernels for deep learning
o Kernels do not fully explain success of deep learning
o Simple, tractable, interpretable models that improve on kernels?

o Inductive bias of optimization beyond “lazy training”? lazy only for some layers?
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Bonus: contextual bandit bake-off

Contextual bandits

o Simple setting for real-world reinforcement learning (“one-step RL")

o Observe context (user info), choose action (ad/news story), observe reward (click?)
o = exploration/exploitation trade-off
o Several algorithms with theoretical guarantees, little empirical evaluation
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Bonus: contextual bandit bake-off

Contextual bandits

o Simple setting for real-world reinforcement learning (“one-step RL")

o Observe context (user info), choose action (ad/news story), observe reward (click?)
o = exploration/exploitation trade-off
o Several algorithms with theoretical guarantees, little empirical evaluation

The bake-off (Bietti, Agarwal, and Langford, 20207)
o Large-scale evaluation on 500+ datasets from supervised learning
o Focus on practical methods that leverage supervised ML algorithms

o All methods implemented in Vowpal Wabbit!
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Contextual bandit bake-off: takeaways and perspectives

Findings
o Methods with strong assumptions tend to dominate: RegCB and even Greedy (!)

o Many theoretically analyzed methods tend to over-explore but are more robust to
difficult datasets when appropriately modified: Cover

o Importance of design choices (reward estimators, encoding, ability to run offline
experiments)

Alberto Bietti Foundations of DL through kernel methods MSR NY, January 2020

41/ 42



Contextual bandit bake-off: takeaways and perspectives

Findings
o Methods with strong assumptions tend to dominate: RegCB and even Greedy (!)

o Many theoretically analyzed methods tend to over-explore but are more robust to
difficult datasets when appropriately modified: Cover

o Importance of design choices (reward estimators, encoding, ability to run offline
experiments)

Perspectives
o Simple is good: better understanding of greedy?

o Robustness with adaptivity: can we get robust methods that are competitive with
greedy/RegCB in favorable scenarios?

o Closer to the real world: how to deal with non-stationarity? e.g., feedback loops in
recommendation systems. Need better data models?
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Thanks!
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Bake-off results
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Figure: Comparison between three competitive approaches: RegCB (confidence based), Cover-NU
(variant of Online Cover) and Greedy. The plots show relative loss compared to supervised learning
(lower is better) on all datasets with 5 actions or more. Red points indicate datasets with a statistically
significant difference in loss between two methods. A greedy approach can outperform exploration
methods in many cases; yet both Greedy and RegCB may fail to explore efficiently on some other
datasets where Cover-NU dominates.
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Bake-off results

Stat. significant "win-loss” difference. Fixed hyperparameters.

Jvs— | G | RO | Cnu | B-g | €G
G - -7 10 50 | 54
RO 7 - 26 49 | 68
C-nu -10 | -26 - 22 | 57
B-g -50 | -49 | -22 - 17
€G -54 | -68 | -57 | -17 | -

-1/0 encoding

Jvs— | G RO | C-nu | B-g | €G

G - -64 | -17 36 52

RO 64 - 45 | 100 | 120
C-nu 17 | -45 - 45 75

B-g -36 | -100 | -45 - 19

eG -52 | -120 | -75 | -19 -

0/1 encoding
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Discretization and signal preservation

Ins : Qo — Hy Ios(w1) = ¢1(Po,) € Ha
Kernel trick

Pun € Po (patch)
IO : QO — Ho
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Discretization and signal preservation

o Xk: subsampling factor sy after pooling with scale oy ~ si:

)?k[n] = Ak Mk Pk>_<k—1 [nsk]
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o) =~ si:

)'(k[n] = Ak Mk Pk>_<k_1 [nsk]

o Claim: We can recover xx_1 from X, if subsampling s, < patch size
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o) =~ si:

)'(k[n] = Ak Mk Pk>_<k_1 [nsk]

o Claim: We can recover xx_1 from X, if subsampling s, < patch size

o How? Kernels! Recover patches with linear functions (contained in RKHS)

(fw, Mk Pix(u)) = fu (Prx(u)) = (w, Pgx(u))
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Signal recovery: example in 1D

Tk—1 |
deconvolution
ApTg-1 |
recovery with linear measurements
[ ] ] |

/ downsampling

AkMkPka—ll | | | | |

linear pooling K

M, Pyy_1 | | | |

dot-product kernel

S I

Prag_1(u) € Pi
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Beyond the translation group

Global invariance to other groups?

©

Rotations, reflections, roto-translations, ...

o Group action Lgx(u) = x(g~u)

o Equivariance in inner layers + (global) pooling in last layer

o Similar construction to Cohen and Welling (2016); Kondor and Trivedi (2018)
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G-equivariant layer construction

©

Feature maps x(u) defined on u € G (G: locally compact group)
» Input needs special definition when G # Q

Patch extraction:

©

Px(u) = (x(uv))ves
o Non-linear mapping: equivariant because pointwise!

Pooling (y: left-invariant Haar measure):

©

Ax(u):/GX(uv)h(v)d,u(v):/Gx(v)h(u_lv)du(v)
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Group invariance and stability

Roto-translation group G = R? x SO(2) (translations + rotations)

o Stability w.r.t. translation group
o Global invariance to rotations (only global pooling at final layer)

» Inner layers: patches and pooling only on translation group

» Last layer: global pooling on rotations

» Cohen and Welling (2016): pooling on rotations in inner layers hurts performance on Rotated
MNIST
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