Practical Contextual Bandits

Alberto Bietti¹ Alekh Agarwal² John Langford²

¹Inria, Grenoble ²MSR, NY

Télécom ParisTech. December 20th, 2018.

A Contextual Bandit Bake-Off

Alberto Bietti¹ Alekh Agarwal² John Langford²

¹Inria, Grenoble ²MSR, NY

Télécom ParisTech. December 20th, 2018.

Contextual Bandits

Describes many real-world interactive machine learning problems

Onl (Ad) How Type		online learning			
Onl (Ad) How Type	News Images	Videos	Books	More	Settings Tools
(Ad) How Type	t 2,850,000,000 results ((0.65 seconds	;)		
Ude	Online Learning Download the Whitepaper huronconsultinggroup.com (Ag www.huronconsultinggroup.com) ← How To Build Higher Education's Future Business Model? Find Out In Huron's Article. Inquire Online. Types: Hospitals, Health Systems, Medical Group, Physician Groups. RFP Submission Form · Subscribe To Newsletter · Enterprise Solutions · Business Advisory Udemy™ Official Site 80,000+ Online Courses udemy.com				
Ad	www.udemy.com/ 🔻				g On Udemy! Find the right
	uctor for you. Any topic,				
Onl	line machine learr	ning - Wiki	ipedia		
https	s://en.wikipedia.org/wik	d/Online_ma	chine_learr	ning 🔻	
	omputer science, online				earning in which data
	omes available in a seque				

Ad placement, recommender systems, medical treatment assignment, ...

Contextual Bandits

Repeat:

- Observe context $x_t \in \mathcal{X}$
 - ► search query, info about user/item
- Choose action $a_t \in \{1, \dots, K\}$
 - advertisement, news story, medical treatment
- Observe loss $\ell_t(a_t) \in [0,1]$ (or \mathbb{R})
 - $\blacktriangleright\,$ click/no click, revenue, treatment outcome

Goal: minimize cumulative loss $\sum_{t=1}^{T} \ell_t(a_t)$

Contextual Bandits

Repeat:

- Observe context $x_t \in \mathcal{X}$
 - ► search query, info about user/item
- Choose action $a_t \in \{1, \dots, K\}$
 - advertisement, news story, medical treatment
- Observe loss $\ell_t(a_t) \in [0,1]$ (or \mathbb{R})
 - click/no click, revenue, treatment outcome

Goal: minimize cumulative loss $\sum_{t=1}^{T} \ell_t(a_t)$ **Need exploration!**

Stochastic Contextual Bandits

•
$$(x_t, \ell_t) \in \mathcal{X} imes [0, 1]^K$$
 sampled i.i.d. from \mathcal{D}

- Policy class Π of policies $\pi : \mathcal{X} \to \{1, \dots, K\}$
 - e.g., linear $\pi(x) = \arg \min_a \theta_a^\top x$
- Exploration algorithm: $a_t \sim p_t(\cdot)$

Stochastic Contextual Bandits

•
$$(x_t, \ell_t) \in \mathcal{X} \times [0, 1]^K$$
 sampled i.i.d. from \mathcal{D}

- Policy class Π of policies $\pi : \mathcal{X} \to \{1, \dots, K\}$
 - e.g., linear $\pi(x) = \arg \min_a \theta_a^\top x$
- Exploration algorithm: $a_t \sim p_t(\cdot)$
- Optimal policy: $\pi^* := \arg \min_{\pi \in \Pi} \mathbb{E}_{(x,\ell) \sim \mathcal{D}}[\ell(\pi(x))]$
- **Goal**: minimize regret against π^* :

$$R_{T} := \sum_{t=1}^{T} \ell_{t}(a_{t}) - \sum_{t=1}^{T} \ell_{t}(\pi^{*}(x_{t}))$$

Theory vs Practice

Theory: efficient exploration

- not always statistically efficient (e.g. only worst case)
- not always computationally efficient (e.g. covariance matrix in high dimensions)
- little empirical evaluation

Theory vs Practice

Theory: efficient exploration

- not always statistically efficient (e.g. only worst case)
- not always computationally efficient (e.g. covariance matrix in high dimensions)
- little empirical evaluation

Practice (this work)

- large-scale evaluation on 500+ datasets
- practical, efficient methods using optimization oracles
- improved, online implementations (Vowpal Wabbit)

Outline

- 3 The Bake-Off
- 4 Active ϵ -Greedy (bonus)

Optimization Oracles

- Leverage supervised learning algorithms for general policies
- Cost-sensitive classification (CSC) oracle:

$$\arg\min_{\pi\in\Pi}\sum_{t=1}^{T}c_t(\pi(x_t))$$

• **Regression** oracle (importance-weighted):

$$\arg\min_{f\in\mathcal{F}}\sum_{t=1}^{T}\omega_t(f(x_t,a_t)-y_t)^2$$

• Construct (x_t, c_t) or (x_t, a_t, y_t) from observed data

Reduction to Off-policy learning

Common strategy:

- ► find good "exploitation" policy π_t using past observed data
- ► act according to this policy, but also explore to get useful data
- Interaction data: $(x_t, a_t, \ell_t(a_t), p_t(a_t)), t < T$

Reduction to Off-policy learning

- Common strategy:
 - ▶ find good "exploitation" policy π_t using past observed data
 - ▶ act according to this policy, but also explore to get useful data
- Interaction data: $(x_t, a_t, \ell_t(a_t), p_t(a_t)), t < T$
- Off-policy: data collected using different policies p_t
- Find π_T s.t. $L(\pi_T) \approx \min_{\pi} L(\pi)$, with $L(\pi) = \mathbb{E}_{\mathcal{D}}[\ell(\pi(x))]$
- Typically need uniform exploration: $p_t(a) > 0$ for all a
- How? loss estimation!

Reduction to Off-policy learning: loss estimation

- Construct $\hat{\ell}_t$ from observed data s.t. $\frac{1}{T} \sum_{t=1}^T \hat{\ell}_t(\pi(x_t)) \approx L(\pi)$
- Learn via CSC with examples $(x_t, \hat{\ell}_t)$

Reduction to Off-policy learning: loss estimation

- Construct $\hat{\ell}_t$ from observed data s.t. $\frac{1}{T} \sum_{t=1}^T \hat{\ell}_t(\pi(x_t)) \approx L(\pi)$
- Learn via CSC with examples $(x_t, \hat{\ell}_t)$
- IPS (inverse propensity scoring)

$$\hat{\ell}_t(a) := \frac{\ell_t(a_t)}{p_t(a_t)} \mathbb{1}\{a = a_t\}$$

Reduction to Off-policy learning: loss estimation

- Construct $\hat{\ell}_t$ from observed data s.t. $\frac{1}{T} \sum_{t=1}^T \hat{\ell}_t(\pi(x_t)) \approx L(\pi)$
- Learn via CSC with examples $(x_t, \hat{\ell}_t)$
- IPS (inverse propensity scoring)

$$\hat{\ell}_t(a) := rac{\ell_t(a_t)}{p_t(a_t)} \, \mathbbm{1}\{a = a_t\}$$

• DR (doubly robust, Dudik et al., 2011)

$$\hat{\ell}_t(a) := rac{\ell_t(a_t) - \hat{\ell}(x_t, a_t)}{p_t(a_t)} \, \mathbb{1}\{a = a_t\} + \hat{\ell}(x_t, a)$$

- $\hat{\ell}$ trained via regression on observed data
- Both **unbiased** when $p_t(\cdot) > 0$, DR has **lower variance**

Reduction to Off-policy learning: IWR

• Importance-weighted regression (IWR) reduction:

$$\hat{f} := \arg\min_{f\in\mathcal{F}}\sum_{t=1}^T \frac{1}{p_t(a_t)}(f(x_t, a_t) - \ell_t(a_t))^2,$$

• Computational/optimization benefits: only update a single action, importance-weighted updates

Practical Considerations

- CSC harder than regression (approximated with K regressors)
- online learning: online updates for policies/regressors
- loss encodings: $\ell_t(a_t) \in \{0,1\}$ or $\{-1,0\}$ for binary costs?
 - ▶ e.g. for click/no click outcomes
 - ► important design choice for better performance (lower variance)
- **baseline**: learn global additive constant separately
- learning dynamics: random tie breaking, pessimistic initialization

10 / 30

Outline

3 The Bake-Off

4 Active ϵ -Greedy (bonus)

CB algorithm families

- ϵ -Greedy
- Greedy
- Thompson Sampling
- Optimism
- "(mini-)monster" (Agarwal et al., 2014)

ϵ -Greedy (Langford and Zhang, 2007)

• Always explore uniformly with prob. ϵ

$$p_t(a) = \epsilon/K + (1-\epsilon) \mathbb{1}\{\pi_t(x_t) = a\}$$

• Learn by reduction to off-policy learning (IPS/DR/IWR)

$$\pi_{t+1} \leftarrow oracle(\pi_t, (x_t, a_t, \ell_t(a_t), p_t(a_t)))$$

ϵ -Greedy (Langford and Zhang, 2007)

• Always explore uniformly with prob. ϵ

$$p_t(a) = \epsilon/K + (1-\epsilon) \mathbb{1}\{\pi_t(x_t) = a\}$$

• Learn by reduction to off-policy learning (IPS/DR/IWR)

$$\pi_{t+1} \leftarrow \textit{oracle}(\pi_t, (x_t, a_t, \ell_t(a_t), p_t(a_t)))$$

- $\sqrt{T/\epsilon}$ (exploit) + $T\epsilon$ (explore) $\rightarrow O(T^{2/3})$ regret
- Lots of wasted exploration
 - ► "active" *ϵ*-greedy variant can improve this (see below)

Greedy

• Take $\epsilon = 0$ in ϵ -Greedy with regression oracle:

$$a_t = \arg\min_a f_t(x_t, a)$$

- Can still explore enough!
- Leverage **diversity** in the contexts (Bastani et al., 2017; Kannan et al., 2018)
- Performs surprisingly well on many datasets

Bag (bootstrap Thompson Sampling)

- Thompson Sampling: maintain posterior over policies
- Approximate this posterior using (online) bootstrap (Agarwal et al., 2014; Eckles and Kaptein, 2014; Osband and Van Roy, 2015)

Bag (bootstrap Thompson Sampling)

- Thompson Sampling: maintain posterior over policies
- Approximate this posterior using (online) bootstrap (Agarwal et al., 2014; Eckles and Kaptein, 2014; Osband and Van Roy, 2015)
- Maintain N policies π^1, \ldots, π^N
- Explore uniformly over policies
- Update each using a bootstrap sample of exploration data (via reduction)
- **Bag-greedy**: π^1 uses regular sample instead of bootstrap

Bag (bootstrap Thompson Sampling)

 $\label{eq:alpha} \hline \begin{array}{l} \hline \textbf{Algorithm 3 Bag} \\ \hline \pi_1^1, \dots, \pi_1^N. \\ \texttt{explore}(x_t): \\ \texttt{return } p_t(a) \propto |\{i: \pi_t^i(x_t) = a\}|;^3 \\ \texttt{learn}(x_t, a_t, \ell_t(a_t), p_t): \\ \texttt{for } i = 1, \dots, N \ \texttt{do} \\ \hline \tau^i \sim Poisson(1); \\ \pi_{t+1}^i = \texttt{oracle}^{\tau^i}(\pi_t^i, x_t, a_t, \ell_t(a_t), p_t(a_t)); \\ \texttt{end for} \end{array} \qquad \{ \texttt{with } \tau^1 = 1 \ \texttt{for bag-greedy} \}$

15 / 30

- "mini-monster": minimax optimal + computationally "efficient"
- Maintain a distribution over policies that are good for exploration and exploitation (low regret + low variance)

- "mini-monster": minimax optimal + computationally "efficient"
- Maintain a distribution over policies that are good for exploration and exploitation (low regret + low variance)
- In practice: N policies π^1, \ldots, π^N
- Explore uniformly over policies
- Update π^1 using IPS/DR
- Subsequent policies use CSC with additional cost to encourage **diverse** policies

16 / 30

- "mini-monster": minimax optimal + computationally "efficient"
- Maintain a distribution over policies that are good for exploration and exploitation (low regret + low variance)
- In practice: N policies π^1, \ldots, π^N
- Explore uniformly over policies
- Update π^1 using IPS/DR
- Subsequent policies use CSC with additional cost to encourage diverse policies
- Cover-NU: remove uniform exploration on all actions (required from theory)
- Still often too much exploration by design

Algorithm 4 Cover $\pi_1^1, \ldots, \pi_1^N; \epsilon_t = \min(1/K, 1/\sqrt{Kt}); \psi > 0.$ $explore(x_t)$: $p_t(a) \propto |\{i : \pi_t^i(x_t) = a\}|;$ return $\epsilon_t + (1 - \epsilon_t)p_t$; {for cover} return p_t : {for cover-nu} $learn(x_t, a_t, \ell_t(a_t), p_t)$: $\pi_{t+1}^1 = \text{oracle}(\pi_t^1, x_t, a_t, \ell_t(a_t), p_t(a_t));$ $\hat{\ell}_t = \texttt{estimator}(x_t, a_t, \ell_t(a_t), p_t(a_t));$ for $i = 2, \ldots, N$ do $q_i(a) \propto |\{j \le i - 1 : \pi_{t+1}^j(x_t) = a\}|;$ $\hat{c}(a) = \hat{\ell}_t(a) - \frac{\psi \epsilon_t}{\epsilon_t + (1 - \epsilon_t) a_t(a)};$ $\pi_{t+1}^i = \texttt{csc_oracle}(\pi_t^i, x_t, \hat{c});$ end for

RegCB (Foster et al., 2018)

• Construct **confidence bounds** on each action based on good regressors for loss estimation

$$\mathcal{F}_{t} = \{f \in \mathcal{F} : MSE(f, \mathcal{D}_{t}) - \min_{f \in \mathcal{F}} MSE(f, \mathcal{D}_{t}) \le C/t\}$$
$$LCB(x_{t}, a) = \min_{f \in \mathcal{F}_{t-1}} f(x_{t}, a)$$
$$UCB(x_{t}, a) = \max_{f \in \mathcal{F}_{t-1}} f(x_{t}, a)$$

RegCB (Foster et al., 2018)

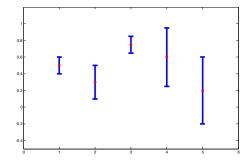
• Construct **confidence bounds** on each action based on good regressors for loss estimation

$$\mathcal{F}_{t} = \{f \in \mathcal{F} : MSE(f, \mathcal{D}_{t}) - \min_{f \in \mathcal{F}} MSE(f, \mathcal{D}_{t}) \le C/t\}$$
$$LCB(x_{t}, a) = \min_{f \in \mathcal{F}_{t-1}} f(x_{t}, a)$$
$$UCB(x_{t}, a) = \max_{f \in \mathcal{F}_{t-1}} f(x_{t}, a)$$

- LCB and UCB can be computed efficiently using regression oracles
- Even with online learning, using importance weight sensitivity
- Explore using **optimism**, or uniform **sampling** over surviving actions

17 / 30

RegCB (Foster et al., 2018)



RegCB (Foster et al., 2018)

Algorithm 5 RegCB

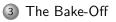
 $\begin{array}{l} f_1; \ C_0 > 0. \\ \texttt{explore}(x_t): \\ l_t(a) = \texttt{lcb}(f_t, x_t, a, \Delta_{t,C_0}); \\ u_t(a) = \texttt{ucb}(f_t, x_t, a, \Delta_{t,C_0}); \\ p_t(a) \propto \mathbbm{1}\{a \in \arg\min_{a'} l_t(a')\}; \\ p_t(a) \propto \mathbbm{1}\{l_t(a) \leq \min_{a'} u_t(a')\}; \\ \texttt{return} \ p_t; \\ \texttt{learn}(x_t, a_t, \ell_t(a_t), p_t): \end{array}$

 $f_{t+1} = \operatorname{reg_oracle}(f_t, x_t, a_t, \ell_t(a_t));$

{RegCB-opt variant} {RegCB-elim variant}

Outline

2 Algorithms



4 Active ϵ -Greedy (bonus)

Evaluation Approach

- 500+ diverse datasets
 - ▶ 525 multi-class from openml.org (text, bio, medical, sensor, synthetic)
 - 5 multi-label
 - ► 3 cost-sensitive
- Supervised $(x_t, c_t) \rightarrow \text{only reveal } c_t(a_t) \text{ in CB}$
- Online learning, linear models in Vowpal Wabbit (hunch.net/~vw)

Evaluation Approach

- 500+ diverse datasets
 - ▶ 525 multi-class from openml.org (text, bio, medical, sensor, synthetic)
 - 5 multi-label
 - 3 cost-sensitive
- Supervised $(x_t, c_t) \rightarrow$ only reveal $c_t(a_t)$ in CB
- Online learning, linear models in Vowpal Wabbit (hunch.net/~vw)
- Progressive validation loss (Blum et al., 1999)

$$PV = rac{1}{T}\sum_{t=1}^{T}c_t(a_t)$$

- Compare A vs B using statistical test on PV
 - $\blacktriangleright~\#$ of datasets where A significantly wins against B

Greed is Good, Optimism is Best

significant win-loss difference, fixed hyperparameters, -1/0 encoding

\downarrow vs \rightarrow	G	RO	C-nu	B-g	ϵG
G	-	-7	10	50	54
RO	7	-	26	49	68
C-nu	-10	-26	-	22	57
B-g	-50	-49	-22	-	17
εG	-54	-68	-57	-17	-

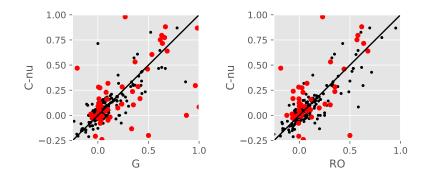
Greed is Good, Optimism is Best

significant win-loss difference, fixed hyperparameters, -1/0 encoding

\downarrow vs \rightarrow	G	RO	C-nu	B-g	ϵG
G	-	-7	10	50	54
RO	7	-	26	49	68
C-nu	-10	-26	-	22	57
B-g	-50	-49	-22	-	17
ϵG	-54	-68	-57	-17	-

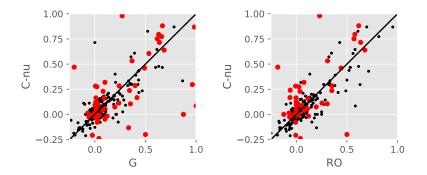
Similar results for subsets with large T, large # features, large K

Cover can be preferred



21 / 30

Cover can be preferred



More robust to difficult datasets, but less efficient

Cover can be preferred

\downarrow vs \rightarrow	G	RO	C-nu	B-g	εG
G	-	-23	-50	16	92
RO	23	-	-3	42	112
C-nu	50	3	-	64	142
B-g	-16	-42	-64	-	90
ϵG	-92	-112	-142	-90	-

optimized hyperparams

More adaptive variant would be desirable

Easy Data?

- Better exploration when supervised learning does well?
- "first-order" bounds (open problem for CBs: Agarwal et al., 2017)
- Exploration algorithms (especially Cover-NU) not so good

Easy Data?

\downarrow vs \rightarrow	G	RO	C-nu	B-g	ϵG	
G	-	1	25	40	36	
RO	-1	-	26	36	43	
C-nu	-25	-26	-	7	24	
B-g	-40	-36	-7	-	4	
ϵG	-36	-43	-24	-4	-	
$PV_{OAA} \le 0.2 \ (135 \ datasets)$						

\downarrow vs \rightarrow	G	RO	C-nu	B-g	єG	
G	-	1	14	8	15	
RO	-1	-	12	5	16	
C-nu	-14	-12	-	-12	5	
B-g	-8	-5	12	-	10	
ϵG	-15	-16	-5	-10	-	
$PV_{OAA} \le 0.05$ (28 datasets)						

Easy Data?

\downarrow vs $ ightarrow$	G	RO	C-nu	B-g	ϵG
G	-	2	8	5	12
RO	-2	-	8	4	12
C-nu	-8	-8	-	-1	12
B-g	-5	-4	1	-	11
ϵG	-12	-12	-12	-11	-
$n \ge 10000$	and I	PV _{OAA}	\leq 0.1 (13 dat	asets

Reductions

- Doubly Robust always better than IPS
- When appropriate (ϵ -Greedy, Bagging), IWR is best
 - Better performance
 - Computationally more efficient

Reductions

$\epsilon\text{-}\mathsf{Greedy}$

Bag

\downarrow vs \rightarrow	ips	dr	iwr
ips	-	-42	-59
dr	42	-	-28
iwr	59	28	-

\downarrow vs \rightarrow	ips	dr	iwr
ips	-	63	-133
dr	-63	-	-155
iwr	133	155	-

Loss Encoding

- Binary outcomes: how to encode loss of success/failure?
- Provides initial bias, can lead to lower variance
- -1/0 is a good default choice
- Rule of thumb: -1/0 better if "failure" is common
 - e.g. no click more frequent than click
- \circ 0/1 can be better once learner selects good actions
 - e.g. large, easy dataset

Loss Encoding

significant win/loss of -1/0 vs 0/1

datasets	G	RO	C-nu	B-g	ϵG
all	136 / 42	60 / 47	76 / 46	77 / 27	99 / 27
\geq 10,000	19 / 12	10 / 18	14 / 20	15 / 11	14 / 5

• Global additive constant in loss estimator

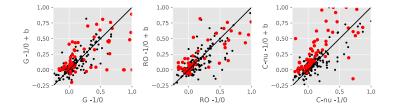
$$\hat{\ell}(x,a) = c + \theta_a^\top x$$

• Learn with separate online update

Global additive constant in loss estimator

$$\hat{\ell}(x,a) = c + \theta_a^\top x$$

- Learn with separate online update
- Good to fight initial **pessimism** (e.g. -1/0) in Greedy/RegCB-optimistic
- Adapt to unknown loss range





Outline

4 Active ϵ -Greedy (bonus)

Active ϵ -Greedy: motivation

- ϵ -Greedy often a simple default method
- But: uniform exploration on all actions is too costly!

Active ϵ -Greedy: motivation

- ϵ -Greedy often a simple default method
- But: uniform exploration on all actions is too costly!
- Can we avoid exploring on actions that we know are not useful?
- Only explore if action is plausibly taken by optimal policy
 - ► Using techniques from disagreement-based active learning

Active ϵ -Greedy: algorithm

• After observing x_t, for any action a

- try to find a **good** policy with $\pi(x_t) = a$
- if found, there is disagreement \implies explore
- ► if not found, $\pi^*(x_t) \neq a$ w.h.p \implies don't explore

• Good policy: small loss difference $\hat{L}_{t-1}(\pi_{t,\bar{a}}) - \hat{L}_{t-1}(\pi_t)$

$$\pi_t = \arg\min_{\pi} \hat{L}_{t-1}(\pi)$$

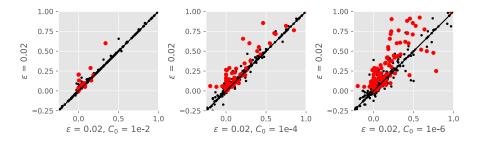
 $\pi_{t,\bar{a}} = \arg\min_{\pi:\pi(x_t)=\bar{a}} \hat{L}_{t-1}(\pi).$

- ► Can be computed using importance weight sensitivity analysis
- Explore with ϵ mass on each disagreeing actions, greedily otherwise

Active ϵ -Greedy: algorithm

$$\Delta_{t,C_0} = \sqrt{C_0 \frac{K \log t}{\epsilon t}} + C_0 \frac{K \log t}{\epsilon t}$$

Active ϵ -Greedy: algorithm



Active ϵ -Greedy: theory

• Worst-case regret is similar to ϵ -Greedy ($\tilde{O}(T^{2/3})$)

$$O(T^{2/3}(K \log(T|\Pi|/\delta))^{1/3})$$

 \bullet Under favorable conditions (disagreement + Massart noise), regret improves to $\tilde{O}(\,{\cal T}^{1/3})$

$$O\left(rac{1}{ au}(heta \mathcal{K} \log(\mathcal{T} |\Pi| / \delta))^{2/3} (\mathcal{T} \log \mathcal{T})^{1/3}
ight)$$

- Better than minimax rate of Mini-Monster: $O(\sqrt{KT \log(T|\Pi|/\delta)})$
- But, RegCB has **logarithmic** regret in similar conditions with realizability...

Conclusion

- RegCB and Greedy dominate, but need strong modeling assumptions
- Cover-NU more robust on difficult datasets, but too conservative otherwise
- \implies need new robust + adaptive algorithms
- Simple practical design choices can matter a lot (reductions, encodings)
- Caveats/discussion:
 - ► Only i.i.d., what about non-stationary, or adversarial?
 - Non-linear policy classes?
 - Online vs Batch?

References I

- A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. E. Schapire. Taming the monster: A fast and simple algorithm for contextual bandits. arXiv preprint arXiv:1402.0555, 2014.
- A. Agarwal, A. Krishnamurthy, J. Langford, H. Luo, et al. Open problem: First-order regret bounds for contextual bandits. In *Conference on Learning Theory (COLT)*, 2017.
- H. Bastani, M. Bayati, and K. Khosravi. Mostly exploration-free algorithms for contextual bandits. *arXiv preprint arXiv:1704.09011*, 2017.
- A. Blum, A. Kalai, and J. Langford. Beating the hold-out: Bounds for k-fold and progressive cross-validation. In *Conference on Learning Theory (COLT)*, 1999.
- M. Dudik, J. Langford, and L. Li. Doubly robust policy evaluation and learning. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2011.
- D. Eckles and M. Kaptein. Thompson sampling with the online bootstrap. *arXiv* preprint arXiv:1410.4009, 2014.

References II

- D. J. Foster, A. Agarwal, M. Dudík, H. Luo, and R. E. Schapire. Practical contextual bandits with regression oracles. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2018.
- S. Kannan, J. Morgenstern, A. Roth, B. Waggoner, and Z. S. Wu. A smoothed analysis of the greedy algorithm for the linear contextual bandit problem. In *Advances in Neural Information Processing Systems (NIPS)*, 2018.
- J. Langford and T. Zhang. The epoch-greedy algorithm for multi-armed bandits with side information. In *Advances in Neural Information Processing Systems* (*NIPS*), 2007.
- I. Osband and B. Van Roy. Bootstrapped thompson sampling and deep exploration. *arXiv preprint arXiv:1507.00300*, 2015.