Online learning for audio clustering and segmentation

Alberto Bietti¹²

¹Mines ParisTech ²Ecole Normale Supérieure, Cachan

September 10, 2014

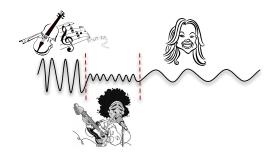
Supervisors: Arshia Cont, Francis Bach

Outline

- Introduction
- Representation, models, offline algorithms
 - Audio signal representation
 - Clustering with Bregman divergences
 - Hidden Markov Models (HMMs)
 - Hidden Semi-Markov Models (HSMMs)
 - Offline audio segmentation results
- 3 Online algorithms
 - Online EM
 - Non-probabilistic algorithm
 - Incremental EM
 - Online audio segmentation results

Audio segmentation

- Goal: segment audio signal into homogeneous chunks/segments
- Go from a signal representation to a symbolic representation
- Applications: music indexing, summarization, fingerprinting



Audio segmentation: approaches

- Most existing approaches: find change-points, compute similarities separately
- Change-point detection
 - ► Use audio features for detecting changes
 - Statistical model on the signal, likelihood ratio tests
- Issues: specific to the task, doesn't use previous parts of the signal, often supervised (needs labeled data)

Audio segmentation: approaches

- Most existing approaches: find change-points, compute similarities separately
- Change-point detection
 - Use audio features for detecting changes
 - Statistical model on the signal, likelihood ratio tests
- Issues: specific to the task, doesn't use previous parts of the signal, often supervised (needs labeled data)
- Our goal: unsupervised learning, joint segmentation and clustering. online/real-time

Audio segmentation: approaches

- Most existing approaches: find change-points, compute similarities separately
- Change-point detection
 - ► Use audio features for detecting changes
 - ► Statistical model on the signal, likelihood ratio tests
- Issues: specific to the task, doesn't use previous parts of the signal, often supervised (needs labeled data)
- Our goal: unsupervised learning, joint segmentation and clustering. online/real-time
- Hidden (semi-)Markov Models

Online learning

- Learn a model incrementally, one observation at a time
- Very successful in machine learning, especially large-scale problems
- Usually independent observations, little work on sequential models

Online learning

- Learn a model incrementally, one observation at a time
- Very successful in machine learning, especially large-scale problems
- Usually independent observations, little work on sequential models
- **Our goal**: online algorithms for hidden (semi-)Markov models, applications to online audio segmentation and clustering

Outline

- 1 Introduction
- Representation, models, offline algorithms
 - Audio signal representation
 - Clustering with Bregman divergence
 - Hidden Markov Models (HMMs)
 - Hidden Semi-Markov Models (HSMMs)
 - Offline audio segmentation results
- 3 Online algorithms
 - Online EN
 - Non-probabilistic algorithm
 - Incremental EM
 - Online audio segmentation results

Audio signal representation

- Discrete audio signal $x[t] \in \mathbb{R}$
- Short-time Fourier Transform

$$\hat{x}(t, e^{i\omega}) = \sum_{u=-\infty}^{+\infty} x[u]g[u-t]e^{-i\omega u}$$

- \bullet Window g (e.g., Hamming), compact support: FFT $\hat{x}_{t,1},\dots,\hat{x}_{t,p}\in\mathbb{C}$
- $x_t \in \mathbb{R}^p = (|\hat{x}_{t,1}|, \dots, |\hat{x}_{t,p}|)^{\top}$
- Normalized $\sum_{j} x_{t,j} = 1$ for invariance to volume

Outline

- 1 Introduction
- 2 Representation, models, offline algorithms
 - Audio signal representation
 - Clustering with Bregman divergences
 - Hidden Markov Models (HMMs)
 - Hidden Semi-Markov Models (HSMMs)
 - Offline audio segmentation results
- 3 Online algorithms
 - Online EN
 - Non-probabilistic algorithm
 - Incremental EM
 - Online audio segmentation results

Bregman divergences

- Euclidian distance doesn't perform well for audio
- Defines a different similarity measure
- Bregman divergence D_{ψ} for ψ strictly convex:

$$D_{\psi}(x,y) = \psi(x) - \psi(y) - \langle x - y, \nabla \psi(y) \rangle.$$

- Examples:
 - ▶ Squared Euclidian distance $||x y||^2 = D_{\psi}$ with $\psi(x) = ||x||^2$
 - ► KL divergence $D_{KL}(x||y) = \sum_{i} x_i \log \frac{x_i}{y_i} = D_{\psi}(x,y)$ with $\psi(x) = \sum_{i} x_i \log x_i$

Bregman divergences

- Euclidian distance doesn't perform well for audio
- Defines a different similarity measure
- Bregman divergence D_{ψ} for ψ strictly convex:

$$D_{\psi}(x,y) = \psi(x) - \psi(y) - \langle x - y, \nabla \psi(y) \rangle.$$

- Examples:
 - ▶ Squared Euclidian distance $||x y||^2 = D_{\psi}$ with $\psi(x) = ||x||^2$
 - ► KL divergence $D_{KL}(x||y) = \sum_i x_i \log \frac{x_i}{y_i} = D_{\psi}(x,y)$ with $\psi(x) = \sum_i x_i \log x_i$
- Right-type centroid = average (see e.g., (Nielsen and Nock, 2009))

$$\arg\min_{c} \sum_{i=1}^{n} D_{\psi}(x_{i}, c) = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

Hard clustering (K-means)

- x_i , i = 1, ..., n, centroids $\mu_1, ..., \mu_K$, assignments z_i
- K-means, replace $||x_i \mu_{z_i}||^2$ with $D_{\psi}(x_i, \mu_{z_i})$
 - ► E-step

$$z_i \leftarrow \arg\min_k D_{\psi}(x_i, \mu_k) \quad i = 1, \dots, n$$

► M-step

$$\mu_k \leftarrow \frac{1}{|\{i: z_i = k\}|} \sum_{i: z_i = k} x_i \quad k = 1, \dots, K$$

Hard clustering (K-means)

- x_i , i = 1, ..., n, centroids $\mu_1, ..., \mu_K$, assignments z_i
- K-means, replace $||x_i \mu_{z_i}||^2$ with $D_{\psi}(x_i, \mu_{z_i})$
 - ► E-step

$$z_i \leftarrow \arg\min_k D_{\psi}(x_i, \mu_k) \quad i = 1, \dots, n$$

M-step

$$\mu_k \leftarrow \frac{1}{|\{i: z_i = k\}|} \sum_{i: z_i = k} x_i \quad k = 1, \dots, K$$

Decreases the (non-convex) objective

$$\ell(\boldsymbol{\mu}, \mathbf{z}) = \sum_{i=1}^n D_{\psi}(x_i, \mu_{z_i}).$$

Bregman divergences and exponential families

• Exponential family:

$$p_{\theta}(x) = h(x) \exp(\langle \phi(x), \theta \rangle - a(\theta))$$

• Regular exponential family: minimal, Θ open

$$p_{\psi,\theta}(x) = h(x) \exp(\langle x, \theta \rangle - \psi(\theta))$$

• Bijection between regular exponential families and regular Bregman divergences (Banerjee et al., 2005): $\mu = \nabla \psi(\theta) = \mathbb{E}[X]$,

$$p_{\psi,\theta}(x) = h(x) \exp(-D_{\psi^*}(x,\mu))$$

Example: KL divergence
 ⇔ Multinomial distribution

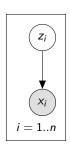
$$h(x) \exp(-\sum_{i} x_{i} \log \frac{x_{i}}{\mu_{i}}) = h'(x) \prod_{i} \mu_{i}^{x_{i}}$$

Mixture models

- ullet x_i , $i=1,\ldots,n$, K mixture components, emission parameters μ_k
- Model:

$$z_i \sim \pi, \quad i = 1, \dots, n$$

 $x_i | z_i \sim p_{\mu_{z_i}}, \quad i = 1, \dots, n,$



EM algorithm

- ullet ${f x}$ observed variables, ${f z}$ hidden variables, heta parameter
- Goal: maximum likelihood $\max_{\theta} p(\mathbf{x}; \theta)$

$$\ell(\theta) = \log \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}; \theta) = \log \sum_{\mathbf{z}} q(\mathbf{z}) \frac{p(\mathbf{x}, \mathbf{z}; \theta)}{q(\mathbf{z})}$$
$$\geq \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}; \theta)}{q(\mathbf{z})}.$$

- E-step: maximize w.r.t. q. $q(z) = p(z|x;\theta)$
- M-step: maximize w.r.t. θ . $\hat{\theta} = \arg\max_{\theta} \mathbb{E}_{z \sim q}[\log p(z, x; \theta)]$

Mixture models: EM (soft clustering)

• x_i , i = 1, ..., n, initial parameters π , μ_k .

$$\mathbb{E}_{\mathbf{z} \sim q}[\log p(\mathbf{x}, \mathbf{z}; \pi, \mu)]$$

$$= \sum_{i} \sum_{k} \mathbb{E}_{q}[\mathbb{1}\{z_{i} = k\}] \log \pi_{k} + \sum_{i} \sum_{k} \mathbb{E}_{q}[\mathbb{1}\{z_{i} = k\}] \log p(x_{i}|k)$$

► E-step

$$au_{ik} \leftarrow p(z_i = k|x_i) = \frac{1}{Z}\pi_k e^{-D_{\psi}(x_i,\mu_k)}$$

► M-step

$$\pi_k \leftarrow \frac{1}{n} \sum_i \tau_{ik}$$

$$\mu_k \leftarrow \frac{\sum_i \tau_{ik} x_i}{\sum_i \tau_{ik}}$$

Outline

- 1 Introduction
- 2 Representation, models, offline algorithms
 - Audio signal representation
 - Clustering with Bregman divergences
 - Hidden Markov Models (HMMs)
 - Hidden Semi-Markov Models (HSMMs)
 - Offline audio segmentation results
- 3 Online algorithms
 - Online EN
 - Non-probabilistic algorithm
 - Incremental EM
 - Online audio segmentation results

Hidden Markov Models (HMMs)

• Observed sequence $x_{1:T}$, hidden sequence $z_{1:T}$, parameters $\pi, A \in \mathbb{R}^{K \times K}, \mu_k$

$$z_1 \sim \pi$$
 $z_t | z_{t-1} = i \sim A_i, \quad t = 2, \dots, T$
 $x_t | z_t = i \sim p_{\mu_i}, \quad t = 1, \dots, T$

Joint likelihood:

$$p(x_{1:T}, z_{1:T}; \pi, A, \mu) = p(z_1; \pi) \prod_{t=2}^{T} p(z_t|z_{t-1}; A) \prod_{t=1}^{T} p(x_t|z_t; \mu)$$

$$z_1 \longrightarrow z_2 \longrightarrow z_3 \longrightarrow \cdots \longrightarrow z_T$$

$$x_1 \longrightarrow x_2 \longrightarrow x_3 \longrightarrow \cdots \longrightarrow x_T$$

HMM inference: Forward-Backward algorithm

- Inference: compute $p(z_t = i | x_{1:T})$ (smoothing)
- Definitions:

$$\alpha_t(i) = p(z_t = i, x_1, \dots, x_t)$$

$$\beta_t(i) = p(x_{t+1}, \dots, x_T | z_t = i).$$

• Recursions, with $\alpha_1(i) = \pi_i p(x_1|z_1 = i)$, $\beta_T(i) = 1$:

$$\alpha_{t+1}(j) = \sum_{i} \alpha_{t}(i) A_{ij} p(x_{t+1} | z_{t+1} = j)$$
$$\beta_{t}(i) = \sum_{j} A_{ij} p(x_{t+1} | z_{t+1} = j) \beta_{t+1}(j)$$

• $p(z_t = i | x_{1:T}) \propto \alpha_t(i) \beta_t(i)$

HMM inference: Viterbi algorithm

• Compute *maximum a posteriori* (MAP) sequence:

$$z_{1:T}^{MAP} = \arg \max_{z_{1:T}} p(z_{1:T}|x_{1:T})$$

Define

$$\gamma_t(i) = \max_{z_1, \dots, z_{t-1}} p(z_1, \dots, z_{t-1}, z_t = i, x_1, \dots, x_t)$$

• Recursion, with $\gamma_1(i) = \pi_i p(x_1 | z_1 = i; \mu_i)$:

$$\gamma_{t+1}(j) = \max_{i} \gamma_{t}(i) A_{ij} p(x_{t+1}|z_{t+1} = j; \mu_{j})$$

• Recover the sequence by storing back-pointers.

HMM learning: EM

E-step

$$\tau_t(i) \leftarrow p(z_t = i|x_{1:T}) \propto \alpha_t(i)\beta_t(i)$$

$$\tau_t(i,j) \leftarrow p(z_{t-1} = i, z_t = j|x_{1:T}) \propto \alpha_{t-1}(i)A_{ij}p(x_t|j)\beta_t(j)$$

M-step

$$\pi_{i} \leftarrow \tau_{1}(i)$$

$$A_{ij} \leftarrow \frac{\sum_{t \geq 2} \tau_{t}(i, j)}{\sum_{j'} \sum_{t \geq 2} \tau_{t}(i, j')}$$

$$\mu_{i} \leftarrow \frac{\sum_{t \geq 1} \tau_{t}(i) x_{i}}{\sum_{t \geq 1} \tau_{t}(i)}$$

Outline

- 1 Introduction
- 2 Representation, models, offline algorithms
 - Audio signal representation
 - Clustering with Bregman divergences
 - Hidden Markov Models (HMMs)
 - Hidden Semi-Markov Models (HSMMs)
 - Offline audio segmentation results
- 3 Online algorithms
 - Online EN
 - Non-probabilistic algorithm
 - Incremental EM
 - Online audio segmentation results

Duration distributions

Probability of staying in state i for d time steps:

$$A_{ii}^{d-1}(1-A_{ii})$$

- i.e., segment lengths follow geometric distributions
- Duration distribution learned implicitely through $A_i i$
- HSMMs: model these duration distributions explicitely (explicit-duration HMM)
- Typical choices: Negative Binomial, Poisson

Hidden Semi-Markov Models

- Segment = (state z, length I), with $I \sim p_z(d)$
- (Markov) transitions A_{ij} between segments
- I i.i.d. observations from cluster z in each segment

$$x_t,\ldots,x_{t+l-1}\sim p_{\mu_z},$$
 i.i.d.

Hidden Semi-Markov Models (Murphy, 2002)

- Two hidden variables: state z_t , deterministic counter z_t^D
- $f_t = 1$ iff new segment starts at t + 1

$$\begin{array}{lll} p(z_t = j | z_{t-1} = i, f_{t-1} = f) & = & \begin{cases} \delta(i,j), & \text{if } f = 0 \\ A_{ij}, & \text{if } f = 1 \text{ (transition)} \end{cases} \\ p(z_t^D = d | z_t = i, f_{t-1} = 1) & = & p_i(d) \\ p(z_t^D = d | z_t = i, z_{t-1}^D = d' \geq 2) & = & \delta(d, d' - 1), \end{cases}$$

HSMM inference: Forward-Backward algorithm

Definitions:

$$\alpha_{t}(j) = p(z_{t} = j, f_{t} = 1, x_{1:t})$$

$$\alpha_{t}^{*}(j) = p(z_{t+1} = j, f_{t} = 1, x_{1:t})$$

$$\beta_{t}(i) = p(x_{t+1:T}|z_{t} = i, f_{t} = 1)$$

$$\beta_{t}^{*}(i) = p(x_{t+1:T}|z_{t+1} = i, f_{t} = 1).$$

• Recursions, with $\alpha_0^*(j) = \pi_j$ and $\beta_T(i) = 1$:

$$\alpha_t(j) = \sum_{d} p(x_{t-d+1:t}|j,d)p(d|j)\alpha_{t-d}^*(j)$$

$$\alpha_t^*(j) = \sum_{i} \alpha_t(i)A_{ij}$$

$$\beta_t(i) = \sum_{j} \beta_t^*(j)A_{ij}$$

$$\beta_t^*(i) = \sum_{d} \beta_{t+d}(i)p(d|i)p(x_{t+1:t+d}|i,d).$$

HSMM: EM

Define:

$$\gamma_t(i) = p(z_t = i, f_t = 1 | x_{1:T}) \propto \alpha_t(i) \beta_t(i)$$

$$\gamma_t^*(i) = p(z_{t+1} = i, f_t = 1 | x_{1:T}) \propto \alpha_t^*(i) \beta_t^*(i).$$

E-step

$$p(z_t = i|x_{1:T}) = \sum_{\tau < t} (\gamma_\tau^*(i) - \gamma_\tau(i))$$
$$p(z_t = i, z_{t+1} = j|f_t = 1, x_{1:T}) \propto \alpha_t(i) A_{ij} \beta_t^*(j)$$

M-step

$$\pi_{i} = p(z_{1} = i|x_{1:T})$$

$$A_{ij} = \frac{\sum_{t} p(z_{t} = i, z_{t+1} = j|f_{t} = 1, x_{1:T})}{\sum_{j'} \sum_{t} p(z_{t} = i, z_{t+1} = j'|f_{t} = 1, x_{1:T})}$$

$$\mu_{i} = \frac{\sum_{t} p(z_{t} = i|x_{1:T})x_{t}}{\sum_{t} p(z_{t} = i|x_{1:T})}$$

Outline

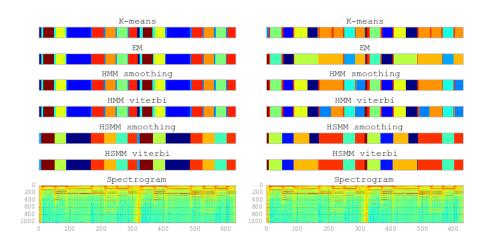
- 1 Introduction
- 2 Representation, models, offline algorithms
 - Audio signal representation
 - Clustering with Bregman divergences
 - Hidden Markov Models (HMMs)
 - Hidden Semi-Markov Models (HSMMs)
 - Offline audio segmentation results
- 3 Online algorithms
 - Online EN
 - Non-probabilistic algorithm
 - Incremental EV
 - Online audio segmentation results

Examples

Ravel, Ma Mère l'Oye

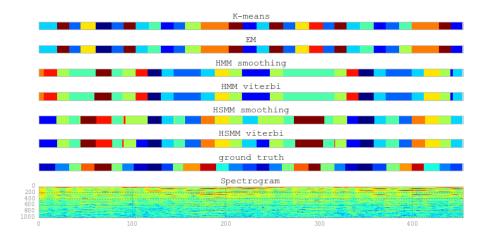
Bach, Violin sonata n. 2, Allegro

Results (Ravel)



Different K-means initializations. K = 9. HSMM duration distributions fixed to NegBin(5, 0.95).

Results (Bach)



HMM and HSMM randomly initialized (uniform spectrum + noise). K = 10. HSMM durations: NB(5, 0.2) (mean 20).

Outline

- 1 Introduction
- 2 Representation, models, offline algorithms
 - Audio signal representation
 - Clustering with Bregman divergences
 - Hidden Markov Models (HMMs)
 - Hidden Semi-Markov Models (HSMMs)
 - Offline audio segmentation results
- 3 Online algorithms
 - Online EM
 - Non-probabilistic algorithm
 - Incremental EM
 - Online audio segmentation results

Online EM for i.i.d. data (Cappé and Moulines, 2009)

Complete-data model:

$$p(x, z; \theta) = h(x, z) \exp(\langle s(x, z), \eta(\theta) \rangle - a(\theta))$$

Batch EM can be written as:

$$S_t = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_z[s(x_i, z_i) | x_i; \theta_{t-1}]$$

$$\theta_t = \bar{\theta}(S_t)$$

• Taking the limit $n \to \infty$ (limiting EM):

$$S_t = \mathbb{E}_{x \sim P}[\mathbb{E}_z[s(x, z)|x; \theta_{t-1}]]$$

$$\theta_t = \bar{\theta}(S_t).$$

Online EM for i.i.d. data (Cappé and Moulines, 2009)

- Stochastic approximation (Robbins-Monro) procedure to solve $S_{t+1} = \mathbb{E}_{x \sim P}[\mathbb{E}_z[s(x,z)|x;\bar{\theta}(S_t)]]$
- Online EM algorithm:

$$\hat{\mathbf{s}}_t = (1 - \gamma_t)\hat{\mathbf{s}}_{t-1} + \gamma_t \mathbb{E}_z[\mathbf{s}(\mathbf{x}_t, \mathbf{z})|\mathbf{x}_t; \hat{\theta}_{t-1}]$$
$$\hat{\theta}_t = \bar{\theta}(\hat{\mathbf{s}}_t).$$

• $\gamma_t = t^{-\alpha}$, $\alpha \in (0.5, 1]$

Online EM for HMMs (Cappé, 2011)

Complete-data model:

$$p(x_t, z_t|z_{t-1}; \theta) = h(z_t, x_t) \exp(\langle s(z_{t-1}, z_t, x_t), \eta(\theta) \rangle - a(\theta))$$

Batch EM can be written as:

$$S_k = \frac{1}{T} \mathbb{E}_z \left[\sum_{t=1}^T s(z_{t-1}, z_t, x_t) \mid x_{0:T}; \theta_{k-1} \right]$$

$$\theta_k = \bar{\theta}(S_k)$$

• Limiting EM ($T \to \infty$, with strong assumptions):

$$S_k = \mathbb{E}_{x \sim P}[\mathbb{E}_z[s(z_{-1}, z_0, x_0) | x_{-\infty:\infty}; \theta_{k-1}]]$$

$$\theta_k = \bar{\theta}(S_k),$$

Online EM for HMMs

- Based on the forward smoothing recursion
- Define

$$S_{t} = \frac{1}{t} \mathbb{E}_{z} \left[\sum_{t'=1}^{t} s(z_{t'-1}, z_{t'}, x_{t'}) \mid x_{0:t}; \theta \right]$$

$$\phi_{t}(i) = \rho(z_{t} = i | x_{0:t})$$

$$\rho_{t}(i) = \frac{1}{t} \mathbb{E}_{z} \left[\sum_{t'=1}^{t} s(z_{t'-1}, z_{t'}, x_{t'}) \mid x_{0:t}, z_{t} = i; \theta \right]$$

• We have $S_t = \sum_i \rho_t(i)\phi_t(i)$.

Online EM for HMMs

Smoothing recursion

$$\phi_{t+1}(j) = \frac{1}{Z} \sum_{i} \phi_{t}(i) A_{ij} p(x_{t+1} | z_{t+1} = j)$$

$$\rho_{t+1}(j) = \sum_{i} \left(\frac{1}{t+1} s(i, j, x_{t+1}) + \left(1 - \frac{1}{t+1} \right) \rho_{t}(i) \right) r_{t+1}(i|j),$$
with $r_{t+1}(i|j) = p(z_{t} = i | z_{t+1} = j, x_{0:t})$. Complexity $O(K^{4} + K^{3}p)$.

Online EM for HMMs

Smoothing recursion

$$\phi_{t+1}(j) = \frac{1}{Z} \sum_{i} \phi_{t}(i) A_{ij} p(x_{t+1} | z_{t+1} = j)$$

$$\rho_{t+1}(j) = \sum_{i} \left(\frac{1}{t+1} s(i, j, x_{t+1}) + \left(1 - \frac{1}{t+1} \right) \rho_{t}(i) \right) r_{t+1}(i|j),$$

with $r_{t+1}(i|j) = p(z_t = i|z_{t+1} = j, x_{0:t})$. Complexity $O(K^4 + K^3p)$.

Online EM recursion replaces quantities by estimates, e.g.

$$\hat{\rho}_{t+1}(j) = \sum_{i} (\gamma_{t+1} s(i, j, x_{t+1}) + (1 - \gamma_{t+1}) \hat{\rho}_{t}(i)) \hat{r}_{t+1}(i|j)$$

and updates parameters after each observation.

Online EM for HSMMs

• Parameterize HSMM as HMM with 2 hidden variables, z_t and an increasing counter z_t^D

$$\begin{split} & p(z_t = j | z_{t-1} = i, z_t^D = d) = \begin{cases} A_{ij}, & \text{if } d = 1 \\ \delta(i,j), & \text{otherwise} \end{cases} \\ & p(z_t^D = d' | z_{t-1} = i, z_{t-1}^D = d) = \begin{cases} \frac{D_i(d+1)}{D_i(d)}, & \text{if } d' = d+1 \\ 1 - \frac{D_i(d+1)}{D_i(d)}, & \text{if } d' = 1 \\ 0, & \text{otherwise.} \end{cases} \end{split}$$

• Complexity per observation increased to $O(K^4D + K^3Dp)$ instead of $O(K^4D^2 + K^3D^2p)$ thanks to deterministic transitions.

Outline

- 1 Introduction
- 2 Representation, models, offline algorithms
 - Audio signal representation
 - Clustering with Bregman divergences
 - Hidden Markov Models (HMMs)
 - Hidden Semi-Markov Models (HSMMs)
 - Offline audio segmentation results
- 3 Online algorithms
 - Online EM
 - Non-probabilistic algorithm
 - Incremental EM
 - Online audio segmentation results

Objective function from probabilistic models

- Mixture model (with $pi_k = 1/K$)
 - ► Complete-data likelihood

$$p(\mathbf{x},\mathbf{z};\mu) = \prod_{i=1}^{n} p(z_i)p(x_i|z_i;\mu)$$

▶ Objective (= $-\log p(\mathbf{x}, \mathbf{z}; \mu) + C$)

$$\ell(\mathbf{z},\theta) = \sum_{i=1}^n D_{\psi}(x_i, \mu_{z_i})$$

- HMM
 - Complete-data likelihood

$$p(x_{1:T}, z_{1:T}; \mu) = p(z_1) \prod_{t=2}^{T} p(z_t|z_{t-1}) \prod_{t=1}^{T} p(x_t|z_t; \mu)$$

▶ Objective

$$\ell(z_{1:T}, \mu) = \frac{1}{T} \sum_{t>1} D_{\psi}(x_t, \mu_{z_t}) + \frac{\lambda_1}{T} \sum_{t>2} d(z_{t-1}, z_t)$$

Online objective

Online objective:

$$f_T(\mu) := \min_{\mathsf{z}_{1:T}} \ell(\mathsf{z}_{1:T}, \mu)$$

New upper bound (majorizing surrogate) at time t:

$$\hat{f}_t(\mu) := rac{1}{t} \sum_{i=1}^t D_{\psi}(x_i, \mu_{z_i}) + rac{\lambda_1}{t} \sum_{i=2}^t d(z_{i-1}, z_i)$$

- At time t:
 - $z_{1:t-1}$ fixed from past
 - E-step: $z_t = j = \arg\min_k D_{\psi}(x_t, \mu_k) + \lambda_1 d(z_{t-1}, k)$
 - M-step: update cluster $\mu_j = \mu_j + \frac{1}{n_j}(x_t \mu_j)$

Outline

- 1 Introduction
- 2 Representation, models, offline algorithms
 - Audio signal representation
 - Clustering with Bregman divergences
 - Hidden Markov Models (HMMs)
 - Hidden Semi-Markov Models (HSMMs)
 - Offline audio segmentation results
- 3 Online algorithms
 - Online EN
 - Non-probabilistic algorithm
 - Incremental EM
 - Online audio segmentation results

Incremental EM for i.i.d. data (Neal and Hinton, 1998)

EM = maximize lower bounds

$$f(\theta) = p(\mathbf{x}; \theta) \ge \sum_{\mathbf{z}} q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}; \theta)}{q(\mathbf{z})}.$$

- Maximizer $q(\mathbf{z}) = \prod_i p(z_i|x_i;\theta)$, limit to $\prod_i q_i(z_i)$
- Minorizing surrogates:

$$\hat{f}_n(\theta) = \frac{1}{n} \sum_{i=1}^n \sum_{z_i} q_i(z_i) \log \frac{p(x_i, z_i; \theta)}{q_i(z_i)}$$

- Repeat: update single q_i (E-step), maximize $(1/n) \mathbb{E}_q[\log p(\mathbf{x}, \mathbf{z})]$
- Can be expressed in terms of sufficient statistics

Incremental EM for HMMs

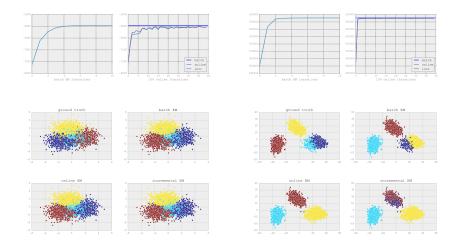
- Only consider lower bounds with $q(z_{1:T}) = q_1(z_1) \prod_{t \geq 2} q_t(z_t|z_{t-1})$
- Surrogates:

$$\hat{f}_{T}(\theta) = \frac{1}{T} \sum_{t=1}^{T} \left[\sum_{z_{t-1}, z_{t}} \phi_{t-1}(z_{t-1}) q_{t}(z_{t}|z_{t-1}) \log \frac{p(x_{t}, z_{t}|z_{t-1}; \theta)}{q_{t}(z_{t}|z_{t-1})} \right],$$

with
$$\phi_t(z_t) := \sum_{z_{t-1}} \phi_{t-1}(z_{t-1}) q(z_t|z_{t-1})$$
.

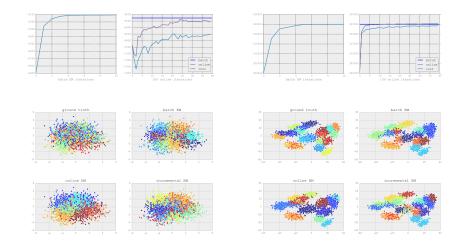
- At time T:
 - $ightharpoonup q_{1:T-1}$, $\phi_{1:T}$ fixed from past
 - ► E-step: $q_T(z_T|z_{T-1}) = p(z_T|z_{T-1}, x_T; \theta)$
 - M-step: $\hat{\theta} = \arg \max_{\theta} \hat{f}_{T}(\theta)$

Experiments on synthetic data



Squared Euclidian distance (left) and KL divergence (right). $K=4,\ p=5.$

Experiments on synthetic data



Squared Euclidian distance (left) and KL divergence (right). K = 20, p = 5.

Experiments on synthetic data



Squared Euclidian distance (left) and KL divergence (right). $K=20,\ p=100.$

Outline

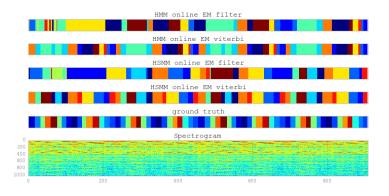
- 1 Introduction
- 2 Representation, models, offline algorithms
 - Audio signal representation
 - Clustering with Bregman divergences
 - Hidden Markov Models (HMMs)
 - Hidden Semi-Markov Models (HSMMs)
 - Offline audio segmentation results
- 3 Online algorithms
 - Online EN
 - Non-probabilistic algorithm
 - Incremental EM
 - Online audio segmentation results

Online EM for HMM vs HSMM



Online EM for HMM/HSMM on Bach. K = 10, NB(30, 0.6) (mean 20).

Online EM for HMM vs HSMM

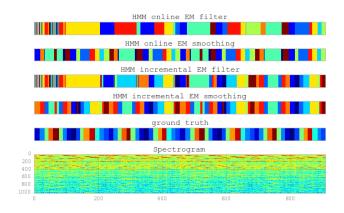


Online EM for HMM/HSMM on Bach. K = 10, NB(30, 0.6) (mean 20).

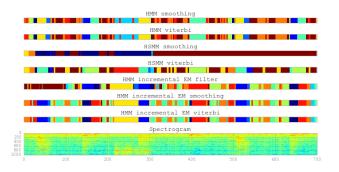
Online vs incremental EM for HMM



Online vs incremental EM for HMM

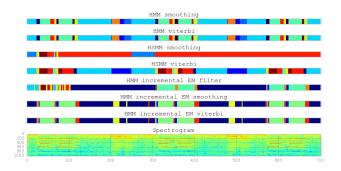


Scenes segmentation



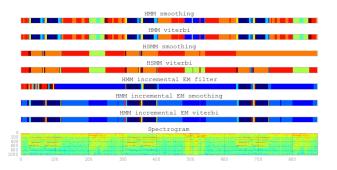
Dropping keys and closing doors (from office live dataset). K=10

Scenes segmentation



Telephone ringing and coughing sounds (from office live dataset). $\mathcal{K}=10$

Scenes segmentation



Telephone ringing and coughing sounds (from office live dataset). $\mathcal{K}=10$

Conclusion

- Joint segmentation and clustering: challenging task
- Offline algorithms perform well
- Harder task for online algorithms, but results improve over time
- Can be used for adaptive estimation (e.g., note templates in Antescofo score-following system)
- Main contributions:
 - Extension of online EM algorithm to HSMMs thanks to new parameterization
 - Incremental optimization algorithms for HMMs (EM and non-probabilistic)
 - Applications to audio segmentation, potential improvements in Antescofo.

References

- A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh. Clustering with bregman divergences. *Journal of Machine Learning Research*, 6: 1705–1749, Dec. 2005.
- O. Cappé. Online EM algorithm for hidden markov models. *Journal of Computational and Graphical Statistics*, 20(3):728–749, Jan. 2011.
- O. Cappé and E. Moulines. Online expectation—maximization algorithm for latent data models. *Journal of the Royal Statistical Society: Series B* (Statistical Methodology), 71(3):593–613, June 2009.
- K. P. Murphy. Hidden semi-markov models (hsmms). *unpublished notes*, 2002.
- R. Neal and G. E. Hinton. A view of the em algorithm that justifies incremental, sparse, and other variants. In *Learning in Graphical Models*, pages 355–368. Kluwer Academic Publishers, 1998.
- F. Nielsen and R. Nock. Sided and symmetrized bregman centroids. *IEEE Transactions on Information Theory*, 55(6):2882–2904, June 2009.