Transformers and Associative Memories

Alberto Bietti

Flatiron Institute, Simons Foundation
MIT 9.520/6.7910. December 7, 2023.
∞

Transformers and language models

- Transformers: self-attention + MLPs + residual connections
- Learn relevant long-range interactions via attention, instead of fixing them (CNNs)

Transformers and language models

- Transformers: self-attention + MLPs + residual connections
- Learn relevant long-range interactions via attention, instead of fixing them (CNNs)
- Large language models: train to predict next token on all the web (+ fine-tune)

6) Yo
write a poem about statistical learning theory at MITChatGPT
In halls of knowledge, MIT's domain,
Where minds ignite and theories reign,
There blooms a field, both art and science,
Statistical Learning, in defiance.

In Cambridge's heart, where scholars gather,
They delve into data, with minds that matter,
In quest of patterns, both subtle and bold,
In Statistical Learning's embrace, they're enrolled.

From regression's lines to trees that grow,
In the forests of data, they seek to know,

Transformers and language models

- Transformers: self-attention + MLPs + residual connections
- Learn relevant long-range interactions via attention, instead of fixing them (CNNs)
- Large language models: train to predict next token on all the web (+ fine-tune)
- In-context "reasoning" vs memorization: transformers seem to use a mix of "reasoning" from context and "knowledge" from training set

(1)

You
write a poem about statistical learning theory at MITChatGPT
In halls of knowledge, MIT's domain,
Where minds ignite and theories reign,
There blooms a field, both art and science,
Statistical Learning, in defiance.

In Cambridge's heart, where scholars gather,
They delve into data, with minds that matter,
In quest of patterns, both subtle and bold,
In Statistical Learning's embrace, they're enrolled.

From regression's lines to trees that grow, In the forests of data, they seek to know,

Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to petition the Government for a redress of grievances.

This is known as the First Amendment to the United States Constitution and it is designed to protect the fundamental rights of citizens of the United States. It guarantees citizens the right to practice any religion of their choosing, the freedom of speech and of the press, and the right to peacefully assemble and to petition the government.

Motivating questions

- Interpretability: what mechanisms are used inside a transformer?

Motivating questions

- Interpretability: what mechanisms are used inside a transformer?
- Training dynamics: how is this learned with optimization?

Motivating questions

- Interpretability: what mechanisms are used inside a transformer?
- Training dynamics: how is this learned with optimization?
- Discrete data: what is a good model for feature learning with discrete data?

Motivating questions

- Interpretability: what mechanisms are used inside a transformer?
- Training dynamics: how is this learned with optimization?
- Discrete data: what is a good model for feature learning with discrete data?
- Role of depth: what are benefits of deep, compositional models?

Motivating questions

- Interpretability: what mechanisms are used inside a transformer?
- Training dynamics: how is this learned with optimization?
- Discrete data: what is a good model for feature learning with discrete data?
- Role of depth: what are benefits of deep, compositional models?
- Experimental/theory setup: what is a simple setting for studying this?

Outline

(1) Associative memories

(2) Transformers and in-context learning

(3) Scaling laws and optimization

Learning associations

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions - e.g., smooth functions, sparse polynomials

Learning associations

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions - e.g., smooth functions, sparse polynomials
- In practice, discrete structure and memorization are often crucial
- language: words, syntactic rules, semantic concepts, facts
- vision: "visual words", features, objects

Learning associations

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions - e.g., smooth functions, sparse polynomials
- In practice, discrete structure and memorization are often crucial
- language: words, syntactic rules, semantic concepts, facts
- vision: "visual words", features, objects

Statistical learning setup:

- Data distribution $p(z, y)$ over pairs of discrete tokens $(z, y) \in[N] \times[M]$

Learning associations

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions - e.g., smooth functions, sparse polynomials
- In practice, discrete structure and memorization are often crucial
- language: words, syntactic rules, semantic concepts, facts
- vision: "visual words", features, objects

Statistical learning setup:

- Data distribution $p(z, y)$ over pairs of discrete tokens $(z, y) \in[N] \times[M]$
- 0-1 loss of a predictor $\hat{f}:[N] \rightarrow[M]$:

$$
L_{01}(\hat{f})=\mathbb{P}(y \neq \hat{f}(z))
$$

Learning associations

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions - e.g., smooth functions, sparse polynomials
- In practice, discrete structure and memorization are often crucial
- language: words, syntactic rules, semantic concepts, facts
- vision: "visual words", features, objects

Statistical learning setup:

- Data distribution $p(z, y)$ over pairs of discrete tokens $(z, y) \in[N] \times[M]$
- 0-1 loss of a predictor $\hat{f}:[N] \rightarrow[M]$:

$$
L_{01}(\hat{f})=\mathbb{P}(y \neq \hat{f}(z))
$$

- Typically $\hat{f}(z)=\arg \max _{y} f_{y}(z)$ with $f_{y}:[N] \rightarrow \mathbb{R}$ for each $y \in[M]$

Matrices as associative memories

- Consider sets of nearly orthonormal embeddings $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{v_{j}\right\}_{j \in \mathcal{J}}$:

$$
\begin{aligned}
\left\|u_{i}\right\| & \approx 1 \\
\left\|v_{i}\right\| & \text { and } \quad u_{i}^{\top} u_{j} \approx 0 \\
\text { and } & v_{i}^{\top} v_{j} \approx 0
\end{aligned}
$$

Matrices as associative memories

- Consider sets of nearly orthonormal embeddings $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{v_{j}\right\}_{j \in \mathcal{J}}$:

$$
\begin{aligned}
\left\|u_{i}\right\| \approx 1 & \text { and } \quad u_{i}^{\top} u_{j} \approx 0 \\
\left\|v_{i}\right\| \approx 1 & \text { and } \quad v_{i}^{\top} v_{j} \approx 0
\end{aligned}
$$

- Consider pairwise associations $(i, j) \in \mathcal{M}$ with weights $\alpha_{i j}$ and define:

$$
W=\sum_{(i, j) \in \mathcal{M}} \alpha_{i j} v_{j} u_{i}^{\top}
$$

- We then have $v_{j}^{\top} W u_{i} \approx \alpha_{i j}$

Matrices as associative memories

- Consider sets of nearly orthonormal embeddings $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{v_{j}\right\}_{j \in \mathcal{J}}$:

$$
\begin{array}{ll}
\left\|u_{i}\right\| \approx 1 & \text { and } \quad u_{i}^{\top} u_{j} \approx 0 \\
\left\|v_{i}\right\| \approx 1 & \text { and } \quad v_{i}^{\top} v_{j} \approx 0
\end{array}
$$

- Consider pairwise associations $(i, j) \in \mathcal{M}$ with weights $\alpha_{i j}$ and define:

$$
W=\sum_{(i, j) \in \mathcal{M}} \alpha_{i j} v_{j} u_{i}^{\top}
$$

- We then have $v_{j}^{\top} W u_{i} \approx \alpha_{i j}$
- Computed in Transformers for logits in next-token prediction and self-attention

Matrices as associative memories

- Consider sets of nearly orthonormal embeddings $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{v_{j}\right\}_{j \in \mathcal{J}}$:

$$
\begin{array}{ll}
\left\|u_{i}\right\| \approx 1 & \text { and } \quad u_{i}^{\top} u_{j} \approx 0 \\
\left\|v_{i}\right\| \approx 1 & \text { and } \quad v_{i}^{\top} v_{j} \approx 0
\end{array}
$$

- Consider pairwise associations $(i, j) \in \mathcal{M}$ with weights $\alpha_{i j}$ and define:

$$
W=\sum_{(i, j) \in \mathcal{M}} \alpha_{i j} v_{j} u_{i}^{\top}
$$

- We then have $v_{j}^{\top} W u_{i} \approx \alpha_{i j}$
- Computed in Transformers for logits in next-token prediction and self-attention note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

Learning associative memories with gradients

- Simple differentiable model to learn such associative memories:

$$
z \in[N] \rightarrow u_{z} \in \mathbb{R}^{d} \rightarrow W u_{z} \in \mathbb{R}^{d} \rightarrow\left(v_{k}^{\top} W u_{z}\right)_{k} \in \mathbb{R}^{M}
$$

Learning associative memories with gradients

- Simple differentiable model to learn such associative memories:

$$
z \in[N] \rightarrow u_{z} \in \mathbb{R}^{d} \rightarrow W u_{z} \in \mathbb{R}^{d} \rightarrow\left(v_{k}^{\top} W u_{z}\right)_{k} \in \mathbb{R}^{M}
$$

- u_{z}, v_{y} : nearly-orthogonal input/output embeddings, assume fixed

Learning associative memories with gradients

- Simple differentiable model to learn such associative memories:

$$
z \in[N] \rightarrow u_{z} \in \mathbb{R}^{d} \rightarrow W u_{z} \in \mathbb{R}^{d} \rightarrow\left(v_{k}^{\top} W u_{z}\right)_{k} \in \mathbb{R}^{M}
$$

- u_{z}, v_{y} : nearly-orthogonal input/output embeddings, assume fixed
- Cross-entropy loss for logits $\xi \in \mathbb{R}^{M}: \ell(y, \xi)=-\xi_{y}+\log \left(\sum_{k} \exp \xi_{k}\right)$

Learning associative memories with gradients

- Simple differentiable model to learn such associative memories:

$$
z \in[N] \rightarrow u_{z} \in \mathbb{R}^{d} \rightarrow W u_{z} \in \mathbb{R}^{d} \rightarrow\left(v_{k}^{\top} W u_{z}\right)_{k} \in \mathbb{R}^{M}
$$

- u_{z}, v_{y} : nearly-orthogonal input/output embeddings, assume fixed
- Cross-entropy loss for logits $\xi \in \mathbb{R}^{M}: \ell(y, \xi)=-\xi_{y}+\log \left(\sum_{k} \exp \xi_{k}\right)$

Lemma (Gradients as memories)

Let p be a data distribution over $(z, y) \in[N] \times[M]$, and consider the loss

$$
L(W)=\mathbb{E}_{(z, y) \sim p}\left[\ell\left(y, \xi_{W}(z)\right)\right], \quad \xi_{W}(z)_{k}=v_{k}^{\top} W u_{z}
$$

with ℓ the cross-entropy loss and u_{z}, v_{k} input/output embeddings.

Learning associative memories with gradients

- Simple differentiable model to learn such associative memories:

$$
z \in[N] \rightarrow u_{z} \in \mathbb{R}^{d} \rightarrow W u_{z} \in \mathbb{R}^{d} \rightarrow\left(v_{k}^{\top} W u_{z}\right)_{k} \in \mathbb{R}^{M}
$$

- u_{z}, v_{y} : nearly-orthogonal input/output embeddings, assume fixed
- Cross-entropy loss for logits $\xi \in \mathbb{R}^{M}: \ell(y, \xi)=-\xi_{y}+\log \left(\sum_{k} \exp \xi_{k}\right)$

Lemma (Gradients as memories)

Let p be a data distribution over $(z, y) \in[N] \times[M]$, and consider the loss

$$
L(W)=\mathbb{E}_{(z, y) \sim p}\left[\ell\left(y, \xi_{W}(z)\right)\right], \quad \xi_{W}(z)_{k}=v_{k}^{\top} W u_{z}
$$

with ℓ the cross-entropy loss and u_{z}, v_{k} input/output embeddings. Then,

$$
\nabla L(W)=\sum_{k=1}^{M} \mathbb{E}_{z}\left[\left(\hat{p}_{W}(y=k \mid z)-p(y=k \mid z)\right) v_{k} u_{z}^{\top}\right],
$$

with $\hat{p}_{W}(y=k \mid z)=\exp \left(\xi_{W}(z)_{k}\right) / \sum_{j} \exp \left(\xi_{W}(z)_{j}\right)$.

Example: one gradient step

Data model: $\quad z \sim \operatorname{Unif}([N]), \quad y=f_{*}(z) \in[N]$

Example: one gradient step

Data model: $\quad z \sim \operatorname{Unif}([N]), \quad y=f_{*}(z) \in[N]$

- After one gradient step on the population loss from $W_{0}=0$ with step η, we have

$$
\begin{aligned}
W_{1} & =W_{0}-\eta \sum_{k=1}^{N} \mathbb{E}_{z}\left[\left(\hat{p}_{W}(y=k \mid z)-p(y=k \mid z)\right) v_{k} u_{z}^{\top}\right] \\
& =\eta \sum_{z, k} p(z)\left(p(y=k \mid z)-\hat{p}_{W}(y=k \mid z)\right) v_{k} u_{z}^{\top} \\
& =\frac{\eta}{N} \sum_{z, k}\left(\mathbb{1}\left\{k=f^{*}(z)\right\}-\frac{1}{N}\right) v_{k} u_{z}^{\top}
\end{aligned}
$$

Example: one gradient step

Data model: $\quad z \sim \operatorname{Unif}([N]), \quad y=f_{*}(z) \in[N]$

- After one gradient step on the population loss from $W_{0}=0$ with step η, we have

$$
\begin{aligned}
W_{1} & =W_{0}-\eta \sum_{k=1}^{N} \mathbb{E}_{z}\left[(\hat{p} W(y=k \mid z)-p(y=k \mid z)) v_{k} u_{z}^{\top}\right] \\
& =\eta \sum_{z, k} p(z)\left(p(y=k \mid z)-\hat{p}_{W}(y=k \mid z)\right) v_{k} u_{z}^{\top} \\
& =\frac{\eta}{N} \sum_{z, k}\left(\mathbb{1}\left\{k=f^{*}(z)\right\}-\frac{1}{N}\right) v_{k} u_{z}^{\top}
\end{aligned}
$$

- Then, for any (z, k) we have

$$
v_{k}^{\top} W_{1} u_{z} \approx \frac{\eta}{N} \mathbb{1}\left\{f_{*}(z)=k\right\}+O\left(\frac{\eta}{N^{2}}\right)
$$

Example: one gradient step

Data model: $\quad z \sim \operatorname{Unif}([N]), \quad y=f_{*}(z) \in[N]$

- After one gradient step on the population loss from $W_{0}=0$ with step η, we have

$$
\begin{aligned}
W_{1} & =W_{0}-\eta \sum_{k=1}^{N} \mathbb{E}_{z}\left[\left(\hat{p}_{W}(y=k \mid z)-p(y=k \mid z)\right) v_{k} u_{z}^{\top}\right] \\
& =\eta \sum_{z, k} p(z)\left(p(y=k \mid z)-\hat{p}_{W}(y=k \mid z)\right) v_{k} u_{z}^{\top} \\
& =\frac{\eta}{N} \sum_{z, k}\left(\mathbb{1}\left\{k=f^{*}(z)\right\}-\frac{1}{N}\right) v_{k} u_{z}^{\top}
\end{aligned}
$$

- Then, for any (z, k) we have

$$
v_{k}^{\top} W_{1} u_{z} \approx \frac{\eta}{N} \mathbb{1}\left\{f_{*}(z)=k\right\}+O\left(\frac{\eta}{N^{2}}\right)
$$

- Corollary: $\hat{f}(z)=\arg \max _{k} v_{k}^{\top} W_{1} u_{z}$ has near-perfect accuracy

Example: one gradient step

Data model: $\quad z \sim \operatorname{Unif}([N]), \quad y=f_{*}(z) \in[N]$

- After one gradient step on the population loss from $W_{0}=0$ with step η, we have

$$
\begin{aligned}
W_{1} & =W_{0}-\eta \sum_{k=1}^{N} \mathbb{E}_{z}\left[\left(\hat{p}_{W}(y=k \mid z)-p(y=k \mid z)\right) v_{k} u_{z}^{\top}\right] \\
& =\eta \sum_{z, k} p(z)\left(p(y=k \mid z)-\hat{p}_{W}(y=k \mid z)\right) v_{k} u_{z}^{\top} \\
& =\frac{\eta}{N} \sum_{z, k}\left(\mathbb{1}\left\{k=f^{*}(z)\right\}-\frac{1}{N}\right) v_{k} u_{z}^{\top}
\end{aligned}
$$

- Then, for any (z, k) we have

$$
v_{k}^{\top} W_{1} u_{z} \approx \frac{\eta}{N} \mathbb{1}\left\{f_{*}(z)=k\right\}+O\left(\frac{\eta}{N^{2}}\right)
$$

- Corollary: $\hat{f}(z)=\arg \max _{k} v_{k}^{\top} W_{1} u_{z}$ has near-perfect accuracy Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

Gradient associative memories with noisy inputs

- In practice, inputs are often a collection of tokens / sum of embeddings

$$
\mathbf{z}=\left\{z_{1}, \ldots, z_{s}\right\} \subset[N], \quad x=\sum_{j=1}^{s} u_{z_{s}} \in \mathbb{R}^{d}
$$

- e.g., bag of words, output of attention operation, residual connections

Gradient associative memories with noisy inputs

- In practice, inputs are often a collection of tokens / sum of embeddings

$$
\mathbf{z}=\left\{z_{1}, \ldots, z_{s}\right\} \subset[N], \quad x=\sum_{j=1}^{s} u_{z_{s}} \in \mathbb{R}^{d}
$$

- e.g., bag of words, output of attention operation, residual connections
- Some elements may be irrelevant for prediction

Gradient associative memories with noisy inputs

- In practice, inputs are often a collection of tokens / sum of embeddings

$$
\mathbf{z}=\left\{z_{1}, \ldots, z_{s}\right\} \subset[N], \quad x=\sum_{j=1}^{s} u_{z_{s}} \in \mathbb{R}^{d}
$$

- e.g., bag of words, output of attention operation, residual connections
- Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^{d} \times[N]$, and consider the loss

$$
L(W)=\mathbb{E}_{(x, y) \sim p}\left[\ell\left(y, \xi_{W}(x)\right)\right], \quad \xi_{W}(x)_{k}=v_{k}^{\top} W x .
$$

Gradient associative memories with noisy inputs

- In practice, inputs are often a collection of tokens / sum of embeddings

$$
\mathbf{z}=\left\{z_{1}, \ldots, z_{s}\right\} \subset[N], \quad x=\sum_{j=1}^{s} u_{z_{s}} \in \mathbb{R}^{d}
$$

- e.g., bag of words, output of attention operation, residual connections
- Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^{d} \times[N]$, and consider the loss

$$
L(W)=\mathbb{E}_{(x, y) \sim p}\left[\ell\left(y, \xi_{W}(x)\right)\right], \quad \xi_{W}(x)_{k}=v_{k}^{\top} W x .
$$

Denoting $\mu_{k}:=\mathbb{E}[x \mid y=k]$ and $\hat{\mu}_{k}:=\mathbb{E}_{x}\left[\frac{\hat{p}_{W}(k \mid x)}{p(y=k)} x\right]$, we have

$$
\nabla w L(W)=\sum_{k=1}^{N} p(y=k) v_{k}\left(\hat{\mu}_{k}-\mu_{k}\right)^{\top}
$$

Example: filter out exogenous noise

- Data model: $\quad y \sim \operatorname{Unif}([N]), \quad t \sim \operatorname{Unif}([T]), \quad x=u_{y}+n_{t} \in \mathbb{R}^{d}$
- where $\left\{n_{t}\right\}_{t=1}^{T}$ are another collection of embeddings, e.g., positional embeddings

Example: filter out exogenous noise

- Data model: $\quad y \sim \operatorname{Unif}([N]), \quad t \sim \operatorname{Unif}([T]), \quad x=u_{y}+n_{t} \in \mathbb{R}^{d}$
- where $\left\{n_{t}\right\}_{t=1}^{T}$ are another collection of embeddings, e.g., positional embeddings
- After one gradient step on the population loss from $W_{0}=0$ with step η, we have

$$
\begin{aligned}
W_{1} & =W_{0}-\eta \sum_{k=1}^{N} p(y=k) v_{k}\left(\hat{\mu}_{k}-\mu_{k}\right)^{\top} \\
& =\frac{\eta}{N} \sum_{k=1}^{N} v_{k}\left(\mathbb{E}\left[u_{y}+n_{t} \mid y=k\right]-\mathbb{E}\left[u_{y}+n_{t}\right]\right)^{\top} \\
& =\frac{\eta}{N} \sum_{k=1}^{N} v_{k} u_{k}^{\top}-\frac{\eta}{N^{2}} \sum_{k, j} v_{k} u_{j}^{\top}
\end{aligned}
$$

Example: filter out exogenous noise

- Data model: $\quad y \sim \operatorname{Unif}([N]), \quad t \sim \operatorname{Unif}([T]), \quad x=u_{y}+n_{t} \in \mathbb{R}^{d}$
- where $\left\{n_{t}\right\}_{t=1}^{T}$ are another collection of embeddings, e.g., positional embeddings
- After one gradient step on the population loss from $W_{0}=0$ with step η, we have

$$
\begin{aligned}
W_{1} & =W_{0}-\eta \sum_{k=1}^{N} p(y=k) v_{k}\left(\hat{\mu}_{k}-\mu_{k}\right)^{\top} \\
& =\frac{\eta}{N} \sum_{k=1}^{N} v_{k}\left(\mathbb{E}\left[u_{y}+n_{t} \mid y=k\right]-\mathbb{E}\left[u_{y}+n_{t}\right]\right)^{\top} \\
& =\frac{\eta}{N} \sum_{k=1}^{N} v_{k} u_{k}^{\top}-\frac{\eta}{N^{2}} \sum_{k, j} v_{k} u_{j}^{\top}
\end{aligned}
$$

- Then, for any $k, y, t, x=u_{y}+n_{t}$, we have

$$
v_{k}^{\top} W_{1} \times \approx \frac{\eta}{N} \mathbb{1}\{k=y\}+O\left(\frac{\eta}{N^{2}}\right)
$$

Example: filter out exogenous noise

- Data model: $\quad y \sim \operatorname{Unif}([N]), \quad t \sim \operatorname{Unif}([T]), \quad x=u_{y}+n_{t} \in \mathbb{R}^{d}$
- where $\left\{n_{t}\right\}_{t=1}^{T}$ are another collection of embeddings, e.g., positional embeddings
- After one gradient step on the population loss from $W_{0}=0$ with step η, we have

$$
\begin{aligned}
W_{1} & =W_{0}-\eta \sum_{k=1}^{N} p(y=k) v_{k}\left(\hat{\mu}_{k}-\mu_{k}\right)^{\top} \\
& =\frac{\eta}{N} \sum_{k=1}^{N} v_{k}\left(\mathbb{E}\left[u_{y}+n_{t} \mid y=k\right]-\mathbb{E}\left[u_{y}+n_{t}\right]\right)^{\top} \\
& =\frac{\eta}{N} \sum_{k=1}^{N} v_{k} u_{k}^{\top}-\frac{\eta}{N^{2}} \sum_{k, j} v_{k} u_{j}^{\top}
\end{aligned}
$$

- Then, for any $k, y, t, x=u_{y}+n_{t}$, we have

$$
v_{k}^{\top} W_{1} \times \approx \frac{\eta}{N} \mathbb{1}\{k=y\}+O\left(\frac{\eta}{N^{2}}\right)
$$

- Corollary: $\hat{f}(x)=\arg \max _{k} v_{k}^{\top} W_{1} x$ has near-perfect accuracy

Link with feature learning

Maximal updates:

- First gradient update from standard initialization $\left(\left[W_{0}\right]_{i j} \sim \mathcal{N}(0,1 / d)\right)$ take the form

$$
W_{1}=W_{0}+\Delta W \in \mathbb{R}^{d \times d}, \quad \Delta W:=\sum_{j} \alpha_{j} v_{j} u_{j}^{\top}, \quad \alpha_{j}=\Theta_{d}(1)
$$

Link with feature learning

Maximal updates:

- First gradient update from standard initialization $\left(\left[W_{0}\right]_{i j} \sim \mathcal{N}(0,1 / d)\right.$) take the form

$$
W_{1}=W_{0}+\Delta W \in \mathbb{R}^{d \times d}, \quad \Delta W:=\sum_{j} \alpha_{j} v_{j} u_{j}^{\top}, \quad \alpha_{j}=\Theta_{d}(1)
$$

- For any input embedding u_{j}, we have, thanks to near-orthonormality

$$
\left\|W_{0} u_{j}\right\|=\Theta_{d}(1) \quad \text { and } \quad\left\|\Delta W u_{j}\right\|=\Theta_{d}(1)
$$

Link with feature learning

Maximal updates:

- First gradient update from standard initialization $\left(\left[W_{0}\right]_{i j} \sim \mathcal{N}(0,1 / d)\right.$) take the form

$$
W_{1}=W_{0}+\Delta W \in \mathbb{R}^{d \times d}, \quad \Delta W:=\sum_{j} \alpha_{j} v_{j} u_{j}^{\top}, \quad \alpha_{j}=\Theta_{d}(1)
$$

- For any input embedding u_{j}, we have, thanks to near-orthonormality

$$
\left\|W_{0} u_{j}\right\|=\Theta_{d}(1) \quad \text { and } \quad\left\|\Delta W u_{j}\right\|=\Theta_{d}(1)
$$

- Contribution of updates is of similar order to initialization (not true for NTK!)
- Related to $\mu \mathrm{P} /$ mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Link with feature learning

Maximal updates:

- First gradient update from standard initialization $\left(\left[W_{0}\right]_{i j} \sim \mathcal{N}(0,1 / d)\right.$) take the form

$$
W_{1}=W_{0}+\Delta W \in \mathbb{R}^{d \times d}, \quad \Delta W:=\sum_{j} \alpha_{j} v_{j} u_{j}^{\top}, \quad \alpha_{j}=\Theta_{d}(1)
$$

- For any input embedding u_{j}, we have, thanks to near-orthonormality

$$
\left\|W_{0} u_{j}\right\|=\Theta_{d}(1) \quad \text { and } \quad\left\|\Delta W u_{j}\right\|=\Theta_{d}(1)
$$

- Contribution of updates is of similar order to initialization (not true for NTK!)
- Related to $\mu \mathrm{P} /$ mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Large gradient steps on shallow networks:

- Useful for feature learning in single-index and multi-index models

$$
y=f^{*}(x)+\text { noise }, \quad f^{*}(x)=g^{*}(W x), \quad W \in \mathbb{R}^{r \times d}
$$

- Sufficient to break the curse of dimensionality when $r \ll d$
- (Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)

Associative memories inside deep models

- Consider W that connects two nodes x, \bar{x} in a feedforward computational graph

Associative memories inside deep models

- Consider W that connects two nodes x, \bar{x} in a feedforward computational graph
- The loss gradient takes the form

$$
\nabla_{W} L=\mathbb{E}\left[\nabla_{\bar{x}} \ell \cdot x^{\top}\right]
$$

where $\nabla_{\bar{x}} \ell$ is the backward vector (loss gradient w.r.t. \bar{x})

- Often, this expectation may lead to associative memories as before
- A similar form can arise in attention matrices (see later!)

Outline

(1) Associative memories
(2) Transformers and in-context learning
(3) Scaling laws and optimization

Motivating questions

- Interpretability: what mechanisms are used inside a transformer?
- Training dynamics: how is this learned with optimization?
- Discrete data: what is a good model for feature learning with discrete data?
- Role of depth: what are benefits of deep, compositional models?
- Experimental/theory setup: what is a simple setting for studying this?

Motivating questions

- Interpretability: what mechanisms are used inside a transformer?
- Training dynamics: how is this learned with optimization?
- Discrete data: what is a good model for feature learning with discrete data? \checkmark
- Role of depth: what are benefits of deep, compositional models?
- Experimental/theory setup: what is a simple setting for studying this?

The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Sample each sequence $z_{1: T} \in[N]^{T}$ as follows

- Triggers: $q_{1}, \ldots, q_{k} \sim \pi_{q}$ (random or fixed once)
- Outputs: $o_{k} \sim \pi_{o}\left(\cdot \mid q_{k}\right)$ (random)

The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Sample each sequence $z_{1: T} \in[N]^{T}$ as follows

- Triggers: $q_{1}, \ldots, q_{k} \sim \pi_{q}$ (random or fixed once)
- Outputs: $o_{k} \sim \pi_{o}\left(\cdot \mid q_{k}\right)$ (random)
- Sequence-specific Markov model: $z_{1} \sim \pi_{1}, z_{t} \mid z_{t-1} \sim p\left(\cdot \mid z_{t-1}\right)$ with

$$
p(j \mid i)= \begin{cases}\mathbb{1}\left\{j=o_{k}\right\}, & \text { if } i=q_{k}, \quad k=1, \ldots, K \\ \pi_{b}(j \mid i), & \text { o/w. }\end{cases}
$$

The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Sample each sequence $z_{1: T} \in[N]^{T}$ as follows

- Triggers: $q_{1}, \ldots, q_{K} \sim \pi_{q}$ (random or fixed once)
- Outputs: $o_{k} \sim \pi_{o}\left(\cdot \mid q_{k}\right)$ (random)
- Sequence-specific Markov model: $z_{1} \sim \pi_{1}, z_{t} \mid z_{t-1} \sim p\left(\cdot \mid z_{t-1}\right)$ with

$$
p(j \mid i)= \begin{cases}\mathbb{1}\left\{j=o_{k}\right\}, & \text { if } i=q_{k}, \quad k=1, \ldots, K \\ \pi_{b}(j \mid i), & \text { o/w. }\end{cases}
$$

π_{b} : global bigrams model (estimated from Karpathy's character-level Shakespeare)

Transformers I: embeddings and residual stream

- Input sequence: $\left[z_{1}, \ldots, z_{T}\right] \in[N]^{T}$
- Embedding layer:

$$
x_{t}:=w_{E}\left(z_{t}\right)+p_{t} \in \mathbb{R}^{d}
$$

- $w_{E}(z)$: token embedding of $z \in[N]$
- p_{t} : positional embedding at position $t \in[T]$

Transformers I: embeddings and residual stream

- Input sequence: $\left[z_{1}, \ldots, z_{T}\right] \in[N]^{T}$
- Embedding layer:

$$
x_{t}:=w_{E}\left(z_{t}\right)+p_{t} \in \mathbb{R}^{d}
$$

- $w_{E}(z)$: token embedding of $z \in[N]$
- p_{t} : positional embedding at position $t \in[T]$
- Intermediate layers: add outputs to the residual stream x_{t}
- Attention and feed-forward layers

Transformers I: embeddings and residual stream

- Input sequence: $\left[z_{1}, \ldots, z_{T}\right] \in[N]^{T}$
- Embedding layer:

$$
x_{t}:=w_{E}\left(z_{t}\right)+p_{t} \in \mathbb{R}^{d}
$$

- $w_{E}(z)$: token embedding of $z \in[N]$
- p_{t} : positional embedding at position $t \in[T]$
- Intermediate layers: add outputs to the residual stream x_{t}
- Attention and feed-forward layers
- Unembedding layer: logits for each $k \in[N]$,

$$
\left(\xi_{t}\right)_{k}=w_{u}(k)^{\top} x_{t}
$$

Transformers I: embeddings and residual stream

- Input sequence: $\left[z_{1}, \ldots, z_{T}\right] \in[N]^{T}$
- Embedding layer:

$$
x_{t}:=w_{E}\left(z_{t}\right)+p_{t} \in \mathbb{R}^{d}
$$

- $w_{E}(z)$: token embedding of $z \in[N]$
- p_{t} : positional embedding at position $t \in[T]$
- Intermediate layers: add outputs to the residual stream x_{t}
- Attention and feed-forward layers
- Unembedding layer: logits for each $k \in[N]$,

$$
\left(\xi_{t}\right)_{k}=w_{u}(k)^{\top} x_{t}
$$

- Loss for next-token prediction (ℓ : cross-entropy)

$$
\sum_{t=1}^{T-1} \ell\left(z_{t+1}, \xi_{t}\right)
$$

Transformers II: self-attention

Causal self-attention layer:

$$
x_{t}^{\prime}=\sum_{s=1}^{t} \beta_{t} W_{O} W_{V} x_{s}, \quad \text { with } \beta_{s}=\frac{\exp \left(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t}\right)}{\sum_{s=1}^{t} \exp \left(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t}\right)}
$$

- $W_{K}, W_{Q} \in \mathbb{R}^{d \times d}$: key and query matrices
- $W_{V}, W_{O} \in \mathbb{R}^{d \times d}$: value and output matrices
- β_{s} : attention weights, $\sum_{s=1}^{t} \beta_{s}=1$

Transformers II: self-attention

Causal self-attention layer:

$$
x_{t}^{\prime}=\sum_{s=1}^{t} \beta_{t} W_{O} W_{V} x_{s}, \quad \text { with } \beta_{s}=\frac{\exp \left(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t}\right)}{\sum_{s=1}^{t} \exp \left(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t}\right)}
$$

- $W_{K}, W_{Q} \in \mathbb{R}^{d \times d}$: key and query matrices
- $W_{V}, W_{O} \in \mathbb{R}^{d \times d}$: value and output matrices
- β_{s} : attention weights, $\sum_{s=1}^{t} \beta_{s}=1$
- Single-head attention (in practice, multi-head with multiple such matrices, $d_{h} \times d$)

Transformers II: self-attention

Causal self-attention layer:

$$
x_{t}^{\prime}=\sum_{s=1}^{t} \beta_{t} W_{O} W_{V} x_{s}, \quad \text { with } \beta_{s}=\frac{\exp \left(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t}\right)}{\sum_{s=1}^{t} \exp \left(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t}\right)}
$$

- $W_{K}, W_{Q} \in \mathbb{R}^{d \times d}$: key and query matrices
- $W_{V}, W_{O} \in \mathbb{R}^{d \times d}$: value and output matrices
- β_{s} : attention weights, $\sum_{s=1}^{t} \beta_{s}=1$
- Single-head attention (in practice, multi-head with multiple such matrices, $d_{h} \times d$)
- Each x_{t}^{\prime} is then added to the corresponding residual stream

$$
x_{t}:=x_{t}+x_{t}^{\prime}
$$

Transformers III: feed-forward

Feed-forward layer: apply simple transformation to each token representation

- MLP (practice):

$$
x_{t}^{\prime}=W_{2} \sigma\left(W_{1} x_{t}\right), \quad W_{2} \in \mathbb{R}^{d \times D}, W_{1} \in \mathbb{R}^{D \times d}
$$

- Linear (in this work):

$$
x_{t}^{\prime}=W_{F} x_{t}, \quad W_{F} \in \mathbb{R}^{d \times d}
$$

Transformers III: feed-forward

Feed-forward layer: apply simple transformation to each token representation

- MLP (practice):

$$
x_{t}^{\prime}=W_{2} \sigma\left(W_{1} x_{t}\right), \quad W_{2} \in \mathbb{R}^{d \times D}, W_{1} \in \mathbb{R}^{D \times d}
$$

- Linear (in this work):

$$
x_{t}^{\prime}=W_{F} x_{t}, \quad W_{F} \in \mathbb{R}^{d \times d}
$$

- Added to the residual stream: $x_{t}:=x_{t}+x_{t}^{\prime}$

Transformers III: feed-forward

Feed-forward layer: apply simple transformation to each token representation

- MLP (practice):

$$
x_{t}^{\prime}=W_{2} \sigma\left(W_{1} x_{t}\right), \quad W_{2} \in \mathbb{R}^{d \times D}, W_{1} \in \mathbb{R}^{D \times d}
$$

- Linear (in this work):

$$
x_{t}^{\prime}=W_{F} x_{t}, \quad W_{F} \in \mathbb{R}^{d \times d}
$$

- Added to the residual stream: $x_{t}:=x_{t}+x_{t}^{\prime}$
- Some evidence that feed-forward layers store "global knowledge", e.g., for factual recall (Geva et al., 2020; Meng et al., 2022)

Transformers on the bigram task

- 1-layer transformer fails: $\sim 55 \%$ accuracy on in-context output predictions

Transformers on the bigram task

- 1-layer transformer fails: $\sim 55 \%$ accuracy on in-context output predictions
- 2-layer transformer succeeds: $\sim 99 \%$ accuracy

Transformers on the bigram task

- 1-layer transformer fails: $\sim 55 \%$ accuracy on in-context output predictions
- 2-layer transformer succeeds: $\sim 99 \%$ accuracy
- Attention maps reveal a structured 2-layer "induction" mechanism (Elhage et al., 2021)

Transformers on the bigram task

- 1-layer transformer fails: $\sim 55 \%$ accuracy on in-context output predictions
- 2-layer transformer succeeds: $\sim 99 \%$ accuracy
- Attention maps reveal a structured 2-layer "induction" mechanism (Elhage et al., 2021)

See also representation lower bounds (Sanford, Hsu, and Telgarsky, 2023)

Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

- 1st layer: previous-token head
- attends to previous token and copies it to residual stream

Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

- 1st layer: previous-token head
- attends to previous token and copies it to residual stream
- 2nd layer: induction head
- attends to output of previous token head, copies attended token

Random embeddings in high dimension

- We consider random embeddings u_{i} with i.i.d. $N(0,1 / d)$ entries and d large

$$
\left\|u_{i}\right\| \approx \quad \text { and } \quad u_{i}^{\top} u_{j}=
$$

Random embeddings in high dimension

- We consider random embeddings u_{i} with i.i.d. $N(0,1 / d)$ entries and d large

$$
\left\|u_{i}\right\| \approx 1 \quad \text { and } \quad u_{i}^{\top} u_{j}=O(1 / \sqrt{d})
$$

Random embeddings in high dimension

- We consider random embeddings u_{i} with i.i.d. $N(0,1 / d)$ entries and d large

$$
\left\|u_{i}\right\| \approx 1 \quad \text { and } \quad u_{i}^{\top} u_{j}=O(1 / \sqrt{d})
$$

- Remapping: multiply by random matrix W with $\mathcal{N}(0,1 / d)$ entries:

$$
\left\|W u_{i}\right\| \approx 1 \quad \text { and } \quad u_{i}^{\top} W u_{i}=O(1 / \sqrt{d})
$$

Random embeddings in high dimension

- We consider random embeddings u_{i} with i.i.d. $N(0,1 / d)$ entries and d large

$$
\left\|u_{i}\right\| \approx 1 \quad \text { and } \quad u_{i}^{\top} u_{j}=O(1 / \sqrt{d})
$$

- Remapping: multiply by random matrix W with $\mathcal{N}(0,1 / d)$ entries:

$$
\left\|W u_{i}\right\| \approx 1 \quad \text { and } \quad u_{i}^{\top} W u_{i}=O(1 / \sqrt{d})
$$

- Value/Output matrices help with token remapping: $\mathrm{Mr} \mapsto \mathrm{Mr}, \mathrm{Bacon} \mapsto$ Bacon

Induction head with associative memories

- Random embeddings $w_{E}(k), w_{U}(k)$, random matrices $W_{V}^{1}, W_{O}^{1}, W_{V}^{2}$, fix $W_{Q}=1$
- Remapped previous tokens: $w_{1}(k):=W_{o}^{1} W_{V}^{1} w_{E}(k)$

Induction head with associative memories

- Random embeddings $w_{E}(k), w_{U}(k)$, random matrices $W_{V}^{1}, W_{O}^{1}, W_{V}^{2}$, fix $W_{Q}=1$
- Remapped previous tokens: $w_{1}(k):=W_{O}^{1} W_{V}^{1} w_{E}(k)$

Q: Does this match practice?

Empirically probing the dynamics

Train only $W_{K}^{1}, W_{K}^{2}, W_{O}^{2}$, loss on deterministic output tokens only

- "Memory recall probes": for target memory $W_{*}=\sum_{(i, j) \in \mathcal{M}} v_{j} u_{i}^{\top}$, compute

$$
R\left(\hat{W}, W_{*}\right)=\frac{1}{|\mathcal{M}|} \sum_{(i, j) \in \mathcal{M}} \mathbb{1}\left\{j=\arg \max _{j^{\prime}} v_{j^{\prime}}^{\top} \hat{W} u_{i}\right\}
$$

Empirically probing the dynamics

Train only $W_{K}^{1}, W_{K}^{2}, W_{O}^{2}$, loss on deterministic output tokens only

- "Memory recall probes": for target memory $W_{*}=\sum_{(i, j) \in \mathcal{M}} v_{j} u_{i}^{\top}$, compute

$$
R\left(\hat{W}, W_{*}\right)=\frac{1}{|\mathcal{M}|} \sum_{(i, j) \in \mathcal{M}} \mathbb{1}\left\{j=\arg \max _{j^{\prime}} v_{j^{\prime}}^{\top} \hat{W} u_{i}\right\}
$$

- Natural learning "order": W_{O}^{2} first, W_{K}^{2} next, W_{K}^{1} last
- Joint learning is faster

Theoretical analysis with population gradient steps

Setting

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture

Theoretical analysis with population gradient steps

Setting

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture

Theorem (informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on the population loss, assuming near-orthonormal embeddings: first on W_{O}^{2}, then W_{K}^{2}, then W_{K}^{1}.

Theoretical analysis with population gradient steps

Setting

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture

Theorem (informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on the population loss, assuming near-orthonormal embeddings: first on W_{O}^{2}, then W_{K}^{2}, then W_{K}^{1}.

Key ideas

- Attention is uniform at initialization \Longrightarrow inputs are sums of embeddings
- W_{O}^{2} : correct output appears w.p. 1 , while other tokens are noisy and cond. indep. of z_{T}
- $W_{K}^{1 / 2}$: correct associations lead to more focused attention

Global vs in-context learning and role of data

Train on all tokens, with added W_{F} after second attention layer

- Global bigrams learned quickly with W_{F} before induction mechanism

Global vs in-context learning and role of data

Train on all tokens, with added W_{F} after second attention layer

- Global bigrams learned quickly with W_{F} before induction mechanism
- More frequent triggers \Longrightarrow faster learning of induction head

Global vs in-context learning and role of data

Train on all tokens, with added W_{F} after second attention layer

attention and feed-forward probes

- Global bigrams learned quickly with W_{F} before induction mechanism
- More frequent triggers \Longrightarrow faster learning of induction head
- More uniform output tokens helps OOD performance

What about more complex models?

- Factorizations (e.g., $\left.W_{K}^{\top} W_{Q}\right): y^{\top} U V x$
- Low rank factorization can save parameters/compute
- One joint gradient step from random initialization still works

What about more complex models?

- Factorizations (e.g., $W_{K}^{\top} W_{Q}$): $y^{\top} U V x$
- Low rank factorization can save parameters/compute
- One joint gradient step from random initialization still works
- Non-linear MLP: $y^{\top} U \sigma(V x)$
- More expressive when x, y are superpositions/sums of embeddings

What about more complex models?

- Factorizations (e.g., $W_{K}^{\top} W_{Q}$): $y^{\top} U V x$
- Low rank factorization can save parameters/compute
- One joint gradient step from random initialization still works
- Non-linear MLP: $y^{\top} U \sigma(V x)$
- More expressive when x, y are superpositions/sums of embeddings
- Layer-norm: $y^{\top} \frac{W x}{\|W \times\|}$
- Prevents repeated updates when $W x$ and y are already aligned

What about more complex models?

- Factorizations (e.g., $W_{K}^{\top} W_{Q}$): $y^{\top} U V x$
- Low rank factorization can save parameters/compute
- One joint gradient step from random initialization still works
- Non-linear MLP: $y^{\top} U \sigma(V x)$
- More expressive when x, y are superpositions/sums of embeddings
- Layer-norm: $y^{\top} \frac{W x}{\|W x\|}$
- Prevents repeated updates when $W x$ and y are already aligned

- Trained embeddings

- Single gradient steps capture basic co-occurrence statistics/BoW/topics
- Or more complex learning of structured embeddings (e.g., "grokking modular arithmetic")

What about more complex models?

- Factorizations (e.g., $W_{K}^{\top} W_{Q}$): $y^{\top} U V x$
- Low rank factorization can save parameters/compute
- One joint gradient step from random initialization still works
- Non-linear MLP: $y^{\top} U \sigma(V x)$
- More expressive when x, y are superpositions/sums of embeddings
- Layer-norm: $y^{\top} \frac{W x}{\|W \times\|}$
- Prevents repeated updates when $W x$ and y are already aligned
- Trained embeddings
- Single gradient steps capture basic co-occurrence statistics/BoW/topics
- Or more complex learning of structured embeddings (e.g., "grokking modular arithmetic")

Does it work empirically on the bigram task? Yes!

- Memory recall probes $\rightarrow 1$ as in previous experiment

What about more complex models?

- Factorizations (e.g., $W_{K}^{\top} W_{Q}$): $y^{\top} U V x$
- Low rank factorization can save parameters/compute
- One joint gradient step from random initialization still works
- Non-linear MLP: $y^{\top} U \sigma(V x)$
- More expressive when x, y are superpositions/sums of embeddings
- Layer-norm: $y^{\top} \frac{W x}{\|W \times\|}$
- Prevents repeated updates when $W x$ and y are already aligned
- Trained embeddings
- Single gradient steps capture basic co-occurrence statistics/BoW/topics
- Or more complex learning of structured embeddings (e.g., "grokking modular arithmetic")

Does it work empirically on the bigram task? Yes!

- Memory recall probes $\rightarrow 1$ as in previous experiment
- But: adding heads and layers loses identifiability

Outline

(3) Scaling laws and optimization

Questions

- Finite capacity? how much can we "store" with finite d ?

Questions

- Finite capacity? how much can we "store" with finite d ?
- Finite samples? how well can we learn with finite data?

Questions

- Finite capacity? how much can we "store" with finite d ?
- Finite samples? how well can we learn with finite data?
- Role of optimization algorithms? multiple gradient steps? Adam?

Questions

- Finite capacity? how much can we "store" with finite d ?
- Finite samples? how well can we learn with finite data?
- Role of optimization algorithms? multiple gradient steps? Adam?
\Longrightarrow study through scaling laws (a.k.a. generalization bounds/statistical rates)

Setup with heavy-tailed data

Setting

- $z_{i} \sim p(z), y_{i}=f^{*}\left(z_{i}\right), n$ samples: $S_{n}=\left\{z_{1}, \ldots, z_{n}\right\}, 0 / 1$ loss:

$$
L\left(\hat{f}_{n}\right)=\mathbb{P}\left(y \neq \hat{f}_{n}(z)\right)
$$

Setup with heavy-tailed data

Setting

- $z_{i} \sim p(z), y_{i}=f^{*}\left(z_{i}\right), n$ samples: $S_{n}=\left\{z_{1}, \ldots, z_{n}\right\}, 0 / 1$ loss:

$$
L\left(\hat{f}_{n}\right)=\mathbb{P}\left(y \neq \hat{f}_{n}(z)\right)
$$

- Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

$$
p(z) \propto z^{-\alpha}
$$

Setup with heavy-tailed data

Setting

- $z_{i} \sim p(z), y_{i}=f^{*}\left(z_{i}\right), n$ samples: $S_{n}=\left\{z_{1}, \ldots, z_{n}\right\}, 0 / 1$ loss:

$$
L\left(\hat{f}_{n}\right)=\mathbb{P}\left(y \neq \hat{f}_{n}(z)\right)
$$

- Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

$$
p(z) \propto z^{-\alpha}
$$

- Hutter (2021): with infinite memory, we have

$$
L\left(\hat{f}_{n}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}
$$

Setup with heavy-tailed data

Setting

- $z_{i} \sim p(z), y_{i}=f^{*}\left(z_{i}\right), n$ samples: $S_{n}=\left\{z_{1}, \ldots, z_{n}\right\}, 0 / 1$ loss:

$$
L\left(\hat{f}_{n}\right)=\mathbb{P}\left(y \neq \hat{f}_{n}(z)\right)
$$

- Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

$$
p(z) \propto z^{-\alpha}
$$

- Hutter (2021): with infinite memory, we have

$$
L\left(\hat{f}_{n}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}
$$

- Q: What about finite capacity?

Scaling laws with finite capacity

- Random embeddings $u_{z}, v_{y} \in \mathbb{R}^{d}$ with $\mathcal{N}(0,1 / d)$ entries
- Estimator: $\hat{f}_{n, d}(x)=\arg \max _{y} v_{y}^{\top} W_{n, d} u_{z}$, with

$$
W_{n, d}=\sum_{z=1}^{N} q(z) v_{f^{*}(z)} u_{z}^{\top}
$$

Scaling laws with finite capacity

- Random embeddings $u_{z}, v_{y} \in \mathbb{R}^{d}$ with $\mathcal{N}(0,1 / d)$ entries
- Estimator: $\hat{f}_{n, d}(x)=\arg \max _{y} v_{y}^{\top} W_{n, d} u_{z}$, with

$$
W_{n, d}=\sum_{z=1}^{N} q(z) v_{f^{*}(z)} u_{z}^{\top}
$$

- Single population gradient step: $q(z) \approx p(z)$

Scaling laws with finite capacity

- Random embeddings $u_{z}, v_{y} \in \mathbb{R}^{d}$ with $\mathcal{N}(0,1 / d)$ entries
- Estimator: $\hat{f}_{n, d}(x)=\arg \max _{y} v_{y}^{\top} W_{n, d} u_{z}$, with

$$
W_{n, d}=\sum_{z=1}^{N} q(z) v_{f^{*}(z)} u_{z}^{\top}
$$

- Single population gradient step: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, B., 2023, informal)
(1) For $q(z)=\sum_{i} \mathbb{1}\left\{z=z_{i}\right\}: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-\frac{\alpha-1}{2 \alpha}}$

Scaling laws with finite capacity

- Random embeddings $u_{z}, v_{y} \in \mathbb{R}^{d}$ with $\mathcal{N}(0,1 / d)$ entries
- Estimator: $\hat{f}_{n, d}(x)=\arg \max _{y} v_{y}^{\top} W_{n, d} u_{z}$, with

$$
W_{n, d}=\sum_{z=1}^{N} q(z) v_{f^{*}(z)} u_{z}^{\top}
$$

- Single population gradient step: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, B., 2023, informal)
(1) For $q(z)=\sum_{i} \mathbb{1}\left\{z=z_{i}\right\}: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-\frac{\alpha-1}{2 \alpha}}$
(2) For $q(z)=\mathbb{1}\left\{z \in S_{n}\right\}$, and $d \gg N: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-k}$ for any k

Scaling laws with finite capacity

- Random embeddings $u_{z}, v_{y} \in \mathbb{R}^{d}$ with $\mathcal{N}(0,1 / d)$ entries
- Estimator: $\hat{f}_{n, d}(x)=\arg \max _{y} v_{y}^{\top} W_{n, d} u_{z}$, with

$$
W_{n, d}=\sum_{z=1}^{N} q(z) v_{f^{*}(z)} u_{z}^{\top}
$$

- Single population gradient step: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, B., 2023, informal)

(1) For $q(z)=\sum_{i} \mathbb{1}\left\{z=z_{i}\right\}: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-\frac{\alpha-1}{2 \alpha}}$
(2) For $q(z)=\mathbb{1}\left\{z \in S_{n}\right\}$, and $d \gg N: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-k}$ for any k
(3) For $q(z)=\mathbb{1}\left\{z\right.$ seen at least s times in $\left.S_{n}\right\}: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-\alpha+1}$

Scaling laws with finite capacity

- Random embeddings $u_{z}, v_{y} \in \mathbb{R}^{d}$ with $\mathcal{N}(0,1 / d)$ entries
- Estimator: $\hat{f}_{n, d}(x)=\arg \max _{y} v_{y}^{\top} W_{n, d} u_{z}$, with

$$
W_{n, d}=\sum_{z=1}^{N} q(z) v_{f *}(z) u_{z}^{\top}
$$

- Single population gradient step: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, B., 2023, informal)

(1) For $q(z)=\sum_{i} \mathbb{1}\left\{z=z_{i}\right\}: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-\frac{\alpha-1}{2 \alpha}}$
(2) For $q(z)=\mathbb{1}\left\{z \in S_{n}\right\}$, and $d \gg N: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-k}$ for any k
(3) For $q(z)=\mathbb{1}\left\{z\right.$ seen at least s times in $\left.S_{n}\right\}: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-\alpha+1}$

- $n^{-\frac{\alpha-1}{\alpha}}$ is the same as (Hutter, 2021)
- $q=1$ is best if we have enough capacity
- Can store at most d memories (approximation error: $d^{-\alpha+1}$)

Scaling laws with optimization algorithms

$$
W_{n, d}=\sum_{z=1}^{N} q(z) v_{f^{*}(z)} u_{z}^{\top}
$$

Different algorithms lead to different memory schemes $q(z)$:

Scaling laws with optimization algorithms

$$
W_{n, d}=\sum_{z=1}^{N} q(z) v_{f^{*}(z)} u_{z}^{\top}
$$

Different algorithms lead to different memory schemes $q(z)$:

- One step of SGD with large batch: $q(z) \approx p(z)$

Scaling laws with optimization algorithms

$$
W_{n, d}=\sum_{z=1}^{N} q(z) v_{f^{*}(z)} u_{z}^{\top}
$$

Different algorithms lead to different memory schemes $q(z)$:

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N: q(z) \approx 1$

Scaling laws with optimization algorithms

$$
W_{n, d}=\sum_{z=1}^{N} q(z) v_{f^{*}(z)} u_{z}^{\top}
$$

Different algorithms lead to different memory schemes $q(z)$:

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N: q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training

Scaling laws with optimization algorithms

$$
W_{n, d}=\sum_{z=1}^{N} q(z) v_{f^{*}(z)} u_{z}^{\top}
$$

Different algorithms lead to different memory schemes $q(z)$:

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N: q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training
- Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

Scaling laws with optimization algorithms

$$
W_{n, d}=\sum_{z=1}^{N} q(z) v_{f^{*}(z)} u_{z}^{\top}
$$

Different algorithms lead to different memory schemes $q(z)$:

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N: q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training
- Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

Increasing capacity

Main idea: there are $\exp (d)$ near-orthogonal directions on the sphere

Increasing capacity

Main idea: there are $\exp (d)$ near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)

Increasing capacity

Main idea: there are $\exp (d)$ near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)

- Nearest-neighbor lookup: set $u_{z}=v_{f^{*}(z)}$ and take $\hat{f}(z)=\arg \max v_{y} v_{y}^{\top} u_{z}$

Increasing capacity

Main idea: there are $\exp (d)$ near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)

- Nearest-neighbor lookup: set $u_{z}=v_{f^{*}(z)}$ and take $\hat{f}(z)=\arg \max y v_{y}^{\top} u_{z}$
- Attention: soft-max instead of hard-max to retrieve from context

Increasing capacity

Main idea: there are $\exp (d)$ near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)

- Nearest-neighbor lookup: set $u_{z}=v_{f^{*}(z)}$ and take $\hat{f}(z)=\arg \max y_{y} v_{y}^{\top} u_{z}$
- Attention: soft-max instead of hard-max to retrieve from context
- MLP: $\hat{f}(z)=\arg \max _{y} v_{y}^{\top} \sum_{z^{\prime}=1}^{N} v_{f^{*}\left(z^{\prime}\right)} \sigma\left(u_{z^{\prime}}^{\top} u_{z}-b\right)$

Increasing capacity

Main idea: there are $\exp (d)$ near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)

- Nearest-neighbor lookup: set $u_{z}=v_{f^{*}(z)}$ and take $\hat{f}(z)=\arg \max y_{y} v_{y}^{\top} u_{z}$
- Attention: soft-max instead of hard-max to retrieve from context
- MLP: $\hat{f}(z)=\arg \max _{y} v_{y}^{\top} \sum_{z^{\prime}=1}^{N} v_{f^{*}\left(z^{\prime}\right)} \sigma\left(u_{z^{\prime}}^{\top} u_{z}-b\right)$

But: higher computational cost, more sensitive to noise, harder to learn

Discussion and next steps

Summary

- Bigram model: simple but rich toy model for discrete data
- Transformer weights as associative memories
- Learning via few top-down gradient steps
- Better algorithms help for better scaling laws for heavy-tailed data

Discussion and next steps

Summary

- Bigram model: simple but rich toy model for discrete data
- Transformer weights as associative memories
- Learning via few top-down gradient steps
- Better algorithms help for better scaling laws for heavy-tailed data

Future directions

- More complex "reasoning" mechanisms, links with "emergence"
- Learning dynamics: multiple gradient steps? joint training? embeddings?
- Applications: interpretability, model editing, factual recall, efficient fine-tuning
- LLM large-width scalings (links with $\mu \mathrm{P}$)
- (Replace weights by hash tables??)

Thank you!

Main references

A. B., V. Cabannes, D. Bouchacourt, H. Jegou, L. Bottou. Birth of a Transformer: a Memory Viewpoint, NeurIPS 2023.
V. Cabannes, E. Dohmatob, A. B. Scaling Laws for Associative Memories, arXiv:2310.02984.

Contact

- alberto@bietti.me

Internships and postdoc positions at Flatiron Institute

- Internships: https://apply.interfolio.com/137386
- Postdoc/Research Fellow: https://apply.interfolio.com/134615

References I

J. Ba, M. A. Erdogdu, T. Suzuki, Z. Wang, D. Wu, and G. Yang. High-dimensional asymptotics of feature learning: How one gradient step improves the representation. Advances in Neural Information Processing Systems (NeurIPS), 2022.
L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. In Advances in Neural Information Processing Systems (NeurIPS), 2018.
A. Damian, J. Lee, and M. Soltanolkotabi. Neural networks can learn representations with gradient descent. In Conference on Learning Theory (COLT), 2022.
Y. Dandi, F. Krzakala, B. Loureiro, L. Pesce, and L. Stephan. Learning two-layer neural networks, one (giant) step at a time. arXiv preprint arXiv:2305.18270, 2023.
N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, N. DasSarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
M. Geva, R. Schuster, J. Berant, and O. Levy. Transformer feed-forward layers are key-value memories. arXiv preprint arXiv:2012.14913, 2020.
J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8):2554-2558, 1982.

References II

M. Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.
T. Kohonen. Correlation matrix memories. IEEE Transactions on Computers, 1972.
S. Mei, T. Misiakiewicz, and A. Montanari. Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit. In Conference on Learning Theory (COLT), 2019.
K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual associations in GPT. Advances in Neural Information Processing Systems (NeurIPS), 2022.
E. Nichani, A. Damian, and J. D. Lee. Provable guarantees for nonlinear feature learning in three-layer neural networks. arXiv preprint arXiv:2305.06986, 2023.
C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, S. Johnston, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
C. Sanford, D. Hsu, and M. Telgarsky. Representational strengths and limitations of transformers. In Advances in Neural Information Processing Systems (NeurIPS), 2023.
D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic associative memory. Nature, 222(5197):960-962, 1969.
G. Yang and E. J. Hu. Tensor programs iv: Feature learning in infinite-width neural networks. In Proceedings of the International Conference on Machine Learning (ICML), 2021.

