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Contextual Bandits

Describes many real-world interactive machine learning problems

Ad placement, recommender systems, medical treatment assignment, . . .
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Contextual Bandits

Repeat:
Observe context xt ∈ X

I search query, info about user/item
Choose action at ∈ {1, . . . ,K}

I advertisement, news story, medical treatment
Observe loss `t(at) ∈ [0, 1] (or R)

I click/no click, revenue, treatment outcome
Goal: minimize cumulative loss

∑T
t=1 `t(at)

Need exploration!
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Stochastic Contextual Bandits

(xt , `t) ∈ X × [0, 1]K sampled i.i.d. from D
Policy class Π of policies π : X → {1, . . . ,K}

I e.g., linear π(x) = argmina θ
>
a x

Exploration algorithm: at ∼ pt(·)

Optimal policy: π∗ := argminπ∈Π E(x ,`)∼D[`(π(x))]
Goal: minimize regret against π∗:

RT :=
T∑

t=1
`t(at)−

T∑
t=1

`t(π∗(xt))
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Theory vs Practice

Theory: efficient exploration
not always statistically efficient (e.g. only worst case)
not always computationally efficient (e.g. covariance matrix in high
dimensions)
little empirical evaluation

Practice (this work)
large-scale evaluation on 500+ datasets
practical, efficient methods using optimization oracles
improved, online implementations (Vowpal Wabbit)
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Outline

1 Toolkit

2 Algorithms

3 The Bake-Off

4 Active ε-Greedy (bonus)
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Optimization Oracles

Leverage supervised learning algorithms for general policies
Cost-sensitive classification (CSC) oracle:

argmin
π∈Π

T∑
t=1

ct(π(xt))

Regression oracle (importance-weighted):

argmin
f ∈F

T∑
t=1

ωt(f (xt , at)− yt)2

Construct (xt , ct) or (xt , at , yt) from observed data
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Reduction to Off-policy learning

Common strategy:
I find good “exploitation” policy πt using past observed data
I act according to this policy, but also explore to get useful data

Interaction data: (xt , at , `t(at), pt(at)), t < T

Off-policy: data collected using different policies pt

Find πT s.t. L(πT ) ≈ minπ L(π), with L(π) = ED[`(π(x))]
Typically need uniform exploration: pt(a) > 0 for all a
How? loss estimation!
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Reduction to Off-policy learning: loss estimation

Construct ˆ̀t from observed data s.t. 1
T
∑T

t=1 ˆ̀t(π(xt)) ≈ L(π)
Learn via CSC with examples (xt , ˆ̀t)

IPS (inverse propensity scoring)

ˆ̀t(a) := `t(at)
pt(at) 1{a = at}

DR (doubly robust, Dudik et al., 2011)

ˆ̀t(a) := `t(at)− ˆ̀(xt , at)
pt(at) 1{a = at}+ ˆ̀(xt , a)

I ˆ̀ trained via regression on observed data
Both unbiased when pt(·) > 0, DR has lower variance
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Reduction to Off-policy learning: IWR

Importance-weighted regression (IWR) reduction:

f̂ := argmin
f ∈F

T∑
t=1

1
pt(at)(f (xt , at)− `t(at))2,

Computational/optimization benefits: only update a single action,
importance-weighted updates
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Practical Considerations

CSC harder than regression (approximated with K regressors)
online learning: online updates for policies/regressors
loss encodings: `t(at) ∈ {0, 1} or {−1, 0} for binary costs?

I e.g. for click/no click outcomes
I important design choice for better performance (lower variance)

baseline: learn global additive constant separately
learning dynamics: random tie breaking, pessimistic initialization
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Outline

1 Toolkit

2 Algorithms

3 The Bake-Off

4 Active ε-Greedy (bonus)
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CB algorithm families

ε-Greedy
Greedy
Thompson Sampling
Optimism
“(mini-)monster” (Agarwal et al., 2014)
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ε-Greedy (Langford and Zhang, 2007)

Always explore uniformly with prob. ε

pt(a) = ε/K + (1− ε)1{πt(xt) = a}

Learn by reduction to off-policy learning (IPS/DR/IWR)

πt+1 ← oracle(πt , (xt , at , `t(at), pt(at)))

√
T/ε (exploit) + T ε (explore) → O(T 2/3) regret

Lots of wasted exploration
I “active” ε-greedy variant can improve this (see below)
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Greedy

Take ε = 0 in ε-Greedy with regression oracle:

at = argmin
a

ft(xt , a)

Can still explore enough!
Leverage diversity in the contexts (Bastani et al., 2017; Kannan
et al., 2018)
Performs surprisingly well on many datasets
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Bag (bootstrap Thompson Sampling)

Thompson Sampling: maintain posterior over policies
Approximate this posterior using (online) bootstrap (Agarwal et al.,
2014; Eckles and Kaptein, 2014; Osband and Van Roy, 2015)

Maintain N policies π1, . . . , πN

Explore uniformly over policies
Update each using a bootstrap sample of exploration data (via
reduction)
Bag-greedy: π1 uses regular sample instead of bootstrap
Simple generic method, efficient for large # actions with IWR
Often too much variance from bootstrap
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Bag (bootstrap Thompson Sampling)

Bietti, Agarwal and Langford

policy optimization, through any of the three reductions presented in Section 2.3. We also
experimented with a variant we call active ✏-greedy, that uses notions from disagreement-
based active learning (Hanneke, 2014; Hsu, 2010) in order to reduce uniform exploration
to only actions that could plausibly be taken by the optimal policy. This approach is
detailed in Appendix C, along with a theoretical analysis with improved regret guarantees
in favorable settings.

Greedy. When taking ✏ = 0 in the ✏-greedy approach, with the IWR reduction, we are left
with a fully greedy approach that always selects the action given by the current policy. This
gives us an online variant of the greedy algorithm of Bastani et al. (2017), which regresses
on observed losses and acts by selecting the action with minimum predicted loss. Somewhat
surprisingly, our experiments show that Greedy can perform very well in practice, despite
doing no explicit exploration (see Section 4).

If multiple actions get the same score according to the current regressor, we break ties
randomly.

3.2 Bagging

Algorithm 3 Bag

⇡1
1, . . . , ⇡

N
1 .

explore(xt):

return pt(a) / |{i : ⇡i
t(xt) = a}|;3

learn(xt, at, `t(at), pt):

for i = 1, . . . , N do
⌧ i ⇠ Poisson(1); {with ⌧1 = 1 for bag-greedy}
⇡i

t+1 = oracle⌧
i
(⇡i

t, xt, at, `t(at), pt(at));
end for

This approach, shown in Algorithm 3, maintains a collection of N policies ⇡1
t , . . . , ⇡

N
t

meant to approximate a posterior distribution over policies (or, in Bayesian terminology, the
parameter that generated the data) via the online Bootstrap (Agarwal et al., 2014; Eckles
and Kaptein, 2014; Osband and Van Roy, 2015; Oza and Russell, 2001; Qin et al., 2013),
and explores in a Thompson sampling fashion (Agrawal and Goyal, 2013; Chapelle and Li,
2011; Russo et al., 2017; Thompson, 1933). Each policy is trained on a di↵erent online
bootstrap sample of the observed data. The online bootstrap performs a random number ⌧
of online updates to each policy instead of one (this is denoted by oracle⌧ in Algorithm 3).
This is also known as online Bootstrap Thompson sampling (Eckles and Kaptein, 2014;
Osband and Van Roy, 2015). In contrast to these works, which simply play the arm given
by one of the N policies chosen at random, we compute the full action distribution pt

resulting from such a sampling, and leverage this for loss estimation, allowing learning by

3. When policies are parametrized using regressors as in our implementation, we let ⇡i
t(x) be uniform over

all actions tied for the lowest cost, and the final distribution is uniform across all actions tied for best
according to one of the policies in the bag. The added randomization gives useful variance reduction in
our experiments.

8
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Cover (Agarwal et al., 2014)

“mini-monster”: minimax optimal + computationally “efficient”
Maintain a distribution over policies that are good for exploration and
exploitation (low regret + low variance)

In practice: N policies π1, . . . , πN

Explore uniformly over policies
Update π1 using IPS/DR
Subsequent policies use CSC with additional cost to encourage
diverse policies
Cover-NU: remove uniform exploration on all actions (required from
theory)
Still often too much exploration by design
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Cover (Agarwal et al., 2014)A Contextual Bandit Bake-off

Algorithm 4 Cover

⇡1
1, . . . , ⇡

N
1 ; ✏t = min(1/K, 1/

p
Kt);  > 0.

explore(xt):

pt(a) / |{i : ⇡i
t(xt) = a}|;

return ✏t + (1 � ✏t)pt; {for cover}
return pt; {for cover-nu}

learn(xt, at, `t(at), pt):

⇡1
t+1 = oracle(⇡1

t , xt, at, `t(at), pt(at));
ˆ̀
t = estimator(xt, at, `t(at), pt(at));

for i = 2, . . . , N do
qi(a) / |{j  i � 1 : ⇡j

t+1(xt) = a}|;
ĉ(a) = ˆ̀

t(a) �  ✏t
✏t+(1�✏t)qi(a) ;

⇡i
t+1 = csc_oracle(⇡i

t, xt, ĉ);
end for

reduction to o↵-policy optimization as in Agarwal et al. (2014). Again all three reductions
are admissible.

Greedy bagging. We also consider a simple optimization that we call greedy bagging, for
which the first policy is trained on the true data sample (like Greedy) instead of a bootstrap
sample. We found this approach to often improve on bagging, particularly for small N .

3.3 Cover

This method, given in Algorithm 4, is based on Online Cover, an online approximation of
the ILOVETOCONBANDITS algorithm of Agarwal et al. (2014). The approach maintains
a collection of N policies, ⇡1

t , . . . , ⇡
N
t , meant to approximate a covering distribution over

policies that are good for both exploration and exploitation. The first policy ⇡1
t is trained

on observed data using the oracle as in previous algorithms, while subsequent policies are
trained using cost-sensitive examples which encourage diversity in the predicted actions
compared to the previous policies.

Our implementation di↵ers from the Online Cover algorithm of Agarwal et al. (2014,
Algorithm 5) in how the diversity term in the definition of ĉ(a) is handled (the second term).
When creating cost-sensitive examples for a given policy ⇡i, this term rewards an action a
that is not well-covered by previous policies (i.e., small qi(a)), by subtracting a term that
decreases with qi(a) from the loss. While Online Cover considers a fixed ✏t = ✏, we let ✏t
decay with t, and introduce a parameter  to control the overall reward term, which bears
more similarity with the analyzed algorithm. In particular, the magnitude of the reward
is  whenever action a is not covered by previous policies (i.e., qi(a) = 0), but decays with
 ✏t whenever qi(a) > 0, so that the level of induced diversity can decrease over time as we
gain confidence that good policies are covered.

Cover-NU. While Cover requires some uniform exploration across all actions, our ex-
periments suggest that this can make exploration highly ine�cient, thus we introduce a

9
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RegCB (Foster et al., 2018)

Construct confidence bounds on each action based on good
regressors for loss estimation

Ft = {f ∈ F : MSE (f ,Dt)−min
f ∈F

MSE (f ,Dt) ≤ C/t}

LCB(xt , a) = min
f ∈Ft−1

f (xt , a)

UCB(xt , a) = max
f ∈Ft−1

f (xt , a)

LCB and UCB can be computed efficiently using regression oracles
Even with online learning, using importance weight sensitivity
Explore using optimism, or uniform sampling over surviving actions
Need “realizability” (regression function in F)
But good adaptivity to favorable settings

Alberto Bietti Contextual Bandit Bake-off Télécom, December 20, 2018 17 / 30



RegCB (Foster et al., 2018)

Construct confidence bounds on each action based on good
regressors for loss estimation

Ft = {f ∈ F : MSE (f ,Dt)−min
f ∈F

MSE (f ,Dt) ≤ C/t}

LCB(xt , a) = min
f ∈Ft−1

f (xt , a)

UCB(xt , a) = max
f ∈Ft−1

f (xt , a)

LCB and UCB can be computed efficiently using regression oracles
Even with online learning, using importance weight sensitivity
Explore using optimism, or uniform sampling over surviving actions

Need “realizability” (regression function in F)
But good adaptivity to favorable settings

Alberto Bietti Contextual Bandit Bake-off Télécom, December 20, 2018 17 / 30



RegCB (Foster et al., 2018)
Stratégies “Upper Confidence Bound”

Stratégies ”Upper Confidence Bound” [Auer&al ’02;
Audibert&al ’09]

UCB (Upper Confidence Bound)
= établir une borne supérieure de
l’intérêt de chaque action, et choisir
celle qui est la plus prometteuse

Ua(t) =
Sa(t)

Na(t)
+

s
c log(t)

2Na(t) 0 1 2 3 4 5 6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Politique d’indice basée sur l’inégalité de Hoe↵ding
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RegCB (Foster et al., 2018)
Bietti, Agarwal and Langford

Algorithm 5 RegCB

f1; C0 > 0.
explore(xt):

lt(a) = lcb(ft, xt, a,�t,C0);
ut(a) = ucb(ft, xt, a,�t,C0);
pt(a) / {a 2 arg mina0 lt(a

0)}; {RegCB-opt variant}
pt(a) / {lt(a)  mina0 ut(a

0)}; {RegCB-elim variant}
return pt;

learn(xt, at, `t(at), pt):

ft+1 = reg_oracle(ft, xt, at, `t(at));

variant, Cover-NU, with no uniform exploration outside the set of actions selected by cov-
ering policies.

3.4 RegCB

We consider online approximations of the two algorithms introduced by Foster et al.
(2018) based on regression oracles, shown in Algorithm 5. Both algorithms estimate confi-
dence intervals of the loss for each action given the current context, by considering regres-
sors that are good for loss estimation. The optimistic variant then selects the action with
smallest lower bound estimate, similar to LinUCB, while the elimination variant explores
uniformly on actions that may plausibly be the best.

Our online implementation computes these upper and lower bounds on the loss of each
action using a sensitivity analysis of the current regressor based on importance weighting,
similar to Krishnamurthy et al. (2017) in the context of active learning. The algorithm
maintains a regressor ft : X ⇥ {1, . . . , K} and, given a new context xt, computes lower and
upper confidence bounds lt(a)  ft(xt, a)  ut(a). These are computed by adding “virtual”
importance-weighted regression examples with low and high costs, and finding the largest
importance weight leading to an excess squared loss smaller than �t,C0 , where

�t,C0 =
C0 log(Kt)

t
,

and C0 is a parameter controlling the width of the confidence bounds. This importance
weight can be found using regressor sensitivities and a binary search procedure as described
in (Krishnamurthy et al., 2017, Section 7.1). Note that this requires knowledge of the loss
range [cmin, cmax], unlike other methods. In contrast to Krishnamurthy et al. (2017), we
set the labels of the “virtual” examples to cmin � 1 for the lower bound and cmax + 1 for
the upper bound, instead of cmin and cmax.

4. Evaluation

In this section, we present our evaluation of the contextual bandit algorithms described in
Section 3.

10
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Evaluation Approach

500+ diverse datasets
I 525 multi-class from openml.org (text, bio, medical, sensor, synthetic)
I 5 multi-label
I 3 cost-sensitive

Supervised (xt , ct) → only reveal ct(at) in CB
Online learning, linear models in Vowpal Wabbit (hunch.net/~vw)

Progressive validation loss (Blum et al., 1999)

PV = 1
T

T∑
t=1

ct(at)

Compare A vs B using statistical test on PV
I # of datasets where A significantly wins against B
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Greed is Good, Optimism is Best

significant win-loss difference, fixed hyperparameters, -1/0 encoding

↓ vs → G RO C-nu B-g εG
G - -7 10 50 54
RO 7 - 26 49 68
C-nu -10 -26 - 22 57
B-g -50 -49 -22 - 17
εG -54 -68 -57 -17 -

Similar results for subsets with large T , large # features, large K
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Cover can be preferred

0.0 0.5 1.0
G
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0.00

0.25
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0.75

1.00

C-
nu

0.0 0.5 1.0
RO

0.25

0.00

0.25

0.50

0.75

1.00

C-
nu

More robust to difficult datasets, but less efficient
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Cover can be preferred

optimized hyperparams

↓ vs → G RO C-nu B-g εG
G - -23 -50 16 92
RO 23 - -3 42 112
C-nu 50 3 - 64 142
B-g -16 -42 -64 - 90
εG -92 -112 -142 -90 -

More adaptive variant would be desirable
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Easy Data?

Better exploration when supervised learning does well?
“first-order” bounds (open problem for CBs: Agarwal et al., 2017)
Exploration algorithms (especially Cover-NU) not so good
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Easy Data?

↓ vs → G RO C-nu B-g εG
G - 1 25 40 36
RO -1 - 26 36 43
C-nu -25 -26 - 7 24
B-g -40 -36 -7 - 4
εG -36 -43 -24 -4 -

PVOAA ≤ 0.2 (135 datasets)

↓ vs → G RO C-nu B-g εG
G - 1 14 8 15
RO -1 - 12 5 16
C-nu -14 -12 - -12 5
B-g -8 -5 12 - 10
εG -15 -16 -5 -10 -

PVOAA ≤ 0.05 (28 datasets)
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Easy Data?

↓ vs → G RO C-nu B-g εG
G - 2 8 5 12
RO -2 - 8 4 12
C-nu -8 -8 - -1 12
B-g -5 -4 1 - 11
εG -12 -12 -12 -11 -

n ≥ 10 000 and PVOAA ≤ 0.1 (13 datasets)
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Reductions

Doubly Robust always better than IPS
When appropriate (ε-Greedy, Bagging), IWR is best

I Better performance
I Computationally more efficient
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Reductions

ε-Greedy Bag

↓ vs → ips dr iwr
ips - -42 -59
dr 42 - -28
iwr 59 28 -

↓ vs → ips dr iwr
ips - 63 -133
dr -63 - -155
iwr 133 155 -
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Loss Encoding

Binary outcomes: how to encode loss of success/failure?
Provides initial bias, can lead to lower variance
-1/0 is a good default choice
Rule of thumb: -1/0 better if “failure” is common

I e.g. no click more frequent than click
0/1 can be better once learner selects good actions

I e.g. large, easy dataset
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Loss Encoding

significant win/loss of -1/0 vs 0/1

datasets G RO C-nu B-g εG
all 136 / 42 60 / 47 76 / 46 77 / 27 99 / 27

≥ 10,000 19 / 12 10 / 18 14 / 20 15 / 11 14 / 5
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Baseline

Global additive constant in loss estimator

ˆ̀(x , a) = c + θ>a x

Learn with separate online update

Good to fight initial pessimism (e.g. -1/0) in
Greedy/RegCB-optimistic
Adapt to unknown loss range
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Baseline

A Contextual Bandit Bake-off

Figure 3: (top) Impact of baseline on di↵erent algorithms with encoding fixed to -1/0; for
Greedy and RegCB-opt, it can significantly help against pessimistic initial costs in some
datasets. Hyperparameters fixed as in Table 9. (bottom) Baseline improves robustness to
the range of losses. The plots consider normalized loss on held-out datasets, with red points
indicating significant wins.

• Loss estimation is essential for good practical performance, and DR should be pre-
ferred over IPS. For methods based on reduction to o↵-policy learning, our new IWR
reduction is typically best, in addition to providing computational benefits.

• Uniform exploration hurts empirical performance in most cases, though it may be
necessary on the hardest datasets. Methods relying on modeling assumptions on the
data distribution, such as RegCB are often preferred in practice (even Greedy can
work well!).

• We found randomization on tied choices of actions to always be useful, and sometimes
to provide significant benefits.

• The choice of cost encodings makes a big di↵erence in practice and should be carefully
considered when designing an contextual bandit problem, even when loss estimation
techniques such as DR are used. For binary outcomes, -1/0 is a good default choice
of encoding.

• Modeling choices and encodings sometimes provide pessimistic initial estimates that
can hurt initial exploration on some problems, particularly for Greedy and RegCB-
optimistic. Random tie-breaking as well as using a shared additive baseline can help
mitigate this issue.
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Outline

1 Toolkit

2 Algorithms

3 The Bake-Off

4 Active ε-Greedy (bonus)
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Active ε-Greedy: motivation

ε-Greedy often a simple default method
But: uniform exploration on all actions is too costly!

Can we avoid exploring on actions that we know are not useful?
Only explore if action is plausibly taken by optimal policy

I Using techniques from disagreement-based active learning
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Active ε-Greedy: algorithm

After observing xt , for any action a
I try to find a good policy with π(xt) = a
I if found, there is disagreement =⇒ explore
I if not found, π∗(xt) 6= a w.h.p =⇒ don’t explore

Good policy: small loss difference L̂t−1(πt,ā)− L̂t−1(πt)

πt = argmin
π

L̂t−1(π)

πt,ā = arg min
π:π(xt )=ā

L̂t−1(π).

I Can be computed using importance weight sensitivity analysis
Explore with ε mass on each disagreeing actions, greedily otherwise
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Active ε-Greedy: algorithmA Contextual Bandit Bake-off

Algorithm 6 Active ✏-greedy

⇡1; ✏; C0 > 0.
explore(xt):

At = {a : loss_diff(⇡t, xt, a)  �t,C0};

pt(a) = ✏
K {a 2 At} + (1 � ✏|At|

K ) {⇡t(xt) = a};
return pt;

learn(xt, at, `t(at), pt):
ˆ̀
t = estimator(xt, at, `t(at), pt(at));

ĉt(a) =

(
ˆ̀
t(a), if pt(a) > 0

1, otherwise.

⇡t+1 = csc_oracle(⇡t, xt, ĉt);

Appendix C. Active ✏-greedy: Practical Algorithm and Analysis

This section presents our active ✏-greedy method, a variant of ✏-greedy that reduces the
amount of uniform exploration using techniques from active learning. Section C.1 introduces
the practical algorithm, while Section C.2 provides a theoretical analysis of the method,
showing that it achieves a regret of O(T 1/3) in favorable settings, compared to O(T 2/3) for
vanilla ✏-greedy.

C.1 Algorithm

The simplicity of the ✏-greedy method described in Section 3.1 often makes it the method
of choice for practitioners. However, the uniform exploration over randomly selected actions
can be quite ine�cient and costly in practice. A natural consideration is to restrict this
randomization over actions which could plausibly be selected by the optimal policy ⇡⇤ =
arg min⇡2⇧ L(⇡), where L(⇡) = E(x,`)⇠D[`(⇡(x))] is the expected loss of a policy ⇡.

To achieve this, we use techniques from disagreement-based active learning (Hanneke,
2014; Hsu, 2010). After observing a context xt, for any action a, if we can find a policy ⇡
that would choose this action (⇡(xt) = a) instead of the empirically best action ⇡t(xt),
while achieving a small loss on past data, then there is disagreement about how good
such an action is, and we allow exploring it. Otherwise, we are confident that the best
policy would not choose this action, thus we avoid exploring it, and assign it a high cost.
The resulting method is in Algorithm 6. Like RegCB, the method requires a known loss
range [cmin, cmax], and assigns a loss cmax to such unexplored actions (we consider the
range [0, 1] in Algorithm 6 for simplicity). The disagreement test we use is based on empirical
loss di↵erences, similar to the Oracular CAL active learning method (Hsu, 2010), denoted
loss_diff, together with a threshold:

�t,C0 =

r
C0

K log t

✏t
+ C0

K log t

✏t
.

A practical implementation of loss_diff for an online setting is given below. We analyze a
theoretical form of this algorithm in Section C.2, showing a formal version of the following
theorem:

27

∆t,C0 =

√
C0

K log t
εt + C0

K log t
εt
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Active ε-Greedy: algorithm

Bietti, Agarwal and Langford

Figure 4: Comparison of RegCB-opt with Greedy (top) and Cover-NU (bottom) for di↵erent
values of C0. Hyperparameters for Greedy and Cover-NU fixed as in Table 9. Encoding
fixed to -1/0. The plots consider normalized loss on held-out datasets, with red points
indicating significant wins.

(a) DR

(b) IWR

Figure 5: Improvements to ✏-greedy from our active learning strategy. Encoding fixed to
-1/0. The IWR implementation described in Section C.1 still manages to often outperform
✏-greedy, despite only providing an approximation to Algorithm 6.
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Active ε-Greedy: theory

Worst-case regret is similar to ε-Greedy (Õ(T 2/3))

O(T 2/3(K log(T |Π|/δ))1/3)

Under favorable conditions (disagreement + Massart noise), regret
improves to Õ(T 1/3)

O
(1
τ

(θK log(T |Π|/δ))2/3(T logT )1/3
)

Better than minimax rate of Mini-Monster: O(
√

KT log(T |Π|/δ))
But, RegCB has logarithmic regret in similar conditions with
realizability...
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Conclusion

RegCB and Greedy dominate, but need strong modeling assumptions
Cover-NU more robust on difficult datasets, but too conservative
otherwise
=⇒ need new robust + adaptive algorithms
Simple practical design choices can matter a lot (reductions,
encodings)
Caveats/discussion:

I Only i.i.d., what about non-stationary, or adversarial?
I Non-linear policy classes?
I Online vs Batch?
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