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Outline

@ Introduction

(@ Representation, models, offline algorithms
o Audio signal representation
o Clustering with Bregman divergences
o Hidden Markov Models (HMMs)
o Hidden Semi-Markov Models (HSMMs)
o Offline audio segmentation results

(3 Online algorithms
o Online EM
o Non-probabilistic algorithm
o Incremental EM
o Online audio segmentation results
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Audio segmentation

o Goal: segment audio signal into homogeneous chunks/segments
o Go from a signal representation to a symbolic representation

o Applications: music indexing, summarization, fingerprinting
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Audio segmentation: approaches

o Most existing approaches: find change-points, compute similarities
separately
o Change-point detection

» Use audio features for detecting changes
» Statistical model on the signal, likelihood ratio tests

o lIssues: specific to the task, doesn't use previous parts of the signal,
often supervised (needs labeled data)
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online/real-time
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Audio segmentation: approaches

o Most existing approaches: find change-points, compute similarities
separately
o Change-point detection
» Use audio features for detecting changes
» Statistical model on the signal, likelihood ratio tests
o lIssues: specific to the task, doesn't use previous parts of the signal,
often supervised (needs labeled data)
o Our goal: unsupervised learning, joint segmentation and clustering.
online/real-time

o Hidden (semi-)Markov Models
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Online learning

o Learn a model incrementally, one observation at a time
o Very successful in machine learning, especially large-scale problems

o Usually independent observations, little work on sequential models
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Online learning

()

Learn a model incrementally, one observation at a time

o Very successful in machine learning, especially large-scale problems

©

Usually independent observations, little work on sequential models

©

Our goal: online algorithms for hidden (semi-)Markov models,
applications to online audio segmentation and clustering

Alberto Bietti Online learning and audio segmentation September 10, 2014 5/55



Outline

(@ Representation, models, offline algorithms
o Audio signal representation
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Audio signal representation

o Discrete audio signal x[t] € R

o Short-time Fourier Transform

“+o00

R(t,e") = Z x[u]g[u — t]e~ @

uUu=—0o0

o Window g (e.g., Hamming), compact support: FFT X¢1,...,%, € C
Q0 Xt € RP = (|)?t,1‘7 ey |)A(t’p )T
o Normalized }_; x; = 1 for invariance to volume
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Outline

(@ Representation, models, offline algorithms

o Clustering with Bregman divergences
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Bregman divergences

©

Euclidian distance doesn't perform well for audio

o Defines a different similarity measure

©

Bregman divergence Dy, for 1 strictly convex:

Dy(x,y) = ¥(x) — ¥(y) — (x =y, Vib(y)).

o Examples:
» Squared Euclidian distance |x — y||2 = Dy, with 1(x) = ||x]|?
> KL divergence Dyi(x|ly) = 3_; xilog § = Dy (x, y) with
P(x) =D, xi log x;
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Bregman divergences

©

Euclidian distance doesn't perform well for audio

o Defines a different similarity measure

©

Bregman divergence Dy, for 1 strictly convex:

Dy(x,y) = ¥(x) — ¥(y) — (x =y, Vib(y)).

o Examples:
» Squared Euclidian distance |x — y||2 = Dy, with 1(x) = ||x]|?
> KL divergence Dyi(x|ly) = 3_; xilog § = Dy (x, y) with
P(x) =D, xi log x;

Right-type centroid = average (see e.g., (Nielsen and Nock, 2009))

©

n 1 n

arg min g Dy(xi,c) = = E X

: n“
i=1 i=1
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Hard clustering (K-means)

o xj, i=1,...,n, centroids p1, ..., K, assignments z;
o K-means, replace ||x; — i % with Dy (xi, 11,)

» E-step
Z; <+ arg mkin Dy(xi,pe) i=1,...,n
» M-step
1
Wk < v E xi k=1,....K
H{i:z =k} .
irzi=k
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Hard clustering (K-means)

o xj, i=1,...,n, centroids p1, ..., K, assignments z;
o K-means, replace ||x; — i % with Dy (xi, 11,)
» E-step
z; + arg mkin Dy(xi,pe) i=1,...,n
» M-step

1
- C k=1,....K
ST FE— ,ZX

irzi=k

o Decreases the (non-convex) objective

E(IMZ) = Z D’lb(xinu'zi)'
i=1
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Bregman divergences and exponential families

o Exponential family:

po(x) = h(x) exp((¢(x), ) — a(0))

o Regular exponential family: minimal, © open

Pu.o(x) = h(x) exp((x,0) — ¥(0))

o Bijection between regular exponential families and regular Bregman
divergences (Banerjee et al., 2005): u = Vi)(0) = E[X],

Pyo(x) = h(x) exp(—Dy~(x, 1))

o Example: KL divergence < Multinomial distribution

h(x) exp(— Z X Iog =) =H ) [T
i
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Mixture models

o x;, i =1,...,n, K mixture components, emission parameters pi
o Model:

zi~m, i=1...,n

Xi‘Zin,uz,-a I:17'-'7n7
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EM algorithm

o X observed variables, z hidden variables, 8 parameter

o Goal: maximum likelihood maxy p(x; 6)

00) = IogZp(x, z;0) Iogz q(z p(x, 2)9)

>Zq Iogq(:)e).

o E-step: maximize w.r.t. q. q(z) = p(z|x;0)

o M-step: maximize w.r.t. §. § = arg maxg E,q[log p(z, x; 0)]
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Mixture models: EM (soft clustering)
o xj,i=1,...,n, initial parameters 7, .

Ezqllog p(x, z; 7, 11)]
= Eq[1{zi = k}]logmi + > Y Eg[1{z = k}]log p(xi| k)
i k i k

» E-step

» M-step

i
Do TikXi

kK <
. > Tik
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Outline

(@ Representation, models, offline algorithms

o Hidden Markov Models (HMMs)
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Hidden Markov Models (HMMs)

o Observed sequence xi.7, hidden sequence z;.7, parameters
T, A€ RKXK: Kk

zy ~T
ztlze 1 =i~A;, t=2,...,T
Xelzg =i~ py, t=1,...,T

o Joint likelihood:

T

-
p(xw.1,z1.7; ™, A, ) = p(z1; ) H (zt|ze-1; A) H p(xt|zt; 1)
t=2 t=1

()
® &® & - ®

Alberto Bietti Online learning and audio segmentation September 10, 2014

16 / 55



HMM inference: Forward-Backward algorithm

o Inference: compute p(z: = i|xy.7) (smoothing)

o Definitions:

a(i)=p(ze =i, x1,. .., Xt)

/Bt(l) p(Xt+17‘°'7XT|zt = I)

o Recursions, with a1 (i) = mip(x1|z1 = i), Br(i) =
ar+1(J Zat Aip(Xet1|ze41 = J)

(i) = ZAUP Xet1|ze41 = Jj)Be1())
J

o p(z: = i|x1.7) o< ae(i)Be (i)
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HMM inference: Viterbi algorithm

o Compute maximum a posteriori (MAP) sequence:
27" = argmax p(z1.7|x1.7)
o Define
ve(i)= max p(z1,...,2t-1,2t = i, X1, .., X¢t)
Z1yesZt—1

o Recursion, with ~1(7) = mip(x1|z1 = i; pi):
Ye+1() = miax Ye(NAP(Xes1|Ze41 = Ji 1))

o Recover the sequence by storing back-pointers.
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HMM learning: EM

o E-step

Te(1) < p(zt = i|x1.7) o< ar(i)Be(i)
e(i,J) < p(ze—1 = i,z = j]x1.7) o< ar—1()Ayp(xe|j)Be ()

o M-step

i 11(i)

Aij <_ ZtZZ Tt(iﬂf:) .
Zj’ thz 7e(i,J')
Zt21 Te(7)xi

pi < :
: >oe>1 Te (i)
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Outline

(@ Representation, models, offline algorithms

o Hidden Semi-Markov Models (HSMMs)
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Duration distributions

©

Probability of staying in state i for d time steps:
A1 - Ap)

o i.e., segment lengths follow geometric distributions

©

Duration distribution learned implicitely through A;i

o HSMMs: model these duration distributions explicitely
(explicit-duration HMM)

Typical choices: Negative Binomial, Poisson

©
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Hidden Semi-Markov Models

o Segment = (state z, length /), with / ~ p,(d)
o (Markov) transitions Aj;; between segments

o /i.i.d. observations from cluster z in each segment

Xty o ooy Xepl=1 ~ Puyy  d.d.d.
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Hidden Semi-Markov Models (Murphy, 2002)

o Two hidden variables: state z;, deterministic counter zlP

o f; = 1 iff new segment starts at t + 1

- - 6(i,j), iff=0
= -1 = ,ff = f =
p(ze = jlze1 =i, fr1 ) {Aij, i £ = 1 (transition)
P’ =dlze=ifia=1) = p(d)
p(zp =dlze=i,z0=d >2) = 4(d,d -1),
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HSMM inference: Forward-Backward algorithm

o Definitions:

ai(j) = p(ze = j, fr = 1, x1:t)

ar(j) = p(ze4+1 = Jj, fe = 1, x1:¢t)

Be(i) = p(Xes1:7|2e = i, fr = 1)
(1) = p(xe1:7|2e00 = i, fe = 1).

o Recursions, with of(j) = 7; and S7(i) = 1:

at(f)

Alberto Bietti

= Ed: p(xe—d+1:eli, d)p(dl)o; ()
=>_au(i)A;y
)= iﬁ:(j)AJ
= 3 s Pl )
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HSMM: EM

o Define:
Ye(i) = p(ze = i, fr = 1x1.1) o< (1) Be(7)
Ve(i) = p(ze41 =i, fr = 1xa7) o< oz (1) B ().
o E-step
p(ze = ilxi.) = Y (Vi) — =)
T<t
p(ze = i, zey1 = jlfe = 1, x0.7) o< (i) A B¢ ()
o M-step
mi = p(z1 = i|x1.T)
Aj = >t P(ze = i,_2t+1 :J'|ft =1,x.7)
Zj’ Yep(ze =i zev1=J|fi = 1, x1.7)
i — > p(ze = f|_><1:T)Xt
> p(ze = ilxi.T)
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Outline

(@ Representation, models, offline algorithms

o Offline audio segmentation results
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Examples

Ravel, Ma Meére I'Oye
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Results (Ravel)

K-means K-means
Il_l-l_ll I-IIIIII--III
|H . -l I N 1 H | I m | u
HMM smoothing HMM smoothing

/N HE  NE EEE | = I E B | EE =
HMM viterbi HMM viterbi

/N HE  NE EEE | = |l H HE | N E EE | m
HSMM smocthing HSMM smocthing

I S FE EEs b | H BN W H B .
HSMM viterbi HS5MM viterbi

|| _ N Emm BN I Il B N BN

=ctrogram Spectrogram

Different K-means initializations. K = 9. HSMM duration distributions
fixed to NegBin(5,0.95).
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Results (Bach)

HMM smoothing

L | HE BN . . Il . [
HMM viterbi

' I N | Il N |
HSMM smocthing

| I | N | I N = |
HEMM wviterbi

HE NS | . . ' . @ -.S .
ground truth

HE IS UEE .

Spectrogram

HMM and HSMM randomly initialized (uniform spectrum + noise).
K = 10. HSMM durations: NB(5,0.2) (mean 20).
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Online EM for i.i.d. data (Cappé and Moulines, 2009)

o Complete-data model:

p(x,z;0) = h(x,z) exp({s(x, z),n(f)) — a(0))

o Batch EM can be written as:

1 n
St = ; ZEz[S(Xi, Zi)|Xi; Ht—l]
i=1
Ht — é(st)
o Taking the limit n — oo (limiting EM):

St = Exp[E[s(x, 2)|x; 0:_1]]
Ht = é(st)'
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Online EM for i.i.d. data (Cappé and Moulines, 2009)

o Stochastic approximation (Ifobbins—Monro) procedure to solve
St+1 = Exnp[E[s(x, Z)|x; 0(5t)]]
o Online EM algorithm:
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Online EM for HMMs (Cappé, 2011)

o Complete-data model:

p(xt, zt|ze—1;0) = h(zt, x¢) exp({s(z¢—1, z¢, x¢ ), (0)) — a())

o Batch EM can be written as:

1 T
S, = ?Ez l s(ze—1, Z¢, X¢) ‘ X0:T; 9k—1]
t=1
Ox = 6(Sk)

o Limiting EM (T — oo, with strong assumptions):

Sk = Exp[Ez[s(z-1, 20, X0)|X=o0:00; Ok—1]]
Ok = 0(Sk),
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Online EM for HMMs

o Based on the forward smoothing recursion
o Define

1 r t

Se=-E, Z s(zt—1, 2, Xvr) ‘ X0:ts 91
Lt'=1

¢>t(i) = P(Zt = i|X0:t)

N - :
Pt(’) - 7EZ Z S(Zt/—17zt’7Xt/) ‘ Xo:t, Zt = I, 0]

Lt'=1

o We have S; = >°; pe(i)oe(i).

Alberto Bietti Online learning and audio segmentation September 10, 2014 34 /55



Online EM for HMMs

o Smoothing recursion

be41(J) Z¢t Aiip(Xe+1|2e41 = J)

peal) = % (t Fystigoxen) + (1= ) o)) rea(il)

with rep1(ilj) = p(z: = i|zer1 = j, x0.t). Complexity O(K* + K3p).
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Online EM for HMMs

o Smoothing recursion

be41(J) Z¢t Aiip(Xe+1|2e41 = J)

peal) = % (t Fystigoxen) + (1= ) o)) rea(il)

with rep1(ilj) = p(z: = i|zer1 = j, x0.t). Complexity O(K* + K3p).

o Online EM recursion replaces quantities by estimates, e.g.

Per1() = D (veras(ivh xer1) + (1 = vex1)pe(i)) Pesa(il))

i

o and updates parameters after each observation.
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Online EM for HSMMs

o Parameterize HSMM as HMM with 2 hidden variables, z; and an

increasing counter zP

Aji ifd=1
. . D ify
z=jlzz_ 1 =10,z =d) =
plze = jlze ‘ ) {5(i,j), otherwise
Bl ifd =d+1
Pz =d|z1 =izl =d)={1- 24D ifd =1
0, otherwise.

o Complexity per observation increased to O(K*D + K3Dp) instead of
O(K*D? 4 K3D?p) thanks to deterministic transitions.
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Outline

(3 Online algorithms

o Non-probabilistic algorithm
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Objective function from probabilistic models

o Mixture model (with pix = 1/K)
» Complete-data likelihood

n

p(x,z: 1) = [ [ p(z))p(xi|zi; 1)

i=1

» Objective (= —log p(x, z; ) + C)
é(Z7 9) = Z D’lb(Xh .uZi)
i=1

o HMM
» Complete-data likelihood

T

pOa, zumip) = p(z1) [ ] p(zelze-1) [ | p(xe|2ei 1)

t=2 t=1

» Objective

1 A
Uzur p) = + > Dyt pz,) + ?1 > d(ze1,2)

t>1 t>2
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Online objective

o Online objective:
fr(p) == minl(zy.7, 1)

Z1:T

o New upper bound (majorizing surrogate) at time t:

t

t
fe(p) := % > Dy(xis pz) + )\Tl > d(zi-1,z)
i=1 i=2
o At time t:
» z.;_1 fixed from past
» E-step: z; = = argming Dy (x¢, i) + A1d(ze—1, k)
» M-step: update cluster u; = i + = (x¢ — ;)

nj
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Incremental EM for i.i.d. data (Neal and Hinton, 1998)

o EM = maximize lower bounds

f(0) = Zq Iog);(j)a).

©

Maximizer q(z) = IT; p(zi|xi; 0), limit to ]; qi(zi)
Minorizing surrogates:

©

ZZq, z;) log X”(Z")G)

I].Zl

©

Repeat: update single g; (E-step), maximize (1/n)Eq[log p(x, z)]

©

Can be expressed in terms of sufficient statistics
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Incremental EM for HMMs

o Only consider lower bounds with q(z1.7) = q1(21) [[;>2 9:(2¢|ze-1)
o Surrogates:

- R p(xt, z¢|ze—1; 0
fT(‘g) = 7 221 Z ¢t—1(zt—1)qt(zt‘zt—1) log (qZ(ZjZi—i))
t=

Zt—1,Zt

I

with ¢¢(z¢) == >, | ¢r-1(2zt-1)q(zt|zt-1).
o At time T:
> g1.7—1, ¢1.7 fixed from past

» E-step: qr(z7|z7-1) = p(27|27-1,XT: 0)
» M-step: 6 = arg maxg fr(0)
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Experiments on synthetic data

Squared Euclidian distance (left) and KL divergence (right).
K=4, p=5.
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Experiments on synthetic data

.
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K =20, p=5.
September 10, 2014

Online learning and audio segmentation

Squared Euclidian distance (left) and KL divergence (right).
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Experiments on synthetic data

Squared Euclidian distance (left) and KL divergence (right).
K =20, p = 100.
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Outline

(3 Online algorithms

o Online audio segmentation results
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Online EM for HMM vs HSMM

HMM online EM filter

HMM online EM viterbi

HSMM cnline EM filter

HSMM cnline EM wviterbi

ground truth

Jpectr0dr=m

Online EM for HMM/HSMM on Bach. K = 10, NB(30,0.6) (mean 20).

Alberto Bietti
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Online EM for HMM vs HSMM

HMM online EM filter

HMM online EM wviterbi

HSMM online EM filter

HSMM online EM witerbi

ground truth

upectrccram

Online EM for HMM/HSMM on Bach. K = 10, NB(30,0.6) (mean 20).
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Online vs incremental EM for HMM

HMM online EM filter

HMM online EM smcothing

HMM incremental EM filter

HMM incremsntal EM smoothing

ground truth

ectrogram
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Online vs incremental EM for HMM

HMM online EM filter

(1Y | | NN Il i

HMM online EM smoothing

HMM incremental EM filter

(1Y | m I W O IE ENE 1]

HMM incremental EM smoothing

ground truth

qpectragram
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Scenes segmentation

HMM smoothing
ME NI . N NI . IHNI] "N N N Im
HMM viterbi
BN NIEIE M ImNI T .. Il "N N 1N Im

HSMM smoothing

HM mental
NI - T O PN T EEm W E———

M smoothing

HMM incremental
I W [
HMM incremental

Dropping keys and closing doors (from office live dataset). K = 10
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Scenes segmentation

HMM smoothing
B 1) [ A e B ) [ e ] .
HMM viterbi
B 1) [ IR e B ) [ I e B ] (0|
HSMM smoothing
.%f |
HSMM viterbi

HMM incremental EM filter
0 | | I a b |
HMM incremental EM smcothing

LI | | L BN || | | DN | o
HMM incremental EM viterbi

Spectrogram

Telephone ringing and coughing sounds (from office live dataset). K = 10
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Scenes segmentation

HMM smoothing
INENI - HEIENIE EEEEEEE | EIEiIEE [
HMM viterbi
NI - HEINIE| NN | Il IEE [ L
HSMM smoothing
T —
HSMM viterbi
I — I O | | — |
HMM incremental EM filter
ey ' 4 . 1 0 . |
HMM incremental EM smcothing
T O | O . -
HMM incremental EM viterbi
e 1 ! ! ]| [ '}

ectrogram

Telephone ringing and coughing sounds (from office live dataset). K = 10
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Conclusion

©

Joint segmentation and clustering: challenging task

©

Offline algorithms perform well

©

Harder task for online algorithms, but results improve over time

©

Can be used for adaptive estimation (e.g., note templates in

Antescofo score-following system)

o Main contributions:

» Extension of online EM algorithm to HSMMs thanks to new
parameterization

» Incremental optimization algorithms for HMMs (EM and
non-probabilistic)

» Applications to audio segmentation, potential improvements in
Antescofo.
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