An online EM algorithm in hidden (semi-)Markov models for audio segmentation and clustering

Alberto Bietti¹²³, Francis Bach²⁴, Arshia Cont²³

¹Quora, Inc. ²INRIA ³Ircam ⁴Ecole Normale Supérieure

ICASSP 2015. April 2015, Brisbane.

ircam Ecentre

Outline

2 Online EM algorithm

Outline

1 Audio segmentation with hidden (semi-)Markov models

2 Online EM algorithm

Audio segmentation

- Goal: segment audio signal into homogeneous chunks/segments
- Go from a signal representation to a symbolic representation
- Applications: music indexing, summarization, fingerprinting

Audio segmentation: approach

- Most existing approaches: change-point detection, compute similarities separately
- Real-time approaches mainly for change detection, no clustering

Audio segmentation: approach

- Most existing approaches: change-point detection, compute similarities separately
- Real-time approaches mainly for change detection, no clustering
- **Our goal**: joint segmentation and clustering, unsupervised learning, online/real-time
- Online learning in Hidden (semi-)Markov Models

Hidden Markov Models (HMMs)

- K hidden states (cluster/segment IDs)
- Hidden chain of cluster ids: $z_{1:\mathcal{T}} = (z_1, \dots, z_\mathcal{T}) \in \{1, \dots, \mathcal{K}\}^\mathcal{T}$
 - Transition matrix: $A \in \mathbb{R}^{K \times K}$: $A_{ij} = p(z_t = j | z_{t-1} = i)$
- Sequence of observations $x_{1:T} = (x_1, \ldots, x_T)$, with $x_t \in \mathbb{R}^p$
 - Emission distribution in state *i*: $p(x_t|z_t = i; \mu_i)$

Audio representation and emission distributions

- $x_t = N |\hat{x}_t| / \|\hat{x}_t\|_1$
 - $|\hat{x}_t| \in \mathbb{R}^p_+$ from STFT
 - Normalized magnitude for invariance to volume
- Emission distributions: multinomials (N trials)
 - Parameterized by mean $\mu_i = \mathbb{E}[x|z=i]$
 - ► Corresponds to KL divergence, which performs well on audio

$$p(x|z=i) = h(x) \exp(-D_{KL}(x||\mu_i))$$

• Extends to other Bregman divergences (Banerjee et al., 2005) and exponential families

Duration distributions

HMM

Segment length distributions are geometric:

$$p_i(d) = A_{ii}^{d-1}(1 - A_{ii})$$

- ► Duration distribution learned implicitely through A_{ii}
- HSMM (explicit-duration HMM)
 - ► Model these duration distributions explicitely (e.g., Negative Binomial, Poisson)
 - Can help avoid short segments, encourage specific durations
 - Segment = (state *i*, length *l*), with $l \sim p_i(d)$
 - ► (Markov) transitions A_{ij} between segments
 - ► i.i.d. observations in each segment given state

Outline

Audio segmentation with hidden (semi-)Markov models

2 Online EM algorithm

EM algorithm

- $\mathbf{x} = x_{1:T}$ observed variables, $\mathbf{z} = z_{1:T}$ hidden variables, θ parameter
- Goal: maximum likelihood max $_{\theta} p(\mathbf{x}; \theta)$

$$\log p(\mathbf{x}; \theta) = \log \sum_{\mathbf{z}} q(\mathbf{z}) \frac{p(\mathbf{x}, \mathbf{z}; \theta)}{q(\mathbf{z})} \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}; \theta)}{q(\mathbf{z})} =: \hat{f}_q(\theta).$$

• E-step: maximize w.r.t. q. (forward-backward for H(S)MMs)

$$q(\mathbf{z}) = p(\mathbf{z}|\mathbf{x}; \theta)$$

• M-step: maximize w.r.t. θ .

$$\hat{\theta} = \arg \max_{\theta} \mathbb{E}_{q}[\log p(\mathbf{z}, \mathbf{x}; \theta)]$$

EM algorithm

- $\mathbf{x} = x_{1:T}$ observed variables, $\mathbf{z} = z_{1:T}$ hidden variables, θ parameter
- Goal: maximum likelihood max $_{\theta} p(\mathbf{x}; \theta)$

$$\log p(\mathbf{x}; \theta) = \log \sum_{\mathbf{z}} q(\mathbf{z}) \frac{p(\mathbf{x}, \mathbf{z}; \theta)}{q(\mathbf{z})} \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}; \theta)}{q(\mathbf{z})} =: \hat{f}_q(\theta).$$

• E-step: maximize w.r.t. q. (forward-backward for H(S)MMs)

$$q(\mathbf{z}) = p(\mathbf{z}|\mathbf{x}; \theta)$$

• M-step: maximize w.r.t. θ .

$$\hat{\theta} = \arg \max_{\theta} \mathbb{E}_{q}[\log p(\mathbf{z}, \mathbf{x}; \theta)]$$

- Incremental EM for i.i.d. observations (Neal and Hinton, 1998)
 - ► Partial E-step: update *q* on a single observation

Incremental EM for HMMs

• Maximizer q takes the form:

$$p(z_{1:T}|x_{1:T};\theta) = p(z_1|x_{1:T}) \prod_{t\geq 2} p(z_t|z_{t-1},x_{1:T})$$

• Consider *q* of the form:

$$q(z_{1:T}) = q_1(z_1) \prod_{t \ge 2} q_t(z_t | z_{t-1})$$

• Lower bound:

$$egin{aligned} \hat{f}_{\mathcal{T}}(heta) &= \mathbb{E}_q \left[\log rac{p_ heta(x_{1:\mathcal{T}}, z_{1:\mathcal{T}})}{q(z_{1:\mathcal{T}})}
ight] \ &= \mathbb{E}_{q_1} \left[\log rac{p_ heta(x_1, z_1)}{q_1(z_1)}
ight] + \sum_{t=2}^{\mathcal{T}} \mathbb{E}_q \left[\log rac{p_ heta(x_t, z_t | z_{t-1})}{q_t(z_t | z_{t-1})}
ight] \end{aligned}$$

Incremental EM for HMMs

Marginals:

•
$$\phi_t(z_t) = \sum_{z_{1:t-1}} q_1(z_1) \dots q_t(z_t | z_{t-1})$$

• $q(z_{t-1}, z_t) = \phi_{t-1}(z_{t-1})q_t(z_t | z_{t-1})$

Online algorithm Initialize $\theta^{(1)}$, $\phi_1(i) = q_1(i) = p(z_1 = i | x_1; \theta)$ For t = 2, ...

• (partial) E-step

$$\bullet q_t(j|i) = \frac{1}{Z} A_{ij} p(x_t|z_t = j; \theta^{(t-1)})$$
$$\bullet \phi_t(i) = \sum \phi_{t-1}(i) q_t(j|i)$$

- $\phi_t(J) = \sum_i \phi_{t-1}(I) q_t(J|I)$
- Update expected sufficient statistics

• M-step: $\theta^{(t)} := \arg \max_{\theta} \hat{f}_t(\theta)$

Incremental EM for HMMs (Bregman emissions)

For Bregman emissions (e.g. multinomial, spherical Gaussian):Expected sums of sufficient statistics:

$$S_{T}^{A}(i,j) = \sum_{t=2}^{T} \phi_{t-1}(i)q_{t}(j|i)$$
$$S_{T}^{\mu,0}(i) = \sum_{t=1}^{T} \phi_{t}(i)$$
$$S_{T}^{\mu,1}(i) = \sum_{t=1}^{T} \phi_{t}(i)x_{t}$$

• M-step:

$$A_{ij}^{(T)} = \frac{S_T^A(i,j)}{\sum_{j'} S_T^A(i,j')} \quad \mu_i^{(T)} = \frac{S_T^{\mu,1}(i)}{S_T^{\mu,0}(i)}$$

Cost: $O(K^2 + Kp)$ per observation

Semi-Markov extension

- Parameterize as HMM with two-variable hidden chain
 - ► *z*_t: state of current segment
 - z_t^D : counter of time steps since the start of the segment
- Use quantities $q_t(z_t, z_t^D | z_{t-1}, z_{t-1}^D)$ and $\phi_t(z_t, z_t^D)$
- Thanks to sparsity in the transitions, $O(K^2D + KDp)$ cost per observation
- Similar approach can be used for mixture model emissions

Outline

Audio segmentation with hidden (semi-)Markov models

2 Online EM algorithm

Comparison with Cappé (2011)

- Online EM algorithm based on stochastic approximation, tries to reach a *limiting EM* recursion (infinite observations)
- $O(K^4 + K^3 p)$ per observation $(O(K^4 D + K^3 D p)$ for HSMM)

	HMM	HSMM	HMM long sequence
Batch EM (5 iter.)	0.60s	1.06s	18s
Cappé (2011)	1.52s	108.6s	231s
Incremental	0.51s	0.91s	10.5s

Comparison on synthetic data

Spherical Gaussian (left) and Multinomial (right). K = 4, p = 5.

Alberto Bietti, Francis Bach, Arshia Cont

Comparison on synthetic data

Spherical Gaussian (left) and Multinomial (right). K = 20, p = 5.

Alberto Bietti, Francis Bach, Arshia Cont

Comparison on synthetic data

Spherical Gaussian (left) and Multinomial (right). K = 20, p = 100.

Alberto Bietti, Francis Bach, Arshia Cont

Musical note segmentation (JS Bach violin sonata)

Cappé vs our incremental EM for HMMs on a musical note segmentation task. K = 10 different notes, T = 910.

Alberto Bietti, Francis Bach, Arshia Cont

Acoustic scene segmentation

Keys dropping and door slam from Office Live dataset. K = 10, HSMM durations: NB(5, 0.2) (mean = 20).

Conclusion

- First attempt at incremental lower bound maximization in HMMs
 - ► Faster iterations, better convergence (empirically) than (Cappé, 2011)
 - Same complexity as one single batch EM iteration
- Works well for real-time/streaming setting
- Can accelerate learning on very long sequences
- Good results for real-time audio segmentation
- But: no theoretical guarantees

References

- A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with bregman divergences. *Journal of Machine Learning Research*, 6: 1705–1749, Dec. 2005.
- O. Cappé. Online EM algorithm for hidden markov models. *Journal of Computational and Graphical Statistics*, 20(3):728–749, Jan. 2011.
- R. Neal and G. E. Hinton. A view of the em algorithm that justifies incremental, sparse, and other variants. In *Learning in Graphical Models*, pages 355–368. Kluwer Academic Publishers, 1998.