Practical Contextual Bandits

Alberto Bietti¹ Alekh Agarwal² John Langford²

¹ Inria, Grenoble ²MSR, NY

Télécom ParisTech. December 20th, 2018.

A Contextual Bandit Bake-Off

Alberto Bietti¹ Alekh Agarwal² John Langford²

¹Inria, Grenoble ²MSR, NY

Télécom ParisTech. December 20th, 2018.

Contextual Bandits

Describes many real-world interactive machine learning problems

Ad placement, recommender systems, medical treatment assignment, ...

Contextual Bandits

Repeat:

- **○** Observe context $x_t \in \mathcal{X}$
	- \blacktriangleright search query, info about user/item
- \circ Choose action $a_t \in \{1, ..., K\}$
	- \blacktriangleright advertisement, news story, medical treatment
- **○** Observe loss $\ell_t(a_t)$ ∈ [0, 1] (or ℝ)
	- \blacktriangleright click/no click, revenue, treatment outcome

Goal: minimize cumulative loss $\sum_{t=1}^{T} \ell_t(a_t)$

Contextual Bandits

Repeat:

- **○** Observe context $x_t \in \mathcal{X}$
	- \blacktriangleright search query, info about user/item
- \circ Choose action $a_t \in \{1, ..., K\}$
	- \blacktriangleright advertisement, news story, medical treatment
- **○** Observe loss $\ell_t(a_t)$ ∈ [0, 1] (or ℝ)
	- \blacktriangleright click/no click, revenue, treatment outcome

Goal: minimize cumulative loss $\sum_{t=1}^{T} \ell_t(a_t)$ **Need exploration!**

Stochastic Contextual Bandits

$$
\bullet \ (x_t, \ell_t) \in \mathcal{X} \times [0,1]^K \text{ sampled i.i.d. from } \mathcal{D}
$$

- **•** Policy class Π of policies $\pi : \mathcal{X} \to \{1, \ldots, K\}$
	- \blacktriangleright e.g., linear $\pi(x) = \arg \min_a \theta_a^{\top} x$
- \circ Exploration algorithm: $a_t \sim p_t(\cdot)$

Stochastic Contextual Bandits

$$
\bullet \ (x_t, \ell_t) \in \mathcal{X} \times [0,1]^K \text{ sampled i.i.d. from } \mathcal{D}
$$

- \bullet Policy class Π of policies $\pi : \mathcal{X} \to \{1, \ldots, K\}$
	- \blacktriangleright e.g., linear $\pi(x) = \arg \min_a \theta_a^{\top} x$
- \bullet Exploration algorithm: $a_t \sim p_t(\cdot)$
- $\mathsf{Optimal}$ policy: $\pi^* := \mathsf{arg\,min}_{\pi \in \Pi} \mathbb{E}_{(\mathsf{x}, \ell) \sim \mathcal{D}} [\ell(\pi(\mathsf{x}))]$
- **Goal**: minimize regret against *π* ∗ : \bullet

$$
R_T := \sum_{t=1}^T \ell_t(a_t) - \sum_{t=1}^T \ell_t(\pi^*(x_t))
$$

Theory vs Practice

Theory: efficient exploration

- not always statistically efficient (e.g. only worst case)
- not always computationally efficient (e.g. covariance matrix in high \bullet dimensions)
- o little empirical evaluation

Theory vs Practice

Theory: efficient exploration

- not always statistically efficient (e.g. only worst case)
- not always computationally efficient (e.g. covariance matrix in high \bullet dimensions)
- o little empirical evaluation

Practice (this work)

- large-scale evaluation on $500+$ datasets
- practical, efficient methods using optimization oracles
- improved, online implementations (Vowpal Wabbit)

Outline

3 [The Bake-Off](#page-34-0)

 (4) Active ϵ [-Greedy \(bonus\)](#page-53-0)

Optimization Oracles

- Leverage supervised learning algorithms for general policies
- **Cost-sensitive classification** (CSC) oracle:

$$
\arg\min_{\pi\in\Pi}\sum_{t=1}^T c_t(\pi(x_t))
$$

Regression oracle (importance-weighted):

$$
\arg\min_{f\in\mathcal{F}}\sum_{t=1}^T \omega_t (f(x_t,a_t)-y_t)^2
$$

Construct (x_t, c_t) or (x_t, a_t, y_t) from observed data

Reduction to Off-policy learning

• Common strategy:

- Find good "exploitation" policy π_t using past observed data
- \triangleright act according to this policy, but also explore to get useful data
- $\mathsf{Interaction\ data: } \ (x_t, a_t, \ell_t(a_t), p_t(a_t)), t < \mathcal{T}$

Reduction to Off-policy learning

• Common strategy:

- **Find good "exploitation" policy** π_t **using past observed data**
- \triangleright act according to this policy, but also explore to get useful data
- $\mathsf{Interaction\ data: } \ (x_t, a_t, \ell_t(a_t), p_t(a_t)), t < \mathcal{T}$
- **Off-policy**: data collected using different policies p_t
- **•** Find $\pi_{\mathcal{T}}$ s.t. $L(\pi_{\mathcal{T}}) \approx \min_{\pi} L(\pi)$, with $L(\pi) = \mathbb{E}_{\mathcal{D}}[\ell(\pi(x))]$
- Typically need uniform exploration: $p_t(a) > 0$ for all a
- **How?** loss estimation!

Reduction to Off-policy learning: loss estimation

- Construct $\hat{\ell}_t$ from observed data s.t. $\frac{1}{\tau} \sum_{t=1}^T \hat{\ell}_t(\pi(x_t)) \approx L(\pi)$
- Learn via CSC with examples $(x_t, \hat{\ell}_t)$

Reduction to Off-policy learning: loss estimation

- Construct $\hat{\ell}_t$ from observed data s.t. $\frac{1}{\tau} \sum_{t=1}^T \hat{\ell}_t(\pi(x_t)) \approx L(\pi)$
- Learn via CSC with examples $(x_t, \hat{\ell}_t)$
- **IPS** (inverse propensity scoring)

$$
\hat{\ell}_t(a) := \frac{\ell_t(a_t)}{p_t(a_t)} \mathbb{1}\{a = a_t\}
$$

Reduction to Off-policy learning: loss estimation

- Construct $\hat{\ell}_t$ from observed data s.t. $\frac{1}{\tau} \sum_{t=1}^T \hat{\ell}_t(\pi(x_t)) \approx L(\pi)$
- Learn via CSC with examples $(x_t, \hat{\ell}_t)$
- **IPS** (inverse propensity scoring)

$$
\hat{\ell}_t(a) := \frac{\ell_t(a_t)}{p_t(a_t)} \mathbb{1}\{a = a_t\}
$$

DR (doubly robust, Dudik et al., 2011) \bullet

$$
\hat{\ell}_t(a) := \frac{\ell_t(a_t) - \hat{\ell}(x_t, a_t)}{p_t(a_t)} \mathop{\mathbb{1}} \{a = a_t\} + \hat{\ell}(x_t, a)
$$

- \blacktriangleright $\hat{\ell}$ trained via regression on observed data
- Both **unbiased** when $p_t(\cdot) > 0$, DR has **lower variance**

Reduction to Off-policy learning: IWR

Importance-weighted regression (IWR) reduction:

$$
\hat{f} := \arg\min_{f \in \mathcal{F}} \sum_{t=1}^T \frac{1}{p_t(a_t)} (f(x_t, a_t) - \ell_t(a_t))^2,
$$

Computational/optimization benefits: only update a single action, importance-weighted updates

Practical Considerations

- CSC **harder** than regression (approximated with K regressors)
- **online learning**: online updates for policies/regressors \bullet
- **loss encodings**: $\ell_t(a_t) \in \{0, 1\}$ or $\{-1, 0\}$ for binary costs?
	- \blacktriangleright e.g. for click/no click outcomes
	- \triangleright important design choice for better performance (lower variance)
- **baseline**: learn global additive constant separately
- **learning dynamics**: random tie breaking, pessimistic initialization \bullet

Outline

3 [The Bake-Off](#page-34-0)

 (4) Active ϵ [-Greedy \(bonus\)](#page-53-0)

CB algorithm families

- \bullet ϵ -Greedy
- Greedy
- Thompson Sampling
- Optimism
- "(mini-)monster" (Agarwal et al., 2014)

ϵ -Greedy (Langford and Zhang, 2007)

• Always explore uniformly with prob. ϵ

$$
p_t(a) = \epsilon/K + (1 - \epsilon) \mathbb{1}\{\pi_t(x_t) = a\}
$$

Learn by reduction to off-policy learning (IPS/DR/IWR)

$$
\pi_{t+1} \leftarrow \text{oracle}(\pi_t, (x_t, a_t, \ell_t(a_t), p_t(a_t)))
$$

ϵ -Greedy (Langford and Zhang, 2007)

• Always explore uniformly with prob. ϵ

$$
p_t(a) = \epsilon/K + (1 - \epsilon) \, \mathbb{1}\{\pi_t(x_t) = a\}
$$

Learn by reduction to off-policy learning (IPS/DR/IWR)

$$
\pi_{t+1} \leftarrow \text{oracle}(\pi_t, (x_t, a_t, \ell_t(a_t), p_t(a_t)))
$$

- $\sqrt{\overline{I/\epsilon}}~\rm{(exploit)} + \overline{I\epsilon}~\rm{(explore)} \rightarrow \mathit{O}(\mathit{T}^{2/3})$ regret
- Lots of wasted exploration
	- \triangleright "active" ϵ -greedy variant can improve this (see below)

Greedy

• Take $\epsilon = 0$ in ϵ -Greedy with regression oracle:

$$
a_t = \arg\min_a f_t(x_t, a)
$$

- Can still explore enough!
- Leverage **diversity** in the contexts (Bastani et al., 2017; Kannan et al., 2018)
- Performs surprisingly well on many datasets

Bag (bootstrap Thompson Sampling)

- Thompson Sampling: maintain posterior over policies
- Approximate this posterior using (online) bootstrap (Agarwal et al., 2014; Eckles and Kaptein, 2014; Osband and Van Roy, 2015)

Bag (bootstrap Thompson Sampling)

- Thompson Sampling: maintain posterior over policies
- Approximate this posterior using (online) bootstrap (Agarwal et al., 2014; Eckles and Kaptein, 2014; Osband and Van Roy, 2015)
- Maintain N policies *π* 1 *, . . . , π*^N
- Explore uniformly over policies
- Update each using a bootstrap sample of exploration data (via reduction)
- $\mathbf{Bag}\text{-}\mathbf{greedy}\colon\pi^1$ uses regular sample instead of bootstrap

Bag (bootstrap Thompson Sampling) ag (bootstrap Thompson 5).

Algorithm 3 Bag $\pi^1_1, \ldots, \pi^N_1.$ $explore(x_t):$ return $p_t(a) \propto |\{i : \pi_t^i(x_t) = a\}|;^3$ $\tan(x_t, a_t, \ell_t(a_t), p_t)$: for $i = 1, \ldots, N$ do $\tau^i \sim Poisson(1);$ {with $\tau^1 = 1$ for bag-greedy} $\pi^i_{t+1} = \texttt{oracle}^{\tau^i}(\pi^i_t, x_t, a_t, \ell_t(a_t), p_t(a_t));$ end for

- \bullet "mini-monster": minimax optimal $+$ computationally "efficient"
- Maintain a distribution over policies that are good for exploration and \bullet exploitation (low regret $+$ low variance)

- \bullet "mini-monster": minimax optimal $+$ computationally "efficient"
- Maintain a distribution over policies that are good for exploration and exploitation (low regret $+$ low variance)
- **In practice: Ν policies** π^1, \ldots, π^N
- Explore uniformly over policies
- Update π^1 using IPS/DR
- Subsequent policies use CSC with additional cost to encourage **diverse** policies

- \bullet "mini-monster": minimax optimal $+$ computationally "efficient"
- Maintain a distribution over policies that are good for exploration and exploitation (low regret $+$ low variance)
- **In practice: Ν policies** π^1, \ldots, π^N
- Explore uniformly over policies
- Update π^1 using IPS/DR
- Subsequent policies use CSC with additional cost to encourage **diverse** policies
- **Cover-NU**: remove uniform exploration on all actions (required from theory)
- Still often too much exploration by design

Algorithm 4 Cover $\pi_1^1, \ldots, \pi_1^N; \epsilon_t = \min(1/K, 1/\sqrt{Kt}); \psi > 0.$ $\explore(x_t):$ $p_t(a) \propto |\{i : \pi_t^i(x_t) = a\}|;$ **return** $\epsilon_t + (1 - \epsilon_t)p_t;$ {for cover}
return $p_t;$ {for cover-nu $\{$ for cover-nu $\}$ $\tan(x_t, a_t, \ell_t(a_t), p_t)$: $\pi^1_{t+1} = \mathtt{oracle}(\pi^1_t, x_t, a_t, \ell_t(a_t), p_t(a_t));$ $\hat{\ell}_t =$ estimator $(x_t, a_t, \ell_t(a_t), p_t(a_t));$ for $i = 2, ..., N$ do $q_i(a) \propto |\{j \leq i-1 : \pi_{t+1}^j(x_t) = a\}|;$ $\hat{c}(a) = \hat{\ell}_t(a) - \frac{\psi \epsilon_t}{\epsilon_t + (1 - \epsilon_t)q_i(a)};$ $\pi^i_{t+1} = \texttt{csc_oracle}(\pi^i_t, x_t, \hat{c});$ end for

Construct **confidence bounds** on each action based on good regressors for loss estimation

$$
\mathcal{F}_t = \{f \in \mathcal{F} : \text{MSE}(f, \mathcal{D}_t) - \min_{f \in \mathcal{F}} \text{MSE}(f, \mathcal{D}_t) \le C/t\}
$$
\n
$$
\text{LCB}(x_t, a) = \min_{f \in \mathcal{F}_{t-1}} f(x_t, a)
$$
\n
$$
\text{UCB}(x_t, a) = \max_{f \in \mathcal{F}_{t-1}} f(x_t, a)
$$

Construct **confidence bounds** on each action based on good regressors for loss estimation

$$
\mathcal{F}_t = \{f \in \mathcal{F} : \text{MSE}(f, \mathcal{D}_t) - \min_{f \in \mathcal{F}} \text{MSE}(f, \mathcal{D}_t) \le C/t\}
$$
\n
$$
\text{LCB}(x_t, a) = \min_{f \in \mathcal{F}_{t-1}} f(x_t, a)
$$
\n
$$
\text{UCB}(x_t, a) = \max_{f \in \mathcal{F}_{t-1}} f(x_t, a)
$$

- LCB and UCB can be computed efficiently using **regression oracles**
- Even with online learning, using importance weight sensitivity
- Explore using **optimism**, or uniform **sampling** over surviving actions

Algorithm 5 RegCB $f_1: C_0 > 0.$ $explore(x_t):$ $l_t(a) = \text{lcb}(f_t, x_t, a, \Delta_{t,C_0});$ $u_t(a) = \text{ucb}(f_t, x_t, a, \Delta_t C_0);$ $p_t(a) \propto \mathbb{1}\{a \in \arg\min_{a'} l_t(a')\};$)}; {RegCB-opt variant} $p_t(a) \propto \mathbb{1}\{l_t(a) \leq \min_{a'} u_t(a')\};$)}; {RegCB-elim variant} return p_t ; $\texttt{learn}(x_t, a_t, \ell_t(a_t), p_t)$: f_{t+1} = reg_oracle($f_t, x_t, a_t, \ell_t(a_t)$);

Outline

2 [Algorithms](#page-18-0)

 (4) Active ϵ [-Greedy \(bonus\)](#page-53-0)

Evaluation Approach

- \circ 500+ diverse datasets
	- \triangleright 525 multi-class from <openml.org> (text, bio, medical, sensor, synthetic)
	- \blacktriangleright 5 multi-lahel
	- \triangleright 3 cost-sensitive
- Supervised $(x_t, c_t) \rightarrow$ only reveal $c_t(a_t)$ in <code>CB</code>
- Online learning, linear models in Vowpal Wabbit (<hunch.net/~vw>) \bullet

Evaluation Approach

- \circ 500+ diverse datasets
	- \triangleright 525 multi-class from <openml.org> (text, bio, medical, sensor, synthetic)
	- \blacktriangleright 5 multi-label
	- \triangleright 3 cost-sensitive
- Supervised $(x_t, c_t) \rightarrow$ only reveal $c_t(a_t)$ in <code>CB</code>
- Online learning, linear models in Vowpal Wabbit (<hunch.net/~vw>) \bullet
- **Progressive validation** loss (Blum et al., 1999)

$$
PV = \frac{1}{T} \sum_{t=1}^{T} c_t(a_t)
$$

- Compare A vs B using statistical test on PV
	- $\triangleright \#$ of datasets where A significantly wins against B

Greed is Good, Optimism is Best

significant win-loss difference, fixed hyperparameters, -1/0 encoding

Greed is Good, Optimism is Best

significant win-loss difference, fixed hyperparameters, -1/0 encoding

Similar results for subsets with large T , large $\#$ features, large K

Cover can be preferred

Cover can be preferred

More robust to difficult datasets, but less efficient

Cover can be preferred

optimized hyperparams

More adaptive variant would be desirable

Easy Data?

- Better exploration when supervised learning does well? \bullet
- "first-order" bounds (open problem for CBs: Agarwal et al., 2017)
- Exploration algorithms (especially Cover-NU) not so good

Easy Data?

Easy Data?

Reductions

- Doubly Robust always better than IPS
- \bullet When appropriate (ϵ -Greedy, Bagging), IWR is best
	- \blacktriangleright Better performance
	- \triangleright Computationally more efficient

Reductions

ϵ -Greedy Bag

Loss Encoding

- Binary outcomes: how to encode loss of success/failure? \bullet
- Provides initial bias, can lead to lower variance
- \circ -1/0 is a good default choice
- Rule of thumb: -1/0 better if "failure" is common \bullet
	- \blacktriangleright e.g. no click more frequent than click
- \bullet 0/1 can be better once learner selects good actions
	- \blacktriangleright e.g. large, easy dataset

Loss Encoding

significant win/loss of -1/0 vs 0/1

datasets			C -nu	$B - g$	
	136 / 42 60 / 47 76 / 46 77 / 27 99 / 27				
>10,000		$19/12$ $10/18$ $14/20$ $15/11$			- 14 / 5

Global additive constant in loss estimator

$$
\hat{\ell}(x,a) = c + \theta_a^{\top} x
$$

Learn with separate online update

 \bullet Global additive constant in loss estimator

$$
\hat{\ell}(x,a) = c + \theta_a^{\top} x
$$

- Learn with separate online update
- Good to fight initial **pessimism** (e.g. -1/0) in \bullet Greedy/RegCB-optimistic
- Adapt to unknown loss range

Greedy and RegCB-opt, it can significantly help against pessimistic initial costs in some α

Outline

[The Bake-Off](#page-34-0)

Active ϵ -Greedy: motivation

- \circ ϵ -Greedy often a simple default method
- **But**: uniform exploration on all actions is too costly! \bullet

Active ϵ -Greedy: motivation

- \bullet ϵ -Greedy often a simple default method
- **But**: uniform exploration on all actions is too costly! \bullet
- Can we avoid exploring on actions that we know are not useful? \bullet
- Only explore if action is plausibly taken by optimal policy
	- \triangleright Using techniques from disagreement-based active learning

Active ϵ -Greedy: algorithm

After observing x_t , for any action a

- **F** try to find a **good** policy with $\pi(x_t) = a$
- \triangleright if found, there is disagreement \implies explore
- ► if not found, $\pi^*(x_t) \neq a$ w.h.p \implies don't explore

Good policy: small loss difference $\hat{L}_{t-1}(\pi_{t,\bar{\mathsf{a}}}) - \hat{L}_{t-1}(\pi_t)$

$$
\pi_t = \arg\min_{\pi} \hat{L}_{t-1}(\pi)
$$

$$
\pi_{t,\bar{a}} = \arg\min_{\pi:\pi(x_t)=\bar{a}} \hat{L}_{t-1}(\pi).
$$

- \triangleright Can be computed using importance weight sensitivity analysis
- \bullet Explore with ϵ mass on each disagreeing actions, greedily otherwise

Active ϵ -Greedy: algorithm

Algorithm 6 Active ϵ -greedy π_1 ; ϵ ; $C_0 > 0$. $explore(x_t):$ $A_t = \{a : \texttt{loss_diff}(\pi_t, x_t, a) \leq \Delta_{t,C_0} \};$ $p_t(a) = \frac{\epsilon}{K} \mathbb{1}\{a \in A_t\} + (1 - \frac{\epsilon |A_t|}{K}) \mathbb{1}\{\pi_t(x_t) = a\};$ return p_t ; $\tan(x_t, a_t, \ell_t(a_t), p_t)$: $\hat{\ell}_t =$ estimator $(x_t, a_t, \ell_t(a_t), p_t(a_t));$ $\hat{c}_t(a) = \begin{cases} \hat{\ell}_t(a), & \text{if } p_t(a) > 0 \\ 1, & \text{otherwise.} \end{cases}$ $\pi_{t+1} = \texttt{csc_oracle}(\pi_t, x_t, \hat{c}_t);$

Appendix C. Active ✏-greedy: Practical Algorithm and Analysis This section presents our active ✏-greedy method, a variant of ✏-greedy that reduces the amount of uniform exploration using techniques from active learning. Section C.1 introduces 27 ∆t*,*C0 = s C0 K log t t + C⁰ K log t t

Active ϵ -Greedy: algorithm

Active ϵ -Greedy: theory

Worst-case regret is similar to ϵ -Greedy $(\tilde{O}(\,T^{2/3}))$

$$
O(T^{2/3}(K\log(T|\Pi|/\delta))^{1/3})
$$

 \bullet Under favorable conditions (disagreement $+$ Massart noise), regret improves to $\tilde{O}(\,T^{1/3})$

$$
O\left(\frac{1}{\tau}(\theta K\log(\left.7\left|\Pi\right|/\delta\right))^{2/3}(\left.T\log\left.T\right)^{1/3}\right)\right.
$$

- Better than minimax rate of Mini-Monster: $\mathit{O}(\sqrt{KT\log(T|\Pi|/\delta)})$ \bullet
- But, RegCB has **logarithmic** regret in similar conditions with \bullet realizability...

Conclusion

- RegCB and Greedy dominate, but need strong modeling assumptions
- Cover-NU more robust on difficult datasets, but too conservative otherwise
- $\bullet \implies$ need new robust $+$ adaptive algorithms
- Simple practical design choices can matter a lot (reductions, \bullet encodings)
- Caveats/discussion:
	- \triangleright Only i.i.d., what about non-stationary, or adversarial?
	- \triangleright Non-linear policy classes?
	- \triangleright Online vs Batch?

References I

- A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. E. Schapire. Taming the monster: A fast and simple algorithm for contextual bandits. arXiv preprint arXiv:1402.0555, 2014.
- A. Agarwal, A. Krishnamurthy, J. Langford, H. Luo, et al. Open problem: First-order regret bounds for contextual bandits. In Conference on Learning Theory (COLT), 2017.
- H. Bastani, M. Bayati, and K. Khosravi. Mostly exploration-free algorithms for contextual bandits. arXiv preprint arXiv:1704.09011, 2017.
- A. Blum, A. Kalai, and J. Langford. Beating the hold-out: Bounds for k-fold and progressive cross-validation. In Conference on Learning Theory (COLT), 1999.
- M. Dudik, J. Langford, and L. Li. Doubly robust policy evaluation and learning. In Proceedings of the International Conference on Machine Learning (ICML), 2011.
- D. Eckles and M. Kaptein. Thompson sampling with the online bootstrap. arXiv preprint arXiv:1410.4009, 2014.

References II

- D. J. Foster, A. Agarwal, M. Dudík, H. Luo, and R. E. Schapire. Practical contextual bandits with regression oracles. In Proceedings of the International Conference on Machine Learning (ICML), 2018.
- S. Kannan, J. Morgenstern, A. Roth, B. Waggoner, and Z. S. Wu. A smoothed analysis of the greedy algorithm for the linear contextual bandit problem. In Advances in Neural Information Processing Systems (NIPS), 2018.
- J. Langford and T. Zhang. The epoch-greedy algorithm for multi-armed bandits with side information. In Advances in Neural Information Processing Systems (NIPS), 2007.
- I. Osband and B. Van Roy. Bootstrapped thompson sampling and deep exploration. arXiv preprint arXiv:1507.00300, 2015.