Understanding Transformers through Associative Memories

Alberto Bietti

Flatiron Institute, Simons Foundation

NTU CSIE, April 12, 2024.

w/ V. Cabannes, E. Dohmatob, D. Bouchacourt, H. Jegou, L. Bottou (Meta AI)

Success of deep learning

State-of-the-art models in various domains (images, language, speech, biology, ...)

Success of deep learning

State-of-the-art models in various domains (images, language, speech, biology, ...)

Recipe: huge models + lots of data + compute + simple algorithms

• Linear layers with parameters $W \in \mathbb{R}^{d' \times d}$:

 $x\mapsto Wx$

• Linear layers with parameters $W \in \mathbb{R}^{d' \times d}$:

 $x \mapsto Wx$

• Non-linear **activations**, e.g., ReLU $\sigma(u) = \max(u, 0)$:

 $x \mapsto \sigma(x)$

• Linear layers with parameters $W \in \mathbb{R}^{d' \times d}$:

 $x \mapsto Wx$

• Non-linear **activations**, e.g., ReLU $\sigma(u) = \max(u, 0)$:

 $x \mapsto \sigma(x)$

• Stack multiple layers with residual connections, e.g.:

$$x_n \mapsto x_{n+1} = \sigma(W_n x_n) + x_n$$

• Linear layers with parameters $W \in \mathbb{R}^{d' \times d}$:

 $x \mapsto Wx$

• Non-linear activations, e.g., ReLU $\sigma(u) = \max(u, 0)$:

 $x \mapsto \sigma(x)$

• Stack multiple layers with residual connections, e.g.:

$$x_n \mapsto x_{n+1} = \sigma(W_n x_n) + x_n$$

• Train by (stochastic) gradient descent on loss function ℓ (e.g., cross-entropy)

$$\sum_{i=1}^{n} \ell(y^{(i)}, x_{L}^{(i)})$$

• Gradients are computed using back-propagation (chain rule)

3/31

Curse of dimensionality:

- Image/text/etc. data are high-dimensional
- $\, \bullet \,$ Curse of dimensionality $\, \Longrightarrow \,$ need additional structure for learning

Curse of dimensionality:

- Image/text/etc. data are high-dimensional
- Curse of dimensionality \implies need additional **structure** for learning
- Local structure: split input into small local patches / "tokens"

Language Learning Models (LLMs) have revolutionized the field of natural language processing, enabling machines to understand and generate humanlike text. At the core of LLMs lies the concept of tokens, which serve as the fundamental building blocks for processing and representing text data. In this blog post, we'll demystify tokens in LLMs, unraveling their significance and exploring how they contribute to the power and flexibility of these remarkable models.

Curse of dimensionality:

- Image/text/etc. data are high-dimensional
- Curse of dimensionality \implies need additional **structure** for learning
- Local structure: split input into small local patches / "tokens"

Architectures:

• Exploit symmetries/invariances among tokens

Curse of dimensionality:

- Image/text/etc. data are high-dimensional
- Curse of dimensionality \implies need additional **structure** for learning
- Local structure: split input into small local patches / "tokens"

Architectures:

- Exploit symmetries/invariances among tokens
- Model interactions/correlations across tokens

Convolutional networks (CNNs)

(LeCun et al, 1998)

- Model local interactions at different scales
- Translation equivariance + invariance via convolution + pooling

Convolutional networks (CNNs)

(LeCun et al, 1998)

- Model local interactions at different scales
- Translation equivariance + invariance via convolution + pooling
- Some theoretical benefits: (B. and Mairal, 2019; B. et al., 2021; B., 2022)

Attention heads in Transformers

• Model non-local interactions using key-query attention

"Learn" interactions instead of fixing them as in CNNs?

Transformers and language models

• Transformers: attention + MLPs + residual connections

Transformers and language models

- Transformers: attention + MLPs + residual connections
- Large language models: train to predict next token on all the web (+ fine-tune)

write a short poem about machine learning in Taipei

In Taipei's embrace, where modern meets tradition, Among the lanterns' glow and temples' sedition, There lies a silent thread, unseen yet bold, A tale of machine learning, patiently told.

Beneath the towering Taipei 101's might, Where day gives way to neon-lit night, Algorithms dance in intricate flair,

Patterns emerge from data, layer by layer.

In night markets bustling, rich with life's tapestry, Machine learning whispers secrets of the city's mystery. Predicting, learning, in an endless strive, To make sense of the chaos, to help us thrive.

Transformers and language models

- Transformers: attention + MLPs + residual connections
- Large language models: train to predict next token on all the web (+ fine-tune)
- In-context "reasoning" vs memorization: transformers seem to use a mix of "reasoning" from context and "knowledge" from training set

write a short poem about machine learning in Taipei

ChatGPT

In Taipei's embrace, where modern meets tradition, Among the lanterns' glow and temples' sedition, There lies a silent thread, unseen yet bold, A tale of machine learning, patiently told.

Beneath the towering Taipei 101's might, Where day gives way to neon-lit night, Algorithms dance in intricate flair, Patterns emerge from data, layer by layer.

In night markets bustling, rich with life's tapestry, Machine learning whispers secrets of the city's mystery. Predicting, learning, in an endless strive, To make sense of the chaos, to help us thrive. Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof, or abridging the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to petition the Government for a redress of grievances.

This is known as the First Amendment to the United States Constitution and it is designed to protect the fundamental rights of citizens of the United States. It guarantees citizens the right to practice any religion of their choosing, the freedom of speech and of the press, and the right to peacefully assemble and to petition the government.

How Transformer language models use context

• Few-shot learning, chain-of-thought "reasoning", math, linguistic capabilities

(Brown et al., 2020; Wei et al., 2022)

How Transformer language models use context

- Few-shot learning, chain-of-thought "reasoning", math, linguistic capabilities
- Transformers may achieve this using "circuits" of attention heads

(Wang et al., 2022)

• Interpretability: what mechanisms are used inside a transformer?

- Interpretability: what mechanisms are used inside a transformer?
- Memorization: how does memorization come into play?

- Interpretability: what mechanisms are used inside a transformer?
- Memorization: how does memorization come into play?
- Training dynamics: how is this learned with optimization?

- Interpretability: what mechanisms are used inside a transformer?
- Memorization: how does memorization come into play?
- Training dynamics: how is this learned with optimization?
- Role of depth: what are benefits of deep, compositional models?

- Interpretability: what mechanisms are used inside a transformer?
- Memorization: how does memorization come into play?
- Training dynamics: how is this learned with optimization?
- Role of depth: what are benefits of deep, compositional models?
- Experimental/theory setup: what is a simple setting for studying this?

- Interpretability: what mechanisms are used inside a transformer?
- Memorization: how does memorization come into play?
- Training dynamics: how is this learned with optimization?
- Role of depth: what are benefits of deep, compositional models?
- Experimental/theory setup: what is a simple setting for studying this?

This work: (B. et al., 2023; Cabannes et al., 2024)

• Empirical+theoretical study by viewing parameters as associative memories

Outline

1 Transformers on the bigram task

2 Learning with gradient steps

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Fix trigger tokens: q_1, \ldots, q_K

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Fix trigger tokens: q_1, \ldots, q_K Sample each sequence $z_{1:T} \in [N]^T$ as follows

• **Output tokens**: $o_k \sim \pi_o(\cdot|q_k)$ (random)

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Fix trigger tokens: q_1, \ldots, q_K Sample each sequence $z_{1:T} \in [N]^T$ as follows

- **Output tokens**: $o_k \sim \pi_o(\cdot | q_k)$ (random)
- Sequence-specific Markov model: $z_1 \sim \pi_1$, $z_t | z_{t-1} \sim p(\cdot | z_{t-1})$ with

$$p(j|i) = \begin{cases} \mathbb{1}\{j = o_k\}, & \text{if } i = q_k, \quad k = 1, \dots, K\\ \pi_b(j|i), & \text{o/w.} \end{cases}$$

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Fix trigger tokens: q_1, \ldots, q_K Sample each sequence $z_{1:T} \in [N]^T$ as follows

- **Output tokens**: $o_k \sim \pi_o(\cdot | q_k)$ (random)
- Sequence-specific Markov model: $z_1 \sim \pi_1$, $z_t | z_{t-1} \sim p(\cdot | z_{t-1})$ with

$$p(j|i) = \begin{cases} \mathbb{1}\{j = o_k\}, & \text{if } i = q_k, \quad k = 1, \dots, K\\ \pi_b(j|i), & o/w. \end{cases}$$

 π_b : global bigrams model (estimated from Karpathy's character-level Shakespeare)

- Input sequence: $[z_1, \ldots, z_T] \in [N]^T$
- Embedding layer:

$$\mathbf{x}_t := w_E(z_t) + p_t \in \mathbb{R}^d$$

- $w_E(z)$: token embedding of $z \in [N]$
- p_t : positional embedding at position $t \in [T]$

- Input sequence: $[z_1, \ldots, z_T] \in [N]^T$
- Embedding layer:

$$\mathbf{x}_t := w_E(z_t) + p_t \in \mathbb{R}^d$$

- $w_E(z)$: token embedding of $z \in [N]$
- p_t : positional embedding at position $t \in [T]$
- Intermediate layers: add outputs to the residual stream x_t
 - Attention and feed-forward layers

- Input sequence: $[z_1, \ldots, z_T] \in [N]^T$
- Embedding layer:

$$\mathbf{x}_t := w_E(z_t) + p_t \in \mathbb{R}^d$$

- $w_E(z)$: token embedding of $z \in [N]$
- ▶ p_t : positional embedding at position $t \in [T]$
- Intermediate layers: add outputs to the residual stream x_t
 - Attention and feed-forward layers
- Unembedding layer: logits for each $k \in [N]$,

$$(\xi_t)_k = w_U(k)^\top x_t$$

residual stream

- Input sequence: $[z_1, \ldots, z_T] \in [N]^T$
- Embedding layer:

$$\mathbf{x}_t := w_E(z_t) + p_t \in \mathbb{R}^d$$

- $w_E(z)$: token embedding of $z \in [N]$
- ▶ p_t : positional embedding at position $t \in [T]$
- Intermediate layers: add outputs to the residual stream x_t
 - Attention and feed-forward layers
- **Unembedding layer**: logits for each $k \in [N]$,

$$(\xi_t)_k = w_U(k)^\top x_t$$

• Loss for next-token prediction (ℓ : cross-entropy)

$$\sum_{t=1}^{T-1}\ell(z_{t+1},\xi_t)$$

residual stream

Transformers II: self-attention

Causal self-attention layer:

$$x'_{t} = \sum_{s=1}^{t} \beta_{s} W_{O} W_{V} x_{s}, \quad \text{ with } \beta_{s} = \frac{\exp(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t})}{\sum_{s=1}^{t} \exp(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t})}$$

W_K, *W_Q* ∈ ℝ^{d×d}: key and query matrices
W_V, *W_O* ∈ ℝ^{d×d}: value and output matrices

• $\beta_{s}:$ attention weights, $\sum_{s=1}^{t}\beta_{s}=1$
Transformers II: self-attention

Causal self-attention layer:

$$x'_{t} = \sum_{s=1}^{t} \beta_{s} W_{O} W_{V} x_{s}, \quad \text{with } \beta_{s} = \frac{\exp(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t})}{\sum_{s=1}^{t} \exp(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t})}$$

- $W_K, W_Q \in \mathbb{R}^{d \times d}$: key and query matrices
- $W_V, W_O \in \mathbb{R}^{d \times d}$: value and output matrices
- $\beta_{s}:$ attention weights, $\sum_{s=1}^{t}\beta_{s}=1$
- Single-head attention (in practice, multi-head with multiple such matrices, $d_h \times d$)

13/31

Transformers II: self-attention

Causal self-attention layer:

$$x'_{t} = \sum_{s=1}^{t} \beta_{s} W_{O} W_{V} x_{s}, \quad \text{with } \beta_{s} = \frac{\exp(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t})}{\sum_{s=1}^{t} \exp(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t})}$$

- $W_K, W_Q \in \mathbb{R}^{d \times d}$: key and query matrices
- $W_V, W_O \in \mathbb{R}^{d \times d}$: value and output matrices
- $\beta_{s}:$ attention weights, $\sum_{s=1}^{t}\beta_{s}=1$
- Single-head attention (in practice, multi-head with multiple such matrices, $d_h \times d$)
- Each x'_t is then added to the corresponding residual stream

$$x_t := x_t + x'_t$$

Transformers III: feed-forward

Feed-forward layer: apply simple transformation to each token representation
MLP (practice):

$$x'_t = W_2 \sigma(W_1 x_t), \qquad W_2 \in \mathbb{R}^{d \times D}, W_1 \in \mathbb{R}^{D \times d}$$

• Linear (in this work):

$$x'_t = W_F x_t, \qquad W_F \in \mathbb{R}^{d \times d}$$

Transformers III: feed-forward

Feed-forward layer: apply simple transformation to each token representation
MLP (practice):

$$x'_t = W_2 \sigma(W_1 x_t), \qquad W_2 \in \mathbb{R}^{d \times D}, W_1 \in \mathbb{R}^{D \times d}$$

• Linear (in this work):

$$x'_t = W_F x_t, \qquad W_F \in \mathbb{R}^{d \times d}$$

• Added to the residual stream: $x_t := x_t + x'_t$

Transformers III: feed-forward

Feed-forward layer: apply simple transformation to each token representationMLP (practice):

$$\mathbf{x}_{t}' = W_{2}\sigma(W_{1}\mathbf{x}_{t}), \qquad W_{2} \in \mathbb{R}^{d \times D}, W_{1} \in \mathbb{R}^{D \times d}$$

• Linear (in this work):

$$x'_t = W_F x_t, \qquad W_F \in \mathbb{R}^{d \times d}$$

- Added to the residual stream: $x_t := x_t + x'_t$
- Some evidence that feed-forward layers store "global knowledge", *e.g.*, for factual recall (Geva et al., 2020; Meng et al., 2022)

 $\bullet~$ 1-layer transformer fails: $\sim 55\%$ accuracy on in-context output predictions

- $\bullet~$ 1-layer transformer fails: $\sim 55\%$ accuracy on in-context output predictions
- 2-layer transformer succeeds: $\sim 99\%$ accuracy

- $\bullet~$ 1-layer transformer fails: $\sim 55\%$ accuracy on in-context output predictions
- 2-layer transformer succeeds: \sim 99% accuracy
- Attention maps reveal a structured 2-layer "induction" mechanism (Elhage et al., 2021)

- 1-layer transformer fails: $\sim 55\%$ accuracy on in-context output predictions
- 2-layer transformer succeeds: ~ 99% accuracy
- Attention maps reveal a structured 2-layer "induction" mechanism (Elhage et al., 2021)

See also representation lower bounds (Sanford, Hsu, and Telgarsky, 2023)

Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

- 1st layer: previous-token head
 - attends to previous token and copies it to residual stream

Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

• 1st layer: previous-token head

- attends to previous token and copies it to residual stream
- 2nd layer: induction head
 - ► attends to output of previous token head, copies attended token

• Consider sets of **nearly orthonormal embeddings** $\{u_i\}_{i \in \mathcal{I}}$ and $\{v_i\}_{i \in \mathcal{I}}$:

$$\|u_i\| \approx 1$$
 and $u_i^{\top} u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^{\top} v_j \approx 0$

• Consider sets of nearly orthonormal embeddings $\{u_i\}_{i \in \mathcal{I}}$ and $\{v_j\}_{j \in \mathcal{J}}$:

$$\|u_i\| \approx 1$$
 and $u_i^{\top} u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^{\top} v_j \approx 0$

• Consider pairwise associations $(i,j) \in \mathcal{M}$ with weights α_{ij} and define:

$$W = \sum_{(i,j)\in\mathcal{M}} \alpha_{ij} \mathbf{v}_j \mathbf{u}_i^{\top}$$

• We then have $\mathbf{v}_j^\top W \mathbf{u}_i \approx \alpha_{ij}$

• Consider sets of nearly orthonormal embeddings $\{u_i\}_{i \in \mathcal{I}}$ and $\{v_j\}_{j \in \mathcal{J}}$:

$$\|u_i\| \approx 1$$
 and $u_i^{\top} u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^{\top} v_j \approx 0$

• Consider pairwise associations $(i,j) \in \mathcal{M}$ with weights α_{ij} and define:

$$W = \sum_{(i,j)\in\mathcal{M}} \alpha_{ij} \mathbf{v}_j {u_i}^\top$$

• We then have $\mathbf{v}_j^\top W \mathbf{u}_i \approx \alpha_{ij}$

• Computed in Transformers for logits in next-token prediction and self-attention

• Consider sets of nearly orthonormal embeddings $\{u_i\}_{i \in \mathcal{I}}$ and $\{v_j\}_{j \in \mathcal{J}}$:

$$\|u_i\| \approx 1$$
 and $u_i^{\top} u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^{\top} v_j \approx 0$

• Consider pairwise associations $(i,j) \in \mathcal{M}$ with weights α_{ij} and define:

$$W = \sum_{(i,j)\in\mathcal{M}} \alpha_{ij} \mathbf{v}_j \mathbf{u}_i^{\top}$$

• We then have $\mathbf{v}_j^\top W \mathbf{u}_i \approx \alpha_{ij}$

• Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

Random embeddings in high dimension

• We consider **random** embeddings u_i with i.i.d. N(0, 1/d) entries and d large

$$\|u_i\| pprox 1$$
 and $u_i^ op u_j = O(1/\sqrt{d})$

Random embeddings in high dimension

• We consider **random** embeddings u_i with i.i.d. N(0, 1/d) entries and d large

$$\|u_i\| pprox 1$$
 and $u_i^ op u_j = O(1/\sqrt{d})$

• **Remapping**: multiply by random matrix W with $\mathcal{N}(0, 1/d)$ entries:

 $\|Wu_i\| pprox 1$ and $u_i^\top Wu_i = O(1/\sqrt{d})$

Random embeddings in high dimension

• We consider **random** embeddings u_i with i.i.d. N(0, 1/d) entries and d large

$$\|u_i\|pprox 1$$
 and $u_i^ op u_j = O(1/\sqrt{d})$

• **Remapping**: multiply by random matrix W with $\mathcal{N}(0, 1/d)$ entries:

$$\|Wu_i\| pprox 1$$
 and $u_i^\top Wu_i = O(1/\sqrt{d})$

• Value/Output matrices help with token remapping: $Mr \mapsto Mr$, $Bacon \mapsto Bacon$

Induction head with associative memories

$$W_{K}^{1} = \sum_{t=2}^{T} p_{t} p_{t-1}^{\top}, \quad W_{K}^{2} = \sum_{k \in Q} w_{E}(k) w_{1}(k)^{\top}, \quad W_{O}^{2} = \sum_{k=1}^{N} w_{U}(k) (W_{V}^{2} w_{E}(k))^{\top},$$

• Random embeddings $w_E(k)$, $w_U(k)$, random matrices W_V^1 , W_O^1 , W_V^2 , fix $W_Q = I$

• **Remapped** previous tokens: $w_1(k) := W_O^1 W_V^1 w_E(k)$

Induction head with associative memories

$$W_{K}^{1} = \sum_{t=2}^{T} p_{t} p_{t-1}^{\top}, \quad W_{K}^{2} = \sum_{k \in Q} w_{E}(k) w_{1}(k)^{\top}, \quad W_{O}^{2} = \sum_{k=1}^{N} w_{U}(k) (W_{V}^{2} w_{E}(k))^{\top},$$

• Random embeddings $w_E(k)$, $w_U(k)$, random matrices W_V^1 , W_O^1 , W_V^2 , fix $W_Q = I$

• **Remapped** previous tokens: $w_1(k) := W_0^1 W_V^1 w_E(k)$

Q: Does this match practice?

19/31

Empirically probing the dynamics

• "Memory recall **probes**": for target memory $W_* = \sum_{(i,j) \in \mathcal{M}} v_j u_i^{\top}$, compute

$$R(\hat{W}, W_*) = \frac{1}{|\mathcal{M}|} \sum_{(i,j) \in \mathcal{M}} \mathbb{1}\{j = \arg \max_{j'} \mathsf{v}_{j'}^\top \hat{W} u_i\}$$

Empirically probing the dynamics

• "Memory recall **probes**": for target memory $W_* = \sum_{(i,j) \in \mathcal{M}} v_j u_i^{\top}$, compute

$$R(\hat{W}, W_*) = \frac{1}{|\mathcal{M}|} \sum_{(i,j)\in\mathcal{M}} \mathbb{1}\{j = \arg\max_{j'} v_{j'}^\top \hat{W} u_i\}$$

- Natural learning "order": W_O^2 first, W_K^2 next, W_K^1 last
- Joint learning is faster

Alberto Bietti

Global vs in-context learning and role of data

Train on all tokens, with added W_F after second attention layer

• Global bigrams learned quickly with W_F before induction mechanism

Global vs in-context learning and role of data

Train on all tokens, with added W_F after second attention layer

- Global bigrams learned quickly with W_F before induction mechanism
- More frequent $triggers \implies$ faster learning of induction head

Global vs in-context learning and role of data

Train on all tokens, with added W_F after second attention layer

- $\,$ $\,$ Global bigrams learned quickly with W_F before induction mechanism
- More frequent $triggers \implies$ faster learning of induction head
- More uniform *output* tokens helps OOD performance

• Factorizations (e.g., $W_K^\top W_Q$): $y^\top UVx$

- Factorizations (e.g., $W_{K}^{\top}W_{Q}$): $y^{\top}UVx$
- Non-linear MLP: $y^{\top} U \sigma(Vx)$

- Factorizations (e.g., $W_K^\top W_Q$): $y^\top UVx$
- Non-linear MLP: $y^{\top} U \sigma(Vx)$
- Layer-norm: $y^{\top} \frac{W_x}{\|W_x\|}$

- Factorizations (e.g., $W_K^\top W_Q$): $y^\top UVx$
- Non-linear MLP: $y^{\top} U \sigma(Vx)$
- Layer-norm: $y^{\top} \frac{W_x}{\|W_x\|}$
- Trained input/output embeddings

- Factorizations (e.g., $W_K^\top W_Q$): $y^\top UVx$
- Non-linear MLP: $y^{\top} U \sigma(Vx)$
- Layer-norm: $y^{\top} \frac{Wx}{\|Wx\|}$
- Trained input/output embeddings

Does it work empirically on the bigram task? Yes!

 ${\, \bullet \, }$ Memory recall probes $\rightarrow 1$ as previously

22 / 31

- Factorizations (e.g., $W_K^{\top}W_Q$): $y^{\top}UVx$
- Non-linear MLP: $y^{\top} U \sigma(Vx)$
- Layer-norm: $y^{\top} \frac{W_x}{\|W_x\|}$
- Trained input/output embeddings

Does it work empirically on the bigram task? Yes!

- ${\scriptstyle \bullet }$ Memory recall probes \rightarrow 1 as previously
- But: adding heads and layers loses identifiability

Outline

1 Transformers on the bigram task

2 Learning with gradient steps

Learning associative memories with gradients

• Simple model to learn associative memories:

$$z \in [N] \to u_z \in \mathbb{R}^d \to W u_z \in \mathbb{R}^d \to (v_k^{\top} W u_z)_k \in \mathbb{R}^M$$

Learning associative memories with gradients

• Simple model to learn associative memories:

$$z \in [N] \rightarrow u_z \in \mathbb{R}^d \rightarrow W u_z \in \mathbb{R}^d \rightarrow (v_k^{\top} W u_z)_k \in \mathbb{R}^M$$

• u_z, v_y : nearly-orthogonal input/output embeddings, assume fixed

Learning associative memories with gradients

• Simple model to learn associative memories:

$$z \in [N] \to u_z \in \mathbb{R}^d \to W u_z \in \mathbb{R}^d \to (\mathbf{v}_k^\top W u_z)_k \in \mathbb{R}^M$$

- u_z, v_y : nearly-orthogonal input/output embeddings, assume fixed
- **Cross-entropy loss** for logits $\xi \in \mathbb{R}^M$: $\ell(y,\xi) = -\xi_y + \log(\sum_k \exp \xi_k)$
Learning associative memories with gradients

• Simple model to learn associative memories:

 $z \in [N] \to u_z \in \mathbb{R}^d \to W u_z \in \mathbb{R}^d \to (\mathbf{v}_k^\top W u_z)_k \in \mathbb{R}^M$

• u_z, v_y : nearly-orthogonal input/output embeddings, assume fixed

• **Cross-entropy loss** for logits $\xi \in \mathbb{R}^M$: $\ell(y,\xi) = -\xi_y + \log(\sum_k \exp \xi_k)$

Lemma (Gradients as memories)

Let p be a data distribution over $(z, y) \in [N] \times [M]$, and consider the loss $L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y, \xi_W(z))], \quad \xi_W(z)_k = \frac{v_k}{|v_w|} W \frac{u_z}{|v_w|},$

with ℓ the cross-entropy loss and u_z , v_k input/output embeddings.

Learning associative memories with gradients

• Simple model to learn associative memories:

 $z \in [N] \to u_z \in \mathbb{R}^d \to W u_z \in \mathbb{R}^d \to (\underline{v_k}^\top W u_z)_k \in \mathbb{R}^M$

• u_z, v_y : nearly-orthogonal input/output embeddings, assume fixed

• **Cross-entropy loss** for logits $\xi \in \mathbb{R}^M$: $\ell(y,\xi) = -\xi_y + \log(\sum_k \exp \xi_k)$

Lemma (Gradients as memories)

Let p be a data distribution over $(z, y) \in [N] \times [M]$, and consider the loss $L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,\xi_W(z))], \quad \xi_W(z)_k = \mathbf{v}_k^\top W \mathbf{u}_z,$

with ℓ the cross-entropy loss and u_z , v_k input/output embeddings. Then,

$$\nabla L(W) = \sum_{k=1}^{M} \mathbb{E}_{z}[(\hat{p}_{W}(y=k|z) - p(y=k|z))\mathbf{v}_{k}\mathbf{u}_{z}^{\top}],$$

with $\hat{p}_W(y = k|z) = \exp(\xi_W(z)_k) / \sum_j \exp(\xi_W(z)_j)$.

Data model: $z \sim \text{Unif}([N]), y = f_*(z) \in [N]$

Data model: $z \sim \text{Unif}([N]), \quad y = f_*(z) \in [N]$

• After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))v_{k}u_{z}^{\top}]$$

= $\eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))v_{k}u_{z}^{\top}$
= $\frac{\eta}{N} \sum_{z,k} (\mathbb{1}\{k = f^{*}(z)\} - \frac{1}{N})v_{k}u_{z}^{\top}$

25/31

Data model: $z \sim \text{Unif}([N]), \quad y = f_*(z) \in [N]$

• After one gradient step on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))\mathbf{v}_{k}u_{z}^{\top}]$$

= $\eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))\mathbf{v}_{k}u_{z}^{\top}$
= $\frac{\eta}{N} \sum_{z,k} (\mathbb{1}\{k = f^{*}(z)\} - \frac{1}{N})\mathbf{v}_{k}u_{z}^{\top}$

• Then, for any (z, k) we have

$$\mathbf{v_k}^{\top} W_1 u_z \approx \frac{\eta}{N} \mathbb{1}\{f_*(z) = k\} + O\left(\frac{\eta}{N^2}\right)$$

25 / 31

Data model: $z \sim \text{Unif}([N]), \quad y = f_*(z) \in [N]$

• After one gradient step on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))\mathbf{v}_{k}u_{z}^{\top}]$$

= $\eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))\mathbf{v}_{k}u_{z}^{\top}$
= $\frac{\eta}{N} \sum_{z,k} (\mathbb{1}\{k = f^{*}(z)\} - \frac{1}{N})\mathbf{v}_{k}u_{z}^{\top}$

• Then, for any (z, k) we have

$$\mathbf{v_k}^{\top} W_1 u_z \approx \frac{\eta}{N} \mathbb{1}\{f_*(z) = k\} + O\left(\frac{\eta}{N^2}\right)$$

• **Corollary**: $\hat{f}(z) = \arg \max_k v_k^\top W_1 u_z$ has near-perfect accuracy

Data model: $z \sim \text{Unif}([N]), \quad y = f_*(z) \in [N]$

• After one gradient step on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))\mathbf{v}_{k}u_{z}^{\top}]$$

= $\eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))\mathbf{v}_{k}u_{z}^{\top}$
= $\frac{\eta}{N} \sum_{z,k} (\mathbb{1}\{k = f^{*}(z)\} - \frac{1}{N})\mathbf{v}_{k}u_{z}^{\top}$

• Then, for any (z, k) we have

$$\mathbf{v_k}^{\top} W_1 u_z \approx \frac{\eta}{N} \mathbb{1}\{f_*(z) = k\} + O\left(\frac{\eta}{N^2}\right)$$

• **Corollary**: $\hat{f}(z) = \arg \max_k v_k^\top W_1 u_z$ has near-perfect accuracy Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

• In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \ldots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{j=1}^s u_{z_s} \in \mathbb{R}^d$$

► *e.g.*, bag of words, output of attention operation, residual connections

• In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \ldots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{j=1}^s u_{z_s} \in \mathbb{R}^d$$

- ▶ *e.g.*, bag of words, output of attention operation, residual connections
- Some elements may be irrelevant for prediction

• In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \ldots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{j=1}^s u_{z_s} \in \mathbb{R}^d$$

e.g., bag of words, output of attention operation, residual connections
Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^d \times [N]$, and consider the loss

$$L(W) = \mathbb{E}_{(x,y)\sim p}[\ell(y,\xi_W(x))], \quad \xi_W(x)_k = \mathbf{v}_k^\top W \mathbf{x}.$$

• In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \ldots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{j=1}^s u_{z_s} \in \mathbb{R}^d$$

e.g., bag of words, output of attention operation, residual connections
Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^d \times [N]$, and consider the loss

$$L(W) = \mathbb{E}_{(x,y)\sim p}[\ell(y,\xi_W(x))], \quad \xi_W(x)_k = \mathbf{v}_k^\top W x.$$

Denoting $\mu_k := \mathbb{E}[x|y=k]$ and $\hat{\mu}_k := \mathbb{E}_x[\frac{\hat{p}_W(k|x)}{p(y=k)}x]$, we have

$$\nabla_W L(W) = \sum_{k=1}^N p(y=k) \mathbf{v}_k (\hat{\mu}_k - \mu_k)^\top.$$

- **Data model**: $y \sim \text{Unif}([N]), \quad t \sim \text{Unif}([T]), \quad x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, *e.g.*, positional embeddings

- Data model: $y \sim \text{Unif}([N]), \quad t \sim \text{Unif}([T]), \quad x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, *e.g.*, positional embeddings
- After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$\begin{split} \mathcal{W}_1 &= \mathcal{W}_0 - \eta \sum_{k=1}^N p(y=k) \mathbf{v}_k (\hat{\mu}_k - \mu_k)^\top \\ &= \frac{\eta}{N} \sum_{k=1}^N \mathbf{v}_k (\mathbb{E}[u_y + n_t | y=k] - \mathbb{E}[u_y + n_t])^\top \\ &= \frac{\eta}{N} \sum_{k=1}^N \mathbf{v}_k u_k^\top - \frac{\eta}{N^2} \sum_{k,j} \mathbf{v}_k u_j^\top \end{split}$$

- **Data model**: $y \sim \text{Unif}([N]), \quad t \sim \text{Unif}([T]), \quad x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, *e.g.*, positional embeddings
- After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} p(y=k) \mathbf{v}_{k} (\hat{\mu}_{k} - \mu_{k})^{\top}$$
$$= \frac{\eta}{N} \sum_{k=1}^{N} \mathbf{v}_{k} (\mathbb{E}[u_{y} + n_{t} | y=k] - \mathbb{E}[u_{y} + n_{t}])^{\top}$$
$$= \frac{\eta}{N} \sum_{k=1}^{N} \mathbf{v}_{k} u_{k}^{\top} - \frac{\eta}{N^{2}} \sum_{k,j} \mathbf{v}_{k} u_{j}^{\top}$$

• Then, for any $k, y, t, x = u_y + n_t$, we have

$$\mathbf{v}_{k}^{\top}W_{1} \mathbf{x} \approx \frac{\eta}{N} \mathbb{1}\{k = y\} + O\left(\frac{\eta}{N^{2}}\right)$$

- Data model: $y \sim \text{Unif}([N]), \quad t \sim \text{Unif}([T]), \quad x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, *e.g.*, positional embeddings
- After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} p(y=k) \mathbf{v}_{k} (\hat{\mu}_{k} - \mu_{k})^{\top}$$
$$= \frac{\eta}{N} \sum_{k=1}^{N} \mathbf{v}_{k} (\mathbb{E}[\mathbf{u}_{y} + n_{t} | y=k] - \mathbb{E}[\mathbf{u}_{y} + n_{t}])^{\top}$$
$$= \frac{\eta}{N} \sum_{k=1}^{N} \mathbf{v}_{k} \mathbf{u}_{k}^{\top} - \frac{\eta}{N^{2}} \sum_{k,j} \mathbf{v}_{k} \mathbf{u}_{j}^{\top}$$

• Then, for any $k, y, t, x = u_y + n_t$, we have

$$\mathbf{v}_{k}^{\top}W_{1}\mathbf{x} \approx \frac{\eta}{N} \mathbb{1}\{k=y\} + O\left(\frac{\eta}{N^{2}}\right)$$

• Corollary: $\hat{f}(x) = \arg \max_k \frac{v_k}{W_1} W_1 \times$ has near-perfect accuracy

Gradient steps for the bigram task

Setting: transformer on the bigram task

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture

Gradient steps for the bigram task

Setting: transformer on the bigram task

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture

Theorem (informal)

In the setup above, we can recover the desired associative memories with **3 gradient steps** on the population loss, assuming near-orthonormal embeddings: first on W_O^2 , then W_K^2 , then W_K^1 .

Gradient steps for the bigram task

Setting: transformer on the bigram task

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture

Theorem (informal)

In the setup above, we can recover the desired associative memories with **3** gradient steps on the population loss, assuming near-orthonormal embeddings: first on W_O^2 , then W_K^1 , then W_K^1 .

Key ideas

- ${\scriptstyle \bullet}$ Attention is uniform at initialization \implies inputs are sums of embeddings
- W_O^2 : correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z_T • $W_O^{1/2}$, correct output appears load to more focused attention
- $W_{K}^{1/2}$: correct associations lead to more focused attention

Questions:

• Finite capacity? how much can we "store" with finite d?

Questions:

- Finite capacity? how much can we "store" with finite d?
- Finite samples? how well can we learn with finite data?

Questions:

- Finite capacity? how much can we "store" with finite d?
- Finite samples? how well can we learn with finite data?
- Role of optimization algorithms? multiple gradient steps? Adam?

Questions:

- Finite capacity? how much can we "store" with finite d?
- Finite samples? how well can we learn with finite data?
- Role of optimization algorithms? multiple gradient steps? Adam?

Scaling laws analysis: (Cabannes, Dohmatob, and B., 2024)

- Heavy-tailed distribution of input tokens (Zipf law)
- Linear associative memory can only store d tokens
- \implies Storing *d* most frequent tokens is best!
- Multiple gradient steps + Adam help achieve that
- Non-linear memory (e.g., MLP layers) can store more

Discussion and next steps

Summary

- Bigram model: simple but rich toy model for discrete data
- Transformer weights as associative memories
- Learning via few top-down gradient steps
- Better algorithms help for better scaling laws on heavy-tailed data

Discussion and next steps

Summary

- Bigram model: simple but rich toy model for discrete data
- Transformer weights as associative memories
- Learning via few top-down gradient steps
- Better algorithms help for better scaling laws on heavy-tailed data

Future directions

- More complex "reasoning" mechanisms, links with "emergence"
- Learning dynamics: multiple gradient steps? joint training? embeddings?
- Applications: interpretability, model editing, factual recall, efficient fine-tuning
- Beyond text data: images and scientific data?

Thank you!

Internships and postdocs at Flatiron Institute and Polymathic AI in New York

References I

- A. B. Approximation and learning with deep convolutional models: a kernel perspective. In *Proceedings* of the International Conference on Learning Representations (ICLR), 2022.
- A. B. and J. Mairal. Group invariance, stability to deformations, and complexity of deep convolutional representations. *Journal of Machine Learning Research (JMLR)*, 20(25):1–49, 2019.
- A. B., L. Venturi, and J. Bruna. On the sample complexity of learning with geometric stability. *arXiv* preprint arXiv:2106.07148, 2021.
- A. B., V. Cabannes, D. Bouchacourt, H. Jegou, and L. Bottou. Birth of a transformer: A memory viewpoint. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- J. Ba, M. A. Erdogdu, T. Suzuki, Z. Wang, D. Wu, and G. Yang. High-dimensional asymptotics of feature learning: How one gradient step improves the representation. *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2020.
- V. Cabannes, E. Dohmatob, and A. B. Scaling laws for associative memories. In *International Conference on Learning Representations (ICLR)*, 2024.

References II

- L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2018.
- A. Damian, J. Lee, and M. Soltanolkotabi. Neural networks can learn representations with gradient descent. In *Conference on Learning Theory (COLT)*, 2022.
- Y. Dandi, F. Krzakala, B. Loureiro, L. Pesce, and L. Stephan. Learning two-layer neural networks, one (giant) step at a time. *arXiv preprint arXiv:2305.18270*, 2023.
- N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, N. DasSarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*, 2021.
- M. Geva, R. Schuster, J. Berant, and O. Levy. Transformer feed-forward layers are key-value memories. arXiv preprint arXiv:2012.14913, 2020.
- J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. *Proceedings of the national academy of sciences*, 79(8):2554–2558, 1982.
- M. Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.
- T. Kohonen. Correlation matrix memories. IEEE Transactions on Computers, 1972.

33 / 31

References III

- S. Mei, T. Misiakiewicz, and A. Montanari. Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit. In *Conference on Learning Theory (COLT)*, 2019.
- K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual associations in GPT. *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- E. Nichani, A. Damian, and J. D. Lee. Provable guarantees for nonlinear feature learning in three-layer neural networks. *arXiv preprint arXiv:2305.06986*, 2023.
- C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, S. Johnston, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah. In-context learning and induction heads. *Transformer Circuits Thread*, 2022.
- C. Sanford, D. Hsu, and M. Telgarsky. Representational strengths and limitations of transformers. In Advances in Neural Information Processing Systems (NeurIPS), 2023.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems (NIPS)*, 2017.
- K. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt. Interpretability in the wild: a circuit for indirect object identification in gpt-2 small. *arXiv preprint arXiv:2211.00593*, 2022.

References IV

- J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic associative memory. *Nature*, 222(5197):960–962, 1969.
- G. Yang and E. J. Hu. Tensor programs iv: Feature learning in infinite-width neural networks. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2021.

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions
 - *e.g.*, smooth functions, sparse polynomials

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions
 - *e.g.*, smooth functions, sparse polynomials
- In practice, discrete structure and memorization are often crucial
 - ► language: words, syntactic rules, semantic concepts, facts
 - ► vision: "visual words", features, objects

36 / 31

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions
 - e.g., smooth functions, sparse polynomials
- In practice, discrete structure and memorization are often crucial
 - ► language: words, syntactic rules, semantic concepts, facts
 - ► vision: "visual words", features, objects

Statistical learning setup:

• Data distribution p(z, y) over pairs of discrete tokens $(z, y) \in [N] \times [M]$

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions
 - e.g., smooth functions, sparse polynomials
- In practice, discrete structure and memorization are often crucial
 - ► language: words, syntactic rules, semantic concepts, facts
 - ► vision: "visual words", features, objects

Statistical learning setup:

- Data distribution p(z, y) over pairs of **discrete tokens** $(z, y) \in [N] \times [M]$
- We want a predictor $\hat{f}:[N] \to [M]$ with small 0-1 loss:

$$L_{01}(\hat{f}) = \mathbb{P}(\mathbf{y} \neq \hat{f}(\mathbf{z}))$$

36 / 31

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions
 - e.g., smooth functions, sparse polynomials
- In practice, discrete structure and memorization are often crucial
 - ► language: words, syntactic rules, semantic concepts, facts
 - ► vision: "visual words", features, objects

Statistical learning setup:

- Data distribution p(z, y) over pairs of discrete tokens $(z, y) \in [N] \times [M]$
- We want a predictor $\hat{f} : [N] \to [M]$ with small 0-1 loss:

$$L_{01}(\hat{f}) = \mathbb{P}(\mathbf{y} \neq \hat{f}(\mathbf{z}))$$

• Typically $\hat{f}(z) = \arg\max_y f_y(z)$ with $f_y : [N] \to \mathbb{R}$ for each $y \in [M]$

Matrices as associative memories

• Consider sets of **nearly orthonormal embeddings** $\{u_i\}_{i \in \mathcal{I}}$ and $\{v_i\}_{i \in \mathcal{I}}$:

$$\|u_i\| \approx 1$$
 and $u_i^{\top} u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^{\top} v_j \approx 0$

Matrices as associative memories

• Consider sets of nearly orthonormal embeddings $\{u_i\}_{i \in \mathcal{I}}$ and $\{v_j\}_{j \in \mathcal{J}}$:

$$\|u_i\| \approx 1$$
 and $u_i^{\top} u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^{\top} v_j \approx 0$

• Consider pairwise associations $(i,j) \in \mathcal{M}$ with weights α_{ij} and define:

$$W = \sum_{(i,j)\in\mathcal{M}} \alpha_{ij} \mathbf{v}_j \mathbf{u}_i^{\top}$$

• We then have $\mathbf{v}_j^\top W \mathbf{u}_i \approx \alpha_{ij}$
Matrices as associative memories

• Consider sets of nearly orthonormal embeddings $\{u_i\}_{i \in \mathcal{I}}$ and $\{v_j\}_{j \in \mathcal{J}}$:

$$\|u_i\| \approx 1$$
 and $u_i^{\top} u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^{\top} v_j \approx 0$

• Consider pairwise associations $(i,j) \in \mathcal{M}$ with weights α_{ij} and define:

$$W = \sum_{(i,j)\in\mathcal{M}} \alpha_{ij} \mathbf{v}_j {u_i}^\top$$

• We then have $\mathbf{v}_j^\top W \mathbf{u}_i \approx \alpha_{ij}$

• Computed in Transformers for logits in next-token prediction and self-attention

Matrices as associative memories

• Consider sets of nearly orthonormal embeddings $\{u_i\}_{i \in \mathcal{I}}$ and $\{v_j\}_{j \in \mathcal{J}}$:

$$\|u_i\| \approx 1$$
 and $u_i^{\top} u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^{\top} v_j \approx 0$

• Consider pairwise associations $(i,j) \in \mathcal{M}$ with weights α_{ij} and define:

$$W = \sum_{(i,j)\in\mathcal{M}} \alpha_{ij} \mathbf{v}_j \mathbf{u}_i^{\top}$$

• We then have $\mathbf{v}_{j}^{\top}W\mathbf{u}_{i} \approx \alpha_{ij}$

• Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

• Simple differentiable model to learn such associative memories:

$$z \in [N] \to u_z \in \mathbb{R}^d \to W u_z \in \mathbb{R}^d \to (\underline{v_k}^\top W u_z)_k \in \mathbb{R}^M$$

• Simple differentiable model to learn such associative memories:

$$z \in [N] \rightarrow u_z \in \mathbb{R}^d \rightarrow W u_z \in \mathbb{R}^d \rightarrow (v_k^{\top} W u_z)_k \in \mathbb{R}^M$$

• u_z, v_y : nearly-orthogonal input/output embeddings, assume fixed

• Simple differentiable model to learn such associative memories:

$$z \in [N] \rightarrow u_z \in \mathbb{R}^d \rightarrow W u_z \in \mathbb{R}^d \rightarrow (v_k^{\top} W u_z)_k \in \mathbb{R}^M$$

- u_z, v_y : nearly-orthogonal input/output embeddings, assume fixed
- **Cross-entropy loss** for logits $\xi \in \mathbb{R}^M$: $\ell(y,\xi) = -\xi_y + \log(\sum_k \exp \xi_k)$

• Simple differentiable model to learn such associative memories:

$$z \in [N] \to u_z \in \mathbb{R}^d \to W u_z \in \mathbb{R}^d \to (\mathbf{v}_k^\top W u_z)_k \in \mathbb{R}^M$$

• u_z, v_y : nearly-orthogonal input/output embeddings, assume fixed

• **Cross-entropy loss** for logits $\xi \in \mathbb{R}^M$: $\ell(y,\xi) = -\xi_y + \log(\sum_k \exp \xi_k)$

Lemma (Gradients as memories)

Let p be a data distribution over $(z, y) \in [N] \times [M]$, and consider the loss $L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,\xi_W(z))], \quad \xi_W(z)_k = \frac{v_k}{V} W \frac{u_z}{u_z},$

with ℓ the cross-entropy loss and u_z , v_k input/output embeddings.

• Simple differentiable model to learn such associative memories:

$$z \in [N] \to u_z \in \mathbb{R}^d \to W u_z \in \mathbb{R}^d \to (\mathbf{v}_k^\top W u_z)_k \in \mathbb{R}^M$$

• u_z, v_y : nearly-orthogonal input/output embeddings, assume fixed

• **Cross-entropy loss** for logits $\xi \in \mathbb{R}^M$: $\ell(y,\xi) = -\xi_y + \log(\sum_k \exp \xi_k)$

Lemma (Gradients as memories)

Let p be a data distribution over $(z, y) \in [N] \times [M]$, and consider the loss $L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,\xi_W(z))], \quad \xi_W(z)_k = \frac{v_k}{|v_x|} W \frac{u_z}{|v_y|},$

with ℓ the cross-entropy loss and u_z , v_k input/output embeddings. Then,

$$\nabla L(W) = \sum_{k=1}^{M} \mathbb{E}_{z}[(\hat{p}_{W}(y=k|z) - p(y=k|z))\mathbf{v}_{k}\mathbf{u}_{z}^{\top}],$$

with $\hat{p}_W(y = k|z) = \exp(\xi_W(z)_k) / \sum_j \exp(\xi_W(z)_j)$.

Data model: $z \sim \text{Unif}([N]), \quad y = f_*(z) \in [N]$

Data model: $z \sim \text{Unif}([N]), \quad y = f_*(z) \in [N]$

• After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))v_{k}u_{z}^{\top}]$$

= $\eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))v_{k}u_{z}^{\top}$
= $\frac{\eta}{N} \sum_{z,k} (\mathbb{1}\{k = f^{*}(z)\} - \frac{1}{N})v_{k}u_{z}^{\top}$

Data model: $z \sim \text{Unif}([N]), \quad y = f_*(z) \in [N]$

• After one gradient step on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))\mathbf{v}_{k}u_{z}^{\top}]$$

= $\eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))\mathbf{v}_{k}u_{z}^{\top}$
= $\frac{\eta}{N} \sum_{z,k} (\mathbb{1}\{k = f^{*}(z)\} - \frac{1}{N})\mathbf{v}_{k}u_{z}^{\top}$

• Then, for any (z, k) we have

$$\mathbf{v_k}^{\top} W_1 u_z \approx \frac{\eta}{N} \mathbb{1}\{f_*(z) = k\} + O\left(\frac{\eta}{N^2}\right)$$

Data model: $z \sim \text{Unif}([N]), \quad y = f_*(z) \in [N]$

• After one gradient step on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))\mathbf{v}_{k}u_{z}^{\top}]$$

= $\eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))\mathbf{v}_{k}u_{z}^{\top}$
= $\frac{\eta}{N} \sum_{z,k} (\mathbb{1}\{k = f^{*}(z)\} - \frac{1}{N})\mathbf{v}_{k}u_{z}^{\top}$

• Then, for any (z, k) we have

$$\mathbf{v_k}^{\top} W_1 u_z \approx \frac{\eta}{N} \mathbb{1}\{f_*(z) = k\} + O\left(\frac{\eta}{N^2}\right)$$

• **Corollary**: $\hat{f}(z) = \arg \max_k v_k^\top W_1 u_z$ has near-perfect accuracy

Data model: $z \sim \text{Unif}([N]), \quad y = f_*(z) \in [N]$

• After one gradient step on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))\mathbf{v}_{k}u_{z}^{\top}]$$

= $\eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))\mathbf{v}_{k}u_{z}^{\top}$
= $\frac{\eta}{N} \sum_{z,k} (\mathbb{1}\{k = f^{*}(z)\} - \frac{1}{N})\mathbf{v}_{k}u_{z}^{\top}$

• Then, for any (z, k) we have

$$\mathbf{v_k}^{\top} W_1 u_z \approx \frac{\eta}{N} \mathbb{1}\{f_*(z) = k\} + O\left(\frac{\eta}{N^2}\right)$$

• **Corollary**: $\hat{f}(z) = \arg \max_k v_k^\top W_1 u_z$ has near-perfect accuracy Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

• In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \ldots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{j=1}^s u_{z_s} \in \mathbb{R}^d$$

► *e.g.*, bag of words, output of attention operation, residual connections

• In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \ldots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{j=1}^s u_{z_s} \in \mathbb{R}^d$$

- ▶ *e.g.*, bag of words, output of attention operation, residual connections
- Some elements may be irrelevant for prediction

• In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \ldots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{j=1}^s u_{z_s} \in \mathbb{R}^d$$

e.g., bag of words, output of attention operation, residual connections
Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^d \times [N]$, and consider the loss

$$L(W) = \mathbb{E}_{(x,y)\sim p}[\ell(y,\xi_W(x))], \quad \xi_W(x)_k = \mathbf{v}_k^\top W \mathbf{x}.$$

• In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \ldots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{j=1}^s u_{z_s} \in \mathbb{R}^d$$

e.g., bag of words, output of attention operation, residual connections
Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^d \times [N]$, and consider the loss

$$L(W) = \mathbb{E}_{(x,y)\sim p}[\ell(y,\xi_W(x))], \quad \xi_W(x)_k = \frac{\mathbf{v}_k}{\mathbf{v}_k} Wx.$$

Denoting $\mu_k := \mathbb{E}[x|y=k]$ and $\hat{\mu}_k := \mathbb{E}_x[\frac{\hat{p}_W(k|x)}{p(y=k)}x]$, we have

$$\nabla_W L(W) = \sum_{k=1}^N p(y=k) \mathbf{v}_k (\hat{\mu}_k - \mu_k)^\top.$$

- **Data model**: $y \sim \text{Unif}([N]), \quad t \sim \text{Unif}([T]), \quad x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, *e.g.*, positional embeddings

- **Data model**: $y \sim \text{Unif}([N]), \quad t \sim \text{Unif}([T]), \quad x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, *e.g.*, positional embeddings
- After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$\begin{split} \mathcal{W}_1 &= \mathcal{W}_0 - \eta \sum_{k=1}^N p(y=k) \mathbf{v}_k (\hat{\mu}_k - \mu_k)^\top \\ &= \frac{\eta}{N} \sum_{k=1}^N \mathbf{v}_k (\mathbb{E}[u_y + n_t | y=k] - \mathbb{E}[u_y + n_t])^\top \\ &= \frac{\eta}{N} \sum_{k=1}^N \mathbf{v}_k u_k^\top - \frac{\eta}{N^2} \sum_{k,j} \mathbf{v}_k u_j^\top \end{split}$$

- **Data model**: $y \sim \text{Unif}([N]), \quad t \sim \text{Unif}([T]), \quad x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, *e.g.*, positional embeddings
- After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} p(y=k) \mathbf{v}_{k} (\hat{\mu}_{k} - \mu_{k})^{\top}$$
$$= \frac{\eta}{N} \sum_{k=1}^{N} \mathbf{v}_{k} (\mathbb{E}[\mathbf{u}_{y} + n_{t} | y=k] - \mathbb{E}[\mathbf{u}_{y} + n_{t}])^{\top}$$
$$= \frac{\eta}{N} \sum_{k=1}^{N} \mathbf{v}_{k} \mathbf{u}_{k}^{\top} - \frac{\eta}{N^{2}} \sum_{k,j} \mathbf{v}_{k} \mathbf{u}_{j}^{\top}$$

• Then, for any $k, y, t, x = u_y + n_t$, we have

$$\mathbf{v}_{\mathbf{k}}^{\top} W_{1} \mathbf{x} \approx \frac{\eta}{N} \mathbb{1}\{\mathbf{k} = \mathbf{y}\} + O\left(\frac{\eta}{N^{2}}\right)$$

- **Data model**: $y \sim \text{Unif}([N]), \quad t \sim \text{Unif}([T]), \quad x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, *e.g.*, positional embeddings
- After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} p(y=k) \mathbf{v}_{k} (\hat{\mu}_{k} - \mu_{k})^{\top}$$
$$= \frac{\eta}{N} \sum_{k=1}^{N} \mathbf{v}_{k} (\mathbb{E}[\mathbf{u}_{y} + n_{t} | y=k] - \mathbb{E}[\mathbf{u}_{y} + n_{t}])^{\top}$$
$$= \frac{\eta}{N} \sum_{k=1}^{N} \mathbf{v}_{k} \mathbf{u}_{k}^{\top} - \frac{\eta}{N^{2}} \sum_{k,j} \mathbf{v}_{k} \mathbf{u}_{j}^{\top}$$

• Then, for any $k, y, t, x = u_y + n_t$, we have

$$\mathbf{v}_{k}^{\top}W_{1}\mathbf{x} \approx \frac{\eta}{N} \mathbb{1}\{k=y\} + O\left(\frac{\eta}{N^{2}}\right)$$

• Corollary: $\hat{f}(x) = \arg \max_k \frac{v_k}{W_1} W_1 \times$ has near-perfect accuracy

Link with feature learning Maximal updates:

• First gradient update from standard initialization $([W_0]_{ij} \sim \mathcal{N}(0, 1/d))$ take the form

$$W_1 = W_0 + \Delta W \in \mathbb{R}^{d \times d}, \quad \Delta W := \sum_j \alpha_j v_j u_j^{\top}, \quad \alpha_j = \Theta_d(1)$$

Link with feature learning Maximal updates:

• First gradient update from standard initialization $([W_0]_{ij} \sim \mathcal{N}(0, 1/d))$ take the form

$$W_1 = W_0 + \Delta W \in \mathbb{R}^{d \times d}, \quad \Delta W := \sum_j \alpha_j v_j u_j^{\top}, \quad \alpha_j = \Theta_d(1)$$

• For any input embedding u_j , we have, thanks to near-orthonormality

 $\|W_0 u_j\| = \Theta_d(1)$ and $\|\Delta W u_j\| = \Theta_d(1)$

Link with feature learning Maximal updates:

• First gradient update from standard initialization $([W_0]_{ij} \sim \mathcal{N}(0, 1/d))$ take the form

$$W_1 = W_0 + \Delta W \in \mathbb{R}^{d \times d}, \quad \Delta W := \sum_j \alpha_j v_j u_j^{\top}, \quad \alpha_j = \Theta_d(1)$$

• For any input embedding u_j , we have, thanks to near-orthonormality

$$\|W_0 u_j\| = \Theta_d(1)$$
 and $\|\Delta W u_j\| = \Theta_d(1)$

- Contribution of updates is of similar order to initialization (not true for NTK!)
- Related to μ P/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Link with feature learning Maximal updates:

• First gradient update from standard initialization $([W_0]_{ij} \sim \mathcal{N}(0, 1/d))$ take the form

$$W_1 = W_0 + \Delta W \in \mathbb{R}^{d \times d}, \quad \Delta W := \sum_j \alpha_j v_j u_j^{\top}, \quad \alpha_j = \Theta_d(1)$$

• For any input embedding u_j , we have, thanks to near-orthonormality

$$\| \mathcal{W}_0 \mathit{u}_j \| = \Theta_d(1)$$
 and $\| \Delta \mathcal{W} \mathit{u}_j \| = \Theta_d(1)$

- Contribution of updates is of similar order to initialization (not true for NTK!)
- Related to μ P/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Large gradient steps on shallow networks:

• Useful for feature learning in single-index and multi-index models

$$y = f^*(x) + \text{noise}, \quad f^*(x) = g^*(Wx), \quad W \in \mathbb{R}^{r \times d}$$

- Sufficient to break the curse of dimensionality when $r \ll d$
- (Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)

Associative memories inside deep models

$$x \longrightarrow \overline{x}$$

• Consider W that connects two nodes x, \overline{x} in a feedforward computational graph

Associative memories inside deep models

$$x \longrightarrow \overline{x}$$

Consider W that connects two nodes x, x̄ in a feedforward computational graph
The loss gradient takes the form

$$\nabla_W L = \mathbb{E}[\nabla_{\bar{x}} \ell \cdot x^\top]$$

where $\nabla_{\bar{x}}\ell$ is the **backward** vector (loss gradient w.r.t. \bar{x})

- Often, this expectation may lead to associative memories as before
- A similar form can arise in attention matrices (see later!)

• Finite capacity? how much can we "store" with finite d?

Questions

- Finite capacity? how much can we "store" with finite d?
- Finite samples? how well can we learn with finite data?

Questions

- Finite capacity? how much can we "store" with finite d?
- Finite samples? how well can we learn with finite data?
- Role of optimization algorithms? multiple gradient steps? Adam?

Questions

- Finite capacity? how much can we "store" with finite d?
- Finite samples? how well can we learn with finite data?
- Role of optimization algorithms? multiple gradient steps? Adam?

⇒ study through scaling laws (a.k.a. generalization bounds/statistical rates)

Setting

•
$$z_i \sim p(z), y_i = f^*(z_i), n \text{ samples: } S_n = \{z_1, \dots, z_n\}, 0/1 \text{ loss:}$$

$$L(\hat{f}_n) = \mathbb{P}(y \neq \hat{f}_n(z))$$

Setting

•
$$z_i \sim p(z)$$
, $y_i = f^*(z_i)$, n samples: $S_n = \{z_1, \dots, z_n\}$, $0/1$ loss:
 $L(\hat{f}_n) = \mathbb{P}(y \neq \hat{f}_n(z))$

• Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

 $p(z) \propto z^{-\alpha}$

Setting

•
$$z_i \sim p(z)$$
, $y_i = f^*(z_i)$, n samples: $S_n = \{z_1, \dots, z_n\}$, $0/1$ loss:
 $L(\hat{f}_n) = \mathbb{P}(y \neq \hat{f}_n(z))$

• Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

 $p(z) \propto z^{-\alpha}$

• Hutter (2021): with infinite memory, we have

$$L(\hat{f}_n) \lesssim n^{-\frac{\alpha-1}{\alpha}}$$

Setting

•
$$z_i \sim p(z)$$
, $y_i = f^*(z_i)$, n samples: $S_n = \{z_1, \dots, z_n\}$, $0/1$ loss:
 $L(\hat{f}_n) = \mathbb{P}(y \neq \hat{f}_n(z))$

• Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

 $p(z) \propto z^{-\alpha}$

• Hutter (2021): with infinite memory, we have

$$L(\hat{f}_n) \lesssim n^{-\frac{\alpha-1}{\alpha}}$$

• Q: What about finite capacity?

Scaling laws with finite capacity

- Random embeddings $u_z, v_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_{y} v_{y}^{\top} W_{n,d} u_{z}$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

Scaling laws with finite capacity

- Random embeddings $u_z, v_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_y v_y^\top W_{n,d} u_z$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

• Single population gradient step: $q(z) \approx p(z)$
- Random embeddings $u_z, v_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_y v_y^\top W_{n,d} u_z$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

• Single population gradient step: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, B., 2023, informal)

1) For
$$q(z) = \sum_{i} \mathbb{1}\{z = z_i\}$$
: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha}{2\alpha}}$

46 / 31

- Random embeddings $u_z, v_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_y v_y^\top W_{n,d} u_z$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

• Single population gradient step: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, B., 2023, informal) ① For $q(z) = \sum_{i} \mathbb{1}\{z = z_i\}$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$ ② For $q(z) = \mathbb{1}\{z \in S_n\}$, and $d \gg N$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-k}$ for any k

- Random embeddings $u_z, v_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_y v_y^\top W_{n,d} u_z$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

• Single population gradient step: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, B., 2023, informal) 1 For $q(z) = \sum_{i} \mathbb{1}\{z = z_i\}$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$ 2 For $q(z) = \mathbb{1}\{z \in S_n\}$, and $d \gg N$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-k}$ for any k3 For $q(z) = \mathbb{1}\{z \text{ seen at least s times in } S_n\}$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\alpha+1}$

- Random embeddings $u_z, v_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_y v_y^\top W_{n,d} u_z$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

• Single population gradient step: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, B., 2023, informal) 1 For $q(z) = \sum_{i} \mathbb{1}\{z = z_i\}$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$ 2 For $q(z) = \mathbb{1}\{z \in S_n\}$, and $d \gg N$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-k}$ for any k3 For $q(z) = \mathbb{1}\{z \text{ seen at least s times in } S_n\}$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\alpha+1}$

- $n^{-\frac{\alpha-1}{\alpha}}$ is the same as (Hutter, 2021)
- q=1 is best if we have enough capacity
- Can store at most d memories (approximation error: $d^{-\alpha+1}$)

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

$$W_{n,d} = \sum_{z=1}^{N} \frac{q(z)}{v_{f^*(z)}} u_z^{\top}$$

Different algorithms lead to different memory schemes q(z):

• One step of SGD with large batch: $q(z) \approx p(z)$

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training
- Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training
- Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

Main idea: there are exp(d) near-orthogonal directions on the sphere

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in *d*)

• Nearest-neighbor lookup: set $u_z = v_{f^*(z)}$ and take $\hat{f}(z) = \arg \max_y v_y^\top u_z$

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in *d*)

- Nearest-neighbor lookup: set $u_z = v_{f^*(z)}$ and take $\hat{f}(z) = \arg \max_y v_y^\top u_z$
- Attention: soft-max instead of hard-max to retrieve from context

48/31

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in *d*)

- Nearest-neighbor lookup: set $u_z = v_{f^*(z)}$ and take $\hat{f}(z) = \arg \max_y v_y^\top u_z$
- Attention: soft-max instead of hard-max to retrieve from context
- **MLP**: $\hat{f}(z) = \arg \max_{y} v_{y}^{\top} \sum_{z'=1}^{N} v_{f^{*}(z')} \sigma(u_{z'}^{\top} u_{z} b)$

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)

- Nearest-neighbor lookup: set $u_z = v_{f^*(z)}$ and take $\hat{f}(z) = \arg \max_y v_y^\top u_z$
- Attention: soft-max instead of hard-max to retrieve from context

• MLP:
$$\hat{f}(z) = \arg \max_{y} v_{y}^{\top} \sum_{z'=1}^{N} v_{f^{*}(z')} \sigma(u_{z'}^{\top} u_{z} - b)$$

But: higher computational cost, more sensitive to noise, harder to learn

48 / 31