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Success of deep learning

State-of-the-art models in various domains (images, language, speech, biology, ...)

Recipe: huge models + lots of data + compute + simple algorithms
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Deep learning basics
Linear layers with parameters W ∈ Rd ′×d :

x 7→ Wx

Non-linear activations, e.g., ReLU σ(u) = max(u, 0):

x 7→ σ(x)

Stack multiple layers with residual connections, e.g.:

xn 7→ xn+1 = σ(Wnxn) + xn

Train by (stochastic) gradient descent on loss function ℓ (e.g., cross-entropy)

n∑
i=1

ℓ(y (i), x (i)
L )

Gradients are computed using back-propagation (chain rule)
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Deep learning architectures
Curse of dimensionality:

Image/text/etc. data are high-dimensional
Curse of dimensionality =⇒ need additional structure for learning

Local structure: split input into small local patches / “tokens”

Masked Autoencoders Are Scalable Vision Learners

Kaiming He⇤,† Xinlei Chen⇤ Saining Xie Yanghao Li Piotr Dollár Ross Girshick
⇤equal technical contribution †project lead

Facebook AI Research (FAIR)

Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[33, 25, 57]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [47, 48, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [58], is natural and applicable
in computer vision as well. Indeed, closely related research

encoder

....

....

decoder

input target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [59, 46] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [34] were dominant over the last
decade [33]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [57] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-
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Architectures:

Exploit symmetries/invariances among tokens
Model interactions/correlations across tokens
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Convolutional networks (CNNs)
Paradigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

(LeCun et al, 1998)

Model local interactions at different scales
Translation equivariance + invariance via convolution + pooling

Some theoretical benefits: (B. and Mairal, 2019; B. et al., 2021; B., 2022)
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Attention heads in Transformers

(Vaswani et al., 2017; Elhage et al., 2021)

Model non-local interactions using key-query attention
▶ “Learn” interactions instead of fixing them as in CNNs?
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Transformers and language models
Transformers: attention + MLPs + residual connections

Large language models: train to predict next token on all the web (+ fine-tune)
In-context "reasoning" vs memorization: transformers seem to use a mix of
"reasoning" from context and "knowledge" from training set
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How Transformer language models use context

Few-shot learning, chain-of-thought “reasoning”, math, linguistic capabilities

Transformers may achieve this using “circuits” of attention heads

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.

7

(Brown et al., 2020; Wei et al., 2022)
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How Transformer language models use context

Few-shot learning, chain-of-thought “reasoning”, math, linguistic capabilities
Transformers may achieve this using “circuits” of attention heads

in Nanda & Lieberum (2022). Mean-ablations remove the information that varies in the reference
distribution (e.g. the value of the name outputted by a head) but will preserve constant information
(e.g. the fact that a head is outputting a name).

In this work, all knockouts are performed in a modified pIOI distribution called pABC. It relies on the
same generation procedure, but instead of using two names (IO and S) it used three unrelated random
names (A, B and C). In pABC, sentences no longer have a single plausible IO, but the grammatical
structures from the pIOI templates are preserved.

We chose this distribution for mean-ablating because using pIOI would not remove enough informa-
tion helpful for the task. For instance, some information constant in pIOI (e.g. the fact that a name
is duplicated) is removed when computing the mean on pABC.

When knocking out a single node, a (head, token position) pair in our circuit, we want to preserve
the grammatical information unrelated to IOI contained in its activations. However, the grammatical
role (subject, verb, conjunction etc.) of a particular token position varies across templates. To ensure
that grammatical information is constant when averaging, we compute the mean of a node across
samples of the same template.

3 DISCOVERING THE CIRCUIT

We seek to explain how GPT-2 small implements the IOI task (Section 2). Recall the example
sentence “When Mary and John went to the store, John gave a drink to”. The following human-
interpretable algorithm suffices to perform this task:

1. Identify all previous names in the sentence (Mary, John, John).
2. Remove all names that are duplicated (in the example above: John).
3. Output the remaining name.

Below we present a circuit that we claim implements this functionality. Our circuit contains three
major classes of heads, corresponding to the three steps of the algorithm above:

• Duplicate Token Heads identify tokens that have already appeared in the sentence. They are active
at the S2 token, attend primarily to the S1 token, and signal that token duplication has occurred
by writing the position of the duplicate token.

• S-Inhibition Heads remove duplicate tokens from Name Mover Heads’ attention. They are active
at the END token, attend to the S2 token, and write in the query of the Name Mover Heads,
inhibiting their attention to S1 and S2 tokens.

• Name Mover Heads output the remaining name. They are active at END, attend to previous names
in the sentence, and copy the names they attend to. Due to the S-Inhibition Heads, they attend to
the IO token over the S1 and S2 tokens.

IO

S2

END

When
Mary

and
S1 John

went

the
store,
John
gave

a
drink

to

S1+1 Previous Token Heads
2.2   4.11

Duplicate Token Heads
0.1   3.0   (0.10)

Induction Heads
5.5   6.9  (5.8  5.9)

S-Inhibition Heads
7.3  7.9  8.6   8.10

Backup Name Mover Heads
9.0  9.7  10.1  10.2  10.6  10.10  11.2  11.9 

Name Mover Heads 
9.9   9.6   10.0

Negative Name Mover Heads
10.7  11.10

to

Class of Heads
Layer.Head

Key / Value

OutputQuery

Legend

Figure 2: We discover a circuit in GPT-2 small that implements IOI. The input tokens on the left are
passed into the residual stream. Attention heads move information between residual streams: the
query and output arrows show which residual streams they write to, and the key/value arrows show
which residual streams they read from.

4

(Wang et al., 2022)

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 8 / 31



Understanding Transformers

Interpretability: what mechanisms are used inside a transformer?

Memorization: how does memorization come into play?
Training dynamics: how is this learned with optimization?
Role of depth: what are benefits of deep, compositional models?
Experimental/theory setup: what is a simple setting for studying this?

This work: (B. et al., 2023; Cabannes et al., 2024)
Empirical+theoretical study by viewing parameters as associative memories
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Outline

1 Transformers on the bigram task

2 Learning with gradient steps
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The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output 

Fix trigger tokens: q1, . . . , qK
Sample each sequence z1:T ∈ [N]T as follows

Output tokens: ok ∼ πo(·|qk) (random)
Sequence-specific Markov model: z1 ∼ π1, zt |zt−1 ∼ p(·|zt−1) with

p(j |i) =
{
1{j = ok}, if i = qk , k = 1, . . . , K
πb(j |i), o/w.

πb: global bigrams model (estimated from Karpathy’s character-level Shakespeare)
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Transformers I: embeddings and residual stream
Input sequence: [z1, . . . , zT ] ∈ [N]T

Embedding layer:

xt := wE (zt) + pt ∈ Rd

▶ wE (z): token embedding of z ∈ [N]
▶ pt : positional embedding at position t ∈ [T ]

Intermediate layers: add outputs to the residual stream xt
▶ Attention and feed-forward layers

Unembedding layer: logits for each k ∈ [N],

(ξt)k = wU(k)⊤xt

Loss for next-token prediction (ℓ: cross-entropy)

T−1∑
t=1

ℓ(zt+1, ξt)
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Transformers II: self-attention

Causal self-attention layer:

x ′
t =

t∑
s=1

βsWOWV xs , with βs = exp(xs
⊤W ⊤

K WQxt)∑t
s=1 exp(xs⊤W ⊤

K WQxt)

WK , WQ ∈ Rd×d : key and query matrices
WV , WO ∈ Rd×d : value and output matrices
βs : attention weights,

∑t
s=1 βs = 1

Single-head attention (in practice, multi-head with multiple such matrices, dh × d)
Each x ′

t is then added to the corresponding residual stream

xt := xt + x ′
t
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Transformers III: feed-forward

Feed-forward layer: apply simple transformation to each token representation
MLP (practice):

x ′
t = W2σ(W1xt), W2 ∈ Rd×D, W1 ∈ RD×d

Linear (in this work):
x ′

t = WF xt , WF ∈ Rd×d

Added to the residual stream: xt := xt + x ′
t

Some evidence that feed-forward layers store “global knowledge”, e.g., for factual
recall (Geva et al., 2020; Meng et al., 2022)
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Transformers on the bigram taskThe bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output 

1-layer transformer fails: ∼ 55% accuracy on in-context output predictions
2-layer transformer succeeds: ∼ 99% accuracy
Attention maps reveal a structured 2-layer “induction” mechanism (Elhage et al., 2021)

               r s a b t s L a b t s L , a b

See also representation lower bounds (Sanford, Hsu, and Telgarsky, 2023)
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

     …            {t+1, Mr, Bacon}    …     {T, Mr} 

…      {t, Mr}          {t+1, Bacon}        …      {T, Mr}   

     …          {t+1, Mr, Bacon}    …   {T, Mr, Bacon} 

1st layer: previous-token head
▶ attends to previous token and copies it to residual stream

2nd layer: induction head
▶ attends to output of previous token head, copies attended token
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Matrices as associative memories

Consider sets of nearly orthonormal embeddings {ui}i∈I and {vj}j∈J :

∥ui∥ ≈ 1 and ui
⊤uj ≈ 0

∥vi∥ ≈ 1 and vi
⊤vj ≈ 0

Consider pairwise associations (i , j) ∈ M with weights αij and define:

W =
∑

(i ,j)∈M
αijvjui

⊤

We then have vj
⊤W ui ≈ αij

Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)
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Random embeddings in high dimension
We consider random embeddings ui with i.i.d. N(0, 1/d) entries and d large

∥ui∥ ≈ 1 and u⊤
i uj = O(1/

√
d)

Remapping: multiply by random matrix W with N (0, 1/d) entries:

∥Wui∥ ≈ 1 and u⊤
i Wui = O(1/

√
d)

Value/Output matrices help with token remapping: Mr 7→ Mr, Bacon 7→ Bacon

     …            {t+1, Mr, Bacon}    …     {T, Mr} 

…      {t, Mr}          {t+1, Bacon}        …      {T, Mr}   

     …          {t+1, Mr, Bacon}    …   {T, Mr, Bacon} 
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Induction head with associative memories

Layer 0

Sequence

Layer 1

Layer 2

pt−1 wE(a) pt wE(b) pT−1 wE(a)

a b a b[· · · ]

∗ wE(a) w1(a) wE(b) ∗ wE(a)

∗ ∗ ∗ ∗ wU (b) wE(a)

Attn1:
∑

s ps−1p
⊤
s

W 1
OW

1
V Residual

Attn2:
∑

k w1(k)wE(k)
⊤ W 2

OW 2
V :

∑
k wU (k)wE(k)

⊤

Prediction

W 1
K =

T∑
t=2

ptp⊤
t−1, W 2

K =
∑
k∈Q

wE (k)w1(k)⊤, W 2
O =

N∑
k=1

wU(k)(W 2
V wE (k))⊤,

Random embeddings wE (k), wU(k), random matrices W 1
V , W 1

O, W 2
V , fix WQ = I

Remapped previous tokens: w1(k) := W 1
OW 1

V wE (k)

Q: Does this match practice?
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Figure 3: Learning the induction head alone: in-context accuracy (top) and recall probes
(bottom) with some layers frozen until iteration 300. The output matrix W 2

O can and must be learned
before the key-query matrices, but does not suffice for good accuracy. It is easier to learn W 2

K
before W 1

K , and W 1
K stores initial context positions (t < 64) much faster than late positions.

The question remains of how the model could trade-off predictions from the induction head and from229

the feed-forward layer, which are added together due to residual connections. With fixed triggers Q,230

we may simply remove all i 2 Q from the summation in (8), so that the model exclusively relies231

on the attention head for all triggers (indeed, the output of W 2
O is in the span of output embeddings,232

which are nearly orthogonal to the row space of WF ). When the triggers can vary across different233

sequences, choosing between the induction head and the feed-forward layer is more ambiguous as234

it depends on context, and WF may try to learn more complex mappings that also use the outputs235

of W 2
O. In practice, we observe that the model often prefers the induction head, unless its output236

agrees with one of the top predictions from the global bigram, in which case it tends to prefer those.237

5 Empirical Study238

In this section, we present our empirical analysis of learning dynamics on the bigram data defined in239

Section 3, for the simplified architecture defined in Section 4.2. See Appendix D for additional results.240

Experimental setup. We train our models using mini-batch SGD with momentum, where each241

batch consists of 512 fresh sequences of length T = 256 sampled from our synthetic model. We use242

a fixed learning rate and weight decay. Hyperparameters are given in Appendix D. Unless otherwise243

noted, we use d = 128, random triggers with ⇡q = ⇡u and uniform output tokens. The reported244

accuracies and losses are computed over each fresh batch before it is used for optimization, and245

are averaged over relevant tokens: “in-context accuracy/loss” numbers only consider predictions246

of output tokens on triggers starting at the second occurrence (the first is non-deterministic), while247

“global loss” refers to average loss on non-trigger tokens.248

Memory recall probes. In addition to loss and accuracy, we consider metrics to check whether249

individual matrices have learned the desired associative memories: for a desired target memory W⇤ =250 P
(i,j)2M vju

>
i , the corresponding recall metric is computed from the empirical estimate Ŵ as251

R(Ŵ , W⇤) =
1

|M|
X

(i,j)2M
{arg max

j0
v>j0Ŵui = j}. (9)

We use this for each matrix in (7) as target, and additionally test the previous token matrix W 1
K on252

smaller time windows. For the final feed-forward layer, we measure the average KL divergence253

between the predicted softmax distribution using only WF and the global bigram distribution ⇡b:254

dKL(WF ,⇡b) :=
1

N

NX

k=1

dKL(�(WUWF wE(k)),⇡b(·|k)). (10)

255
Emergence of the induction head via top-down learning. We begin our study by only training256

to minimize the loss on trigger-output token predictions after their first occurrence. This should257

7

“Memory recall probes”: for target memory W∗ =
∑

(i ,j)∈M vju⊤
i , compute

R(Ŵ , W∗) = 1
|M|

∑
(i ,j)∈M

1{j = arg max
j′

v⊤
j′ Ŵ ui}

Natural learning “order”: W 2
O first, W 2

K next, W 1
K last

Joint learning is faster
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Global vs in-context learning and role of data

Train on all tokens, with added WF after second attention layer

Figure 4: Global vs in-context learning and data-distributional effects. (left) Loss on global
(dashed) vs in-context (solid) tokens throughout training, for fixed or random trigger tokens qk. The
red curves fixes the trigger q1 to the most frequent token, while the fixed triggers in blue curves
are less common. (center) In-context accuracy with different training and test distributions ⇡o for
output tokens. Uniform leads to better generalization than global bigrams ⇡b. (right) Probe metrics
throughout training: W 2

O and WF eventually compete and deviate from our natural estimates.

the transformer residual streams, gradients may learn associative memories that filter out irrelevant310

components of these superpositions, focusing on useful signal instead.311

Lemma 2 (Gradient associative memory with noisy inputs). Let p be a data distribution on (x, y) 2312

Rd ⇥ [N ], and consider the following classification problem, with fixed output embeddings WU :313

L(W ) = E(x,y)⇠p[`(y, WUWx)].

The gradients take the following form: denoting µk := E[x|y = k] and µ̂k := Ex[ p̂W (k|x)
p(y=k) x],314

rW L(W ) =

NX

k=1

p(y = k)wU (k)(µ̂k � µk)>.

The key takeaway from this lemma is that with enough data (here infinite data), the associative315

memory arising from gradients can learn to filter out noise from inputs, since it only depends on316

its expectations or conditional expectations. In particular, µk can isolate relevant parts of x that are317

predictive of a label k, and thus can lead to the right associations.318

An illustrative example. To gain more intuition about this result, consider the following example:319

we would like to predict y from x = wE(y) + pt, where pt is a positional embedding at a random320

position t 2 [T ], which we would like to ignore. Further assume that y is uniformly distributed321

with p(y = k) = 1/N , and consider the matrix obtained after one population gradient step with322

step-size ⌘ starting from an initialization W0 = 0 (so that p̂W0
(k|x) = 1/N ):323

W1 =
⌘

N

NX

k=1

wU (k)(µk � µ̄)>,

with µ̄ = E[x]. We show in Appendix B that when d is large enough to ensure near-orthonormal324

embeddings, we have325

wU (k)>W1(wE(y) + pt) ⇡
⌘

N
{k = y} + O

✓
1

N2

◆
,

so that for large enough N and T , we obtain a near-perfect classifier that ignores the positional326

embedding, after just one gradient step (but a highly idealized one). Understanding how this translates327

to the finite dimension and finite sample regime is an important theoretical question that we leave328

for future work. We note that data models related to the above have been useful to study gradient329

dynamics of neural networks on continuous data [2, 22, 25]. Using a single gradient step to learn330

representations has also been fruitful in other contexts [3, 10].331

Learning the induction head with gradients. In Appendix B, we use Lemma 2 in a similar manner332

to show how training W 2
O by itself at initialization, i.e., when the attention patterns are near-uniform,333

9

Global bigrams learned quickly with WF before induction mechanism

More frequent triggers =⇒ faster learning of induction head
More uniform output tokens helps OOD performance
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What about more complex models?

Factorizations (e.g., W ⊤
K WQ): y⊤UVx

Non-linear MLP: y⊤Uσ(Vx)
Layer-norm: y⊤ Wx

∥Wx∥

Trained input/output embeddings

Does it work empirically on the bigram task? Yes!
Memory recall probes → 1 as previously
But: adding heads and layers loses identifiability

Figure 10: Training of a more realistic architecture with (i) ReLU MLP instead of linear layer
for the second feed-forward layer, (ii) all parameters trained, including embeddings, (iii) pre-layer
normalization. The loss, in-context accuracy and memory recall probes are similar to the simplified
architecture (see, e.g., Figure 4).

Figure 11: Attention maps for a two-layer model with 4 attention heads. In the first layer (top), the
previous token mechanism is mostly achieved by one of the four heads, while the induction behavior
at the second layer (bottom) is distributed across the different heads.

attention input to W 2
O, given by

R1 =
1

N

NX

k=1

⇢
k = arg max

k0
(W 2

V wE(k0))>(µk � µ)

�
,

where µk = E[x|y = k] and µ = E[x], for x = 1
t

Pt
s=1 W 2

V wE(zs) and y = zt+1, when zt is a
trigger token after its first occurrence. Expectations are computed over batches of data of varying sizes
and in different dimensions. We call this “one-step” since it is related to the classifier obtained after
performing a single gradient step on W 2

O from zero initialization (see Lemma 2 and Appendix B.3.1).
The plots illustrate that this simple one-step model is already able to extract relevant signal from the
noisy average attention, after a handful of batches of data, corresponding to tens of thousands of
tokens, and that this gets easier as the dimension increases.

More complex architectures. Figure 10 shows training behavior for a more complex model than the
simplified one considered in Section 5, namely where we train all parameters, replace the linear WF

feedforward layer by a two-layer MLP, and were (pre-)layer-normalization is added. Despite these
changes, we see similar behavior for the memory recall probes (which now involve embeddings that
may change over time), suggesting that the model is still identifying the same memory associations,
despite the additional redundancies in parameters and modified training dynamics.

Figure 11 shows the attention maps obtained when training a multi-head version of our two-layer
model, with four attention heads per layer. We see that the redundancy of multiple heads creates
difficulties in identifiability: only one of the first layer heads learns the previous token behavior,
while the induction behavior is shared across different heads at the second layer. This illustrates the
challenges of interpretability in the presence of redundant models, which then require additional work
to identify which of the layers and heads are performing a given behavior, e.g., through interventions
and causal mediation analysis [36, 56].
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where µk = E[x|y = k] and µ = E[x], for x = 1
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s=1 W 2

V wE(zs) and y = zt+1, when zt is a
trigger token after its first occurrence. Expectations are computed over batches of data of varying sizes
and in different dimensions. We call this “one-step” since it is related to the classifier obtained after
performing a single gradient step on W 2

O from zero initialization (see Lemma 2 and Appendix B.3.1).
The plots illustrate that this simple one-step model is already able to extract relevant signal from the
noisy average attention, after a handful of batches of data, corresponding to tens of thousands of
tokens, and that this gets easier as the dimension increases.

More complex architectures. Figure 10 shows training behavior for a more complex model than the
simplified one considered in Section 5, namely where we train all parameters, replace the linear WF

feedforward layer by a two-layer MLP, and were (pre-)layer-normalization is added. Despite these
changes, we see similar behavior for the memory recall probes (which now involve embeddings that
may change over time), suggesting that the model is still identifying the same memory associations,
despite the additional redundancies in parameters and modified training dynamics.

Figure 11 shows the attention maps obtained when training a multi-head version of our two-layer
model, with four attention heads per layer. We see that the redundancy of multiple heads creates
difficulties in identifiability: only one of the first layer heads learns the previous token behavior,
while the induction behavior is shared across different heads at the second layer. This illustrates the
challenges of interpretability in the presence of redundant models, which then require additional work
to identify which of the layers and heads are performing a given behavior, e.g., through interventions
and causal mediation analysis [36, 56].
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for the second feed-forward layer, (ii) all parameters trained, including embeddings, (iii) pre-layer
normalization. The loss, in-context accuracy and memory recall probes are similar to the simplified
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1 Transformers on the bigram task

2 Learning with gradient steps

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 23 / 31



Learning associative memories with gradients
Simple model to learn associative memories:

z ∈ [N] → uz ∈ Rd → W uz ∈ Rd → (vk
⊤W uz)k ∈ RM

uz , vy : nearly-orthogonal input/output embeddings, assume fixed
Cross-entropy loss for logits ξ ∈ RM : ℓ(y , ξ) = −ξy + log(

∑
k exp ξk)

Lemma (Gradients as memories)
Let p be a data distribution over (z , y) ∈ [N] × [M], and consider the loss

L(W ) = E(z,y)∼p[ℓ(y , ξW (z))], ξW (z)k = vk
⊤W uz ,

with ℓ the cross-entropy loss and uz , vk input/output embeddings. Then,

∇L(W ) =
M∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))vkuz

⊤],

with p̂W (y = k|z) = exp(ξW (z)k)/
∑

j exp(ξW (z)j).
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Example: one gradient step

Data model: z ∼ Unif([N]), y = f∗(z) ∈ [N]

After one gradient step on the population loss from W0 = 0 with step η, we have

W1 = W0 − η
N∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))vkuz

⊤]

= η
∑
z,k

p(z)(p(y = k|z) − p̂W (y = k|z))vkuz
⊤

= η

N
∑
z,k

(1{k = f ∗(z)} − 1
N )vkuz

⊤

Then, for any (z , k) we have

vk
⊤W1uz ≈ η

N 1{f∗(z) = k} + O
(

η

N2

)
Corollary: f̂ (z) = arg maxk vk

⊤W1uz has near-perfect accuracy
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)
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Gradient associative memories with noisy inputs
In practice, inputs are often a collection of tokens / sum of embeddings

z = {z1, . . . , zs} ⊂ [N], x =
s∑

j=1
uzs ∈ Rd

▶ e.g., bag of words, output of attention operation, residual connections

Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)
Let p be a data distribution over (x , y) ∈ Rd × [N], and consider the loss

L(W ) = E(x ,y)∼p[ℓ(y , ξW (x))], ξW (x)k = vk
⊤W x .

Denoting µk := E[x |y = k] and µ̂k := Ex [ p̂W (k|x)
p(y=k) x ], we have

∇W L(W ) =
N∑

k=1
p(y = k)vk(µ̂k − µk)⊤.
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Example: filter out exogenous noise
Data model: y ∼ Unif([N]), t ∼ Unif([T ]), x = uy + nt ∈ Rd

▶ where {nt}T
t=1 are another collection of embeddings, e.g., positional embeddings

After one gradient step on the population loss from W0 = 0 with step η, we have

W1 = W0 − η
N∑

k=1
p(y = k)vk(µ̂k − µk)⊤

= η

N

N∑
k=1

vk(E[uy + nt |y = k] − E[uy + nt ])⊤

= η

N

N∑
k=1

vkuk
⊤ − η

N2

∑
k,j

vkuj
⊤

Then, for any k, y , t, x = uy + nt , we have

vk
⊤W1x ≈ η

N 1{k = y} + O
(

η

N2

)
Corollary: f̂ (x) = arg maxk vk

⊤W1x has near-perfect accuracy
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Gradient steps for the bigram task

Setting: transformer on the bigram task
Focus on predicting second output token
All distributions are uniform
Some simplifications to architecture

Theorem (informal)
In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss, assuming near-orthonormal embeddings: first on W 2

O, then W 2
K , then W 1

K .

Key ideas
Attention is uniform at initialization =⇒ inputs are sums of embeddings
W 2

O: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of zT

W 1/2
K : correct associations lead to more focused attention
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Finite data and finite capacity?

Questions:
Finite capacity? how much can we “store” with finite d?

Finite samples? how well can we learn with finite data?
Role of optimization algorithms? multiple gradient steps? Adam?

Scaling laws analysis: (Cabannes, Dohmatob, and B., 2024)
Heavy-tailed distribution of input tokens (Zipf law)
Linear associative memory can only store d tokens
=⇒ Storing d most frequent tokens is best!
Multiple gradient steps + Adam help achieve that
Non-linear memory (e.g., MLP layers) can store more
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Discussion and next steps

Summary
Bigram model: simple but rich toy model for discrete data
Transformer weights as associative memories
Learning via few top-down gradient steps
Better algorithms help for better scaling laws on heavy-tailed data

Future directions
More complex “reasoning” mechanisms, links with “emergence”
Learning dynamics: multiple gradient steps? joint training? embeddings?
Applications: interpretability, model editing, factual recall, efficient fine-tuning
Beyond text data: images and scientific data?
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Thank you!

Internships and postdocs at Flatiron Institute and Polymathic AI in New York
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Learning associations

Motivation:
DL theory often focuses on learning/approximation of continuous target functions

▶ e.g., smooth functions, sparse polynomials

In practice, discrete structure and memorization are often crucial
▶ language: words, syntactic rules, semantic concepts, facts
▶ vision: “visual words”, features, objects

Statistical learning setup:
Data distribution p(z , y) over pairs of discrete tokens (z , y) ∈ [N] × [M]
We want a predictor f̂ : [N] → [M] with small 0-1 loss:

L01(f̂ ) = P(y ̸= f̂ (z))

Typically f̂ (z) = arg maxy fy (z) with fy : [N] → R for each y ∈ [M]
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Matrices as associative memories

Consider sets of nearly orthonormal embeddings {ui}i∈I and {vj}j∈J :

∥ui∥ ≈ 1 and ui
⊤uj ≈ 0

∥vi∥ ≈ 1 and vi
⊤vj ≈ 0

Consider pairwise associations (i , j) ∈ M with weights αij and define:

W =
∑

(i ,j)∈M
αijvjui

⊤

We then have vj
⊤W ui ≈ αij

Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)
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Learning associative memories with gradients
Simple differentiable model to learn such associative memories:

z ∈ [N] → uz ∈ Rd → W uz ∈ Rd → (vk
⊤W uz)k ∈ RM

uz , vy : nearly-orthogonal input/output embeddings, assume fixed
Cross-entropy loss for logits ξ ∈ RM : ℓ(y , ξ) = −ξy + log(

∑
k exp ξk)

Lemma (Gradients as memories)
Let p be a data distribution over (z , y) ∈ [N] × [M], and consider the loss

L(W ) = E(z,y)∼p[ℓ(y , ξW (z))], ξW (z)k = vk
⊤W uz ,

with ℓ the cross-entropy loss and uz , vk input/output embeddings. Then,

∇L(W ) =
M∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))vkuz

⊤],

with p̂W (y = k|z) = exp(ξW (z)k)/
∑

j exp(ξW (z)j).
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Example: one gradient step

Data model: z ∼ Unif([N]), y = f∗(z) ∈ [N]

After one gradient step on the population loss from W0 = 0 with step η, we have

W1 = W0 − η
N∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))vkuz

⊤]

= η
∑
z,k

p(z)(p(y = k|z) − p̂W (y = k|z))vkuz
⊤

= η

N
∑
z,k

(1{k = f ∗(z)} − 1
N )vkuz

⊤

Then, for any (z , k) we have

vk
⊤W1uz ≈ η

N 1{f∗(z) = k} + O
(

η

N2

)
Corollary: f̂ (z) = arg maxk vk

⊤W1uz has near-perfect accuracy
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)
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η

N2

)
Corollary: f̂ (z) = arg maxk vk

⊤W1uz has near-perfect accuracy
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)
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Gradient associative memories with noisy inputs
In practice, inputs are often a collection of tokens / sum of embeddings

z = {z1, . . . , zs} ⊂ [N], x =
s∑

j=1
uzs ∈ Rd

▶ e.g., bag of words, output of attention operation, residual connections

Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)
Let p be a data distribution over (x , y) ∈ Rd × [N], and consider the loss

L(W ) = E(x ,y)∼p[ℓ(y , ξW (x))], ξW (x)k = vk
⊤W x .

Denoting µk := E[x |y = k] and µ̂k := Ex [ p̂W (k|x)
p(y=k) x ], we have

∇W L(W ) =
N∑

k=1
p(y = k)vk(µ̂k − µk)⊤.
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Example: filter out exogenous noise
Data model: y ∼ Unif([N]), t ∼ Unif([T ]), x = uy + nt ∈ Rd

▶ where {nt}T
t=1 are another collection of embeddings, e.g., positional embeddings

After one gradient step on the population loss from W0 = 0 with step η, we have

W1 = W0 − η
N∑

k=1
p(y = k)vk(µ̂k − µk)⊤

= η

N

N∑
k=1

vk(E[uy + nt |y = k] − E[uy + nt ])⊤

= η

N

N∑
k=1

vkuk
⊤ − η

N2

∑
k,j

vkuj
⊤

Then, for any k, y , t, x = uy + nt , we have

vk
⊤W1x ≈ η

N 1{k = y} + O
(

η

N2

)
Corollary: f̂ (x) = arg maxk vk

⊤W1x has near-perfect accuracy
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Link with feature learning
Maximal updates:

First gradient update from standard initialization ([W0]ij ∼ N (0, 1/d)) take the form

W1 = W0 + ∆W ∈ Rd×d , ∆W :=
∑

j
αjvju⊤

j , αj = Θd(1)

For any input embedding uj , we have, thanks to near-orthonormality

∥W0uj∥ = Θd(1) and ∥∆Wuj∥ = Θd(1)

Contribution of updates is of similar order to initialization (not true for NTK!)
Related to µP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Large gradient steps on shallow networks:
Useful for feature learning in single-index and multi-index models

y = f ∗(x) + noise, f ∗(x) = g∗(Wx), W ∈ Rr×d

Sufficient to break the curse of dimensionality when r ≪ d
(Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 42 / 31



Link with feature learning
Maximal updates:

First gradient update from standard initialization ([W0]ij ∼ N (0, 1/d)) take the form

W1 = W0 + ∆W ∈ Rd×d , ∆W :=
∑

j
αjvju⊤

j , αj = Θd(1)

For any input embedding uj , we have, thanks to near-orthonormality

∥W0uj∥ = Θd(1) and ∥∆Wuj∥ = Θd(1)

Contribution of updates is of similar order to initialization (not true for NTK!)
Related to µP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Large gradient steps on shallow networks:
Useful for feature learning in single-index and multi-index models

y = f ∗(x) + noise, f ∗(x) = g∗(Wx), W ∈ Rr×d

Sufficient to break the curse of dimensionality when r ≪ d
(Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 42 / 31



Link with feature learning
Maximal updates:

First gradient update from standard initialization ([W0]ij ∼ N (0, 1/d)) take the form

W1 = W0 + ∆W ∈ Rd×d , ∆W :=
∑

j
αjvju⊤

j , αj = Θd(1)

For any input embedding uj , we have, thanks to near-orthonormality

∥W0uj∥ = Θd(1) and ∥∆Wuj∥ = Θd(1)

Contribution of updates is of similar order to initialization (not true for NTK!)
Related to µP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Large gradient steps on shallow networks:
Useful for feature learning in single-index and multi-index models

y = f ∗(x) + noise, f ∗(x) = g∗(Wx), W ∈ Rr×d

Sufficient to break the curse of dimensionality when r ≪ d
(Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 42 / 31



Link with feature learning
Maximal updates:

First gradient update from standard initialization ([W0]ij ∼ N (0, 1/d)) take the form

W1 = W0 + ∆W ∈ Rd×d , ∆W :=
∑

j
αjvju⊤

j , αj = Θd(1)

For any input embedding uj , we have, thanks to near-orthonormality

∥W0uj∥ = Θd(1) and ∥∆Wuj∥ = Θd(1)

Contribution of updates is of similar order to initialization (not true for NTK!)
Related to µP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Large gradient steps on shallow networks:
Useful for feature learning in single-index and multi-index models

y = f ∗(x) + noise, f ∗(x) = g∗(Wx), W ∈ Rr×d

Sufficient to break the curse of dimensionality when r ≪ d
(Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 42 / 31



Associative memories inside deep models

x x̄W

Consider W that connects two nodes x , x̄ in a feedforward computational graph

The loss gradient takes the form

∇W L = E[∇x̄ℓ · x⊤]

where ∇x̄ℓ is the backward vector (loss gradient w.r.t. x̄)
Often, this expectation may lead to associative memories as before
A similar form can arise in attention matrices (see later!)
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Questions

Finite capacity? how much can we “store” with finite d?

Finite samples? how well can we learn with finite data?
Role of optimization algorithms? multiple gradient steps? Adam?

=⇒ study through scaling laws (a.k.a. generalization bounds/statistical rates)
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Setup with heavy-tailed data

Setting
zi ∼ p(z), yi = f ∗(zi), n samples: Sn = {z1, . . . , zn}, 0/1 loss:

L(f̂n) = P(y ̸= f̂n(z))

Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

p(z) ∝ z−α

Hutter (2021): with infinite memory, we have

L(f̂n) ≲ n− α−1
α

Q: What about finite capacity?
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Scaling laws with finite capacity
Random embeddings uz , vy ∈ Rd with N (0, 1/d) entries
Estimator: f̂n,d(x) = arg maxy v⊤

y Wn,duz , with

Wn,d =
N∑

z=1
q(z)vf ∗(z)u⊤

z

Single population gradient step: q(z) ≈ p(z)

Theorem (Cabannes, Dohmatob, B., 2023, informal)
1 For q(z) =

∑
i 1{z = zi}: L(f̂n,d) ≲ n− α−1

α + d− α−1
2α

2 For q(z) = 1{z ∈ Sn}, and d ≫ N: L(f̂n,d) ≲ n− α−1
α + d−k for any k

3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) ≲ n− α−1
α + d−α+1

n− α−1
α is the same as (Hutter, 2021)

q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)
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Scaling laws with optimization algorithms

Wn,d =
N∑

z=1
q(z)vf ∗(z)u⊤

z

Different algorithms lead to different memory schemes q(z):

One step of SGD with large batch: q(z) ≈ p(z)
SGD with batch size one + large step-size, d ≫ N: q(z) ≈ 1
For d ≤ N, smaller step-sizes can help later in training
Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

101 102 103

d

10−2

10−1

E
rr

or

SGD, |B|=64, T=10240

γ=0.1

γ=1.0

γ=10.0
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d
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E
rr

or

SGD, T=1024

|B| = 16, γ = 1

|B| = 1024, γ = 10
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d
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Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)
Nearest-neighbor lookup: set uz = vf ∗(z) and take f̂ (z) = arg maxy v⊤

y uz

Attention: soft-max instead of hard-max to retrieve from context
MLP: f̂ (z) = arg maxy v⊤

y
∑N

z ′=1 vf ∗(z ′)σ(u⊤
z ′uz − b)

But: higher computational cost, more sensitive to noise, harder to learn
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