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Transformers and language models

o Transformers: self-attention + MLPs + residual connections

» Learn relevant long-range interactions via attention, instead of fixing them (CNNs)

Output
Probabiities

"AGd & Norm.
Feed
Forward

"AGd & Norm

"A0d & Norm
Feed Attention
Forvard

"AGd & Norm.

z|

Ut-Head

Attention
o
Positional Positional
Encoding ®_< Encoding
ot utout
Embeddng Embeddng
Inputs Outputs
(shifted right)
Alberto Bietti Transformers and Associative Memories

MIT 9.520/6.7910

2/34



Transformers and language models

o Transformers: self-attention + MLPs + residual connections

» Learn relevant long-range interactions via attention, instead of fixing them (CNNs)

o Large language models: train to predict next token on all the web (+ fine-tune)
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Q You

write a poem about statistical learning theory at MIT

@©) chatePT
In halls of knowledge, MIT's domain,
Where minds ignite and theories reign,
There blooms a field, both art and science,

Statistical Learning, in defiance.

In Cambridge's heart, where scholars gather,
They delve into data, with minds that matter,

In quest of patterns, both subtle and bold,

In Statistical Learning's embrace, they're enrolled.

From regression's lines to trees that grow,

In the forests of data, they seek to know,
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Transformers and language models

o Transformers: self-attention + MLPs + residual connections
» Learn relevant long-range interactions via attention, instead of fixing them (CNNs)

o Large language models: train to predict next token on all the web (+ fine-tune)

o In-context '"‘reasoning' vs memorization: transformers seem to use a mix of
"reasoning" from context and "knowledge" from training set
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In halls of knowledge, MIT's domain,
Where minds ignite and theories reign,
There blooms a field, both art and science,

Statistical Learning, in defiance.

In Cambridge's heart, where scholars gather,
They delve into data, with minds that matter,

In quest of patterns, both subtle and bold,

In Statistical Learning's embrace, they're enrolled.

From regression's lines to trees that grow,

In the forests of data, they seek to know,

Transformers and Associative Memories

Congress shall make no law respecting an establishment of
religion, or prohibiting the free exercise thereof; or
abridging the freedom of speech, or of the press; or the
right of the people peaceably to assemble, and to petition
the Government for a redress of grievances.

This is known as the First Amendment to the United States
Constitution and it is designed to protect the fundamental
rights of citizens of the United States. It guarantees
citizens the right to practice any religion of their choosing,
the freedom of speech and of the press, and the right to
peacefully assemble and to petition the government.
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Motivating questions

o Interpretability: what mechanisms are used inside a transformer?
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o Discrete data: what is a good model for feature learning with discrete data?
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Motivating questions

o Interpretability: what mechanisms are used inside a transformer?

©

Training dynamics: how is this learned with optimization?

Discrete data: what is a good model for feature learning with discrete data?

©

Role of depth: what are benefits of deep, compositional models?

©
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Motivating questions

o Interpretability: what mechanisms are used inside a transformer?

©

Training dynamics: how is this learned with optimization?

Discrete data: what is a good model for feature learning with discrete data?

©

©

Role of depth: what are benefits of deep, compositional models?

©

Experimental /theory setup: what is a simple setting for studying this?
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QOutline

@ Associative memories

2) Transformers and in-context learning

3) Scaling laws and optimization



Learning associations

Motivation:
o DL theory often focuses on learning/approximation of continuous target functions
» e.g., smooth functions, sparse polynomials
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» language: words, syntactic rules, semantic concepts, facts
» vision: “visual words”, features, objects
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Statistical learning setup:

o Data distribution p(z, y) over pairs of discrete tokens (z,y) € [N] x [M]
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Motivation:
o DL theory often focuses on learning/approximation of continuous target functions
» e.g., smooth functions, sparse polynomials
o In practice, discrete structure and memorization are often crucial

» language: words, syntactic rules, semantic concepts, facts
» vision: “visual words”, features, objects

Statistical learning setup:
o Data distribution p(z, y) over pairs of discrete tokens (z,y) € [N] x [M]
o 0-1 loss of a predictor f : [N] — [M]:
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Loo(F) = P(y # f(2))
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Learning associations

Motivation:
o DL theory often focuses on learning/approximation of continuous target functions
» e.g., smooth functions, sparse polynomials
o In practice, discrete structure and memorization are often crucial

» language: words, syntactic rules, semantic concepts, facts
» vision: “visual words”, features, objects

Statistical learning setup:
o Data distribution p(z, y) over pairs of discrete tokens (z,y) € [N] x [M]
o 0-1 loss of a predictor f : [N] — [M]:

Loo(F) = P(y # f(2))

o Typically f(z) = arg max, f,(z) with f, : [N] — R for each y € [M]
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0

o Consider pairwise associations (i, ) € M with weights «;; and define:

T
W = Z a,-jvju,-
(ij)em

o We then have va Wu; = aj
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi][~1 and v;'v;=0
o Consider pairwise associations (i, ) € M with weights «;; and define:

W = Z a,-jvju,-T
(ij)emM

o We then have va Wu; = aj
o Computed in Transformers for logits in next-token prediction and self-attention
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0

o Consider pairwise associations (i, ) € M with weights «;; and define:

T
W = Z a,-jvju,-
(ij)em

o We then have va Wu; = aj

o Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)
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Learning associative memories with gradients

o Simple differentiable model to learn such associative memories:

z€[N] =, €RY - Wu, eRY — (v, Wu,), € RM
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Learning associative memories with gradients
o Simple differentiable model to learn such associative memories:
7€ [N] = u, e R = Wu, e RY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)

Lemma (Gradients as memories)
Let p be a data distribution over (z,y) € [N] x [M], and consider the loss
L( W) = E(z,y)wp[é(yaé.W(z))]? fW(Z)k = VkTWUZ>

with ¢ the cross-entropy loss and u,, vi input/output embeddings.
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Learning associative memories with gradients
o Simple differentiable model to learn such associative memories:
7€ [N] = u, e R = Wu, e RY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)

Lemma (Gradients as memories)

Let p be a data distribution over (z,y) € [N] x [M], and consider the loss
L( W) = E(z,y)wp[é(yaé.W(z))]? fW(Z)k = VkTWUZ>

with ¢ the cross-entropy loss and u,, vy input/output embeddings. Then,

M
VLW) =Y E:(bw(y = klz) — p(y = k|z))viu ],
k=1

with pw(y = k|z) = exp(§w(2)«)/ 22 exp(§w(2);)-
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=ny_p(2)(ply = klz) = w(y = k[z))viu "
z,k

" . 1
— N;(ﬂ{k = f*(2)} — N)Vkuf
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Wi, ~ %]l{f*(z) =k} +0 (,32>
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o After one gradient step on the population loss from Wy = 0 with step 7, we have
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>

o Corollary: ?(z) = arg maxy v ' Wi, has near-perfect accuracy
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections
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z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € R x [N], and consider the loss

L(W) = E(x,y)Np[e(y7§W(X))]7 SW(X)k = VkT Wx.
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € R x [N], and consider the loss

L(W) = E(x,y)Np[e(y7§W(X))]7 SW(X)k = VkT Wx.

Denoting j1;. := E[x|y = k] and /i, := E, [’;V(Vy(klf) x], we have
N
Vwl(W Z y = k)vi( //k—//k)
k=1
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

N
> vi(Bluy + nely = K] = Efuy, + ne]) T
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=
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

N
> vi(Bluy + nely = K] = Efuy, + ne]) T
k=1

=[s

T M T
vl — WZ VicUj
kij

x
Il
—

1
=3
M=

o Then, for any k,y,t,x = u, + n;, we have

Vil Wyx = % {k=y}+0 <I\7/72)
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

N
> vi(Bluy + nely = K] = Efuy, + ne]) T
k=1

=[s

T M T
vl — WZ VicUj
kij

x
Il
—

1
=3
M=

o Then, for any k,y,t,x = u, + n;, we have

Vil Wyx = % {k=y}+0 <I\7/72)

o Corollary: f(x) = argmax vx ' Wix has near-perfect accuracy
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Link with feature learning
Maximal updates:
o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi=W+AW € RdXd, AW = ZO&jVjUJT, aj = @d(l)
J
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Link with feature learning
Maximal updates:
o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi = Wo—i—AWERdXd, AW = ZO&jVjUJT, Oéj:@d(l)
J
o For any input embedding u;, we have, thanks to near-orthonormality

[Wouil| = ©4(1) and  [[AW;|| = ©4(1)
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Link with feature learning
Maximal updates:
o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi = Wo—i—AWERdXd, AW = ZO&jVjUJT, Oéj:@d(l)
J
o For any input embedding u;, we have, thanks to near-orthonormality

[Wouil| = ©4(1) and  [[AW;|| = ©4(1)

o Contribution of updates is of similar order to initialization (not true for NTK!)
o Related to uP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)
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Link with feature learning
Maximal updates:
o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi = Wo—i—AWERdXd, AW = ZO&jVjUJT, Oéj:@d(l)
J
o For any input embedding u;, we have, thanks to near-orthonormality

[Wouil| = ©4(1) and  [[AW;|| = ©4(1)

o Contribution of updates is of similar order to initialization (not true for NTK!)
o Related to uP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Large gradient steps on shallow networks:
o Useful for feature learning in single-index and multi-index models

y = f*(x) + noise, f*(x) =g"(Wx), W eR™?

o Sufficient to break the curse of dimensionality when r < d
o (Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)
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Associative memories inside deep models

oHv}e

o Consider W that connects two nodes x, x in a feedforward computational graph

Alberto Bietti Transformers and Associative Memories MIT 9.520/6.7910 12 /34



Associative memories inside deep models

oHv}e

©

Consider W that connects two nodes x, x in a feedforward computational graph

©

The loss gradient takes the form
Vwl =E[Vzl x']

where Vx/ is the backward vector (loss gradient w.r.t. X)
o Often, this expectation may lead to associative memories as before

o A similar form can arise in attention matrices (see later!)

Alberto Bietti Transformers and Associative Memories MIT 9.520/6.7910 12 /34



QOutline

1) Associative memories

(@ Transformers and in-context learning
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Motivating questions

o Interpretability: what mechanisms are used inside a transformer?

©

Training dynamics: how is this learned with optimization?

Discrete data: what is a good model for feature learning with discrete data?

©

©

Role of depth: what are benefits of deep, compositional models?

©

Experimental /theory setup: what is a simple setting for studying this?
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Training dynamics: how is this learned with optimization?

Discrete data: what is a good model for feature learning with discrete data? v/

©

©

Role of depth: what are benefits of deep, compositional models?
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Experimental /theory setup: what is a simple setting for studying this?
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The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When [Vir Bacon went ... then ) .
- When Mr Bacon went to the mall, it started raining, then Mr Bacon
\ >< / decided to buy a raincoat and umbrella. He went to the store and
output bought a red raincoat and yellow polka dot umbrella)

Alberto Bietti Transformers and Associative Memories MIT 9.520/6.7910 15 /34



The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When [Vir Bacon went ... then ) .
- When Mr Bacon went to the mall, it started raining, then Mr Bacon
\ >< / decided to buy a raincoat and umbrella. He went to the store and
output bought a red raincoat and yellow polka dot umbrella)

Sample each sequence zi.7 € [N]7 as follows
o Triggers: qi,...,qx ~ mq (random or fixed once)

o Outputs: oy ~ 7o(-|qx) (random)
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The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Bacon went ... then . L
When Mr Bacon went to the mall, it started raining, then Mr Bacon

‘\\ o
\ /< / decided to buy a raincoat and umbrella. He went to the store and

output bought a red raincoat and yellow polka dot umbrella)

Sample each sequence zi.7 € [N]7 as follows
° S q1,...,qKx ~ mq (random or fixed once)
o Outputs: oy ~ 7o(-|qx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(:|z¢—1) with

1{j=o}, ifi=q, k=1,... K

P i, o

Alberto Bietti Transformers and Associative Memories MIT 9.520/6.7910

15 /34



The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Bacon went ... then . L
When Mr Bacon went to the mall, it started raining, then Mr Bacon

~
\ T / decided to buy a raincoat and umbrella. He went to the store and

output bought a red raincoat and yellow polka dot umbrella)

Sample each sequence zi.7 € [N]7 as follows
° S q1,...,qKx ~ mq (random or fixed once)
o Outputs: oy ~ 7o(-|qx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(:|z¢—1) with

1{j=o}, ifi=q, k=1,... K

P i, o

7p: global bigrams model (estimated from Karpathy's character-level Shakespeare)
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

o Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

o Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]

o Intermediate layers: add outputs to the residual stream x;
» Attention and feed-forward layers
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Intermediate layers: add outputs to the residual stream x;
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

©

Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]

©

Intermediate layers: add outputs to the residual stream x;
» Attention and feed-forward layers

o Unembedding layer: logits for each k € [N],

(&)k = wu(k) ' xe

o Loss for next-token prediction (¢: cross-entropy)

s'

-1
f(Zt+1aft)

..,
Il
i
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Transformers |l: self-attention

Causal self-attention layer:

exp(xs—r W,;r Woxt)
i exp(xT W;(r Woxt)

t
xe =Y BeWoWyx,, with 3; =
s=1

o Wk, Wo € R¥*9: key and query matrices
o Wy, Wo € RY%: value and output matrices
o fs: attention weights, S°f_; s =1
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Causal self-attention layer:

exp(xs—r W,;r Woxt)
i exp(xT W;(r Woxt)

t
xe =Y BeWoWyx,, with 3; =
s=1

©

Wi, Wo € R9%9: key and query matrices

©

Wy, Wo € R¥*9: value and output matrices
Bs: attention weights, S°f_; Bs =1
Single-head attention (in practice, multi-head with multiple such matrices, dj x d)

()

©
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Transformers |l: self-attention

Causal self-attention layer:

exp(xs—r W,;r Woxt)
i exp(xT W;(r Woxt)

t
xe =Y BeWoWyx,, with 3; =
s=1

Wi, Wo € R9%9: key and query matrices

©

Wy, Wo € R¥*9: value and output matrices
Bs: attention weights, S°f_; Bs =1
Single-head attention (in practice, multi-head with multiple such matrices, dj x d)

©

()

©

o Each x{ is then added to the corresponding residual stream

. /
Xt 1= Xt + X;
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Transformers lll: feed-forward

Feed-forward layer: apply simple transformation to each token representation

o MLP (practice):
x; = Whao(Wixt), W, € R>*P W, e RP*d

o Linear (in this work):
x{ = Wext, We € R9*9
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Transformers lll: feed-forward

Feed-forward layer: apply simple transformation to each token representation
o MLP (practice):
x; = Whao(Wixt), W, € R>*P W, e RP*d

o Linear (in this work):
x{ = Wext, We € R9*9

o Added to the residual stream: x; := x; + x|

o Some evidence that feed-forward layers store “global knowledge”, e.g., for factual
recall (Geva et al., 2020; Meng et al., 2022)
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Transformers on the bigram task

When Bacon went ... then Vir
output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions
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Transformers on the bigram task
When Bacon went ... then Vir
output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions
o 2-layer transformer succeeds: ~ 99% accuracy

o Attention maps reveal a structured 2-layer “induction” mechanism (Elhage et al., 2021)

u ® &0 .I.D

rsabtsLabtsL,ab thbntL&CL&Cabth
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Transformers on the bigram task

When Bacon went ... then Vir
output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions
o 2-layer transformer succeeds: ~ 99% accuracy

o Attention maps reveal a structured 2-layer “induction” mechanism (Elhage et al., 2021)

u ® &0 .I.D

rsabtsLabtsL,ab thbntL&CL&Cabth

See also representation lower bounds (Sanford, Hsu, and Telgarsky, 2023)
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, Bacon} ... {T, \Ir, Bacon}
. {t+1, Mr, Bacon} ... (T, i}
/ ’\_/
{t, Vir} {t+1, Bacon} o AT

A

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, Bacon} ... {T, \Ir, Bacon}
. {t+1, Mr, Bacon} ... (T, i}
/ \_/
{t, Vir} {t+1, Bacon} o AT

A

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
o 2nd layer: induction head
» attends to output of previous token head, copies attended token
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N(0,1/d) entries and d large

ui| = and o'y =
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N(0,1/d) entries and d large

|ui| 1 and o u; = O(1/Vd)

o Remapping: multiply by random matrix W with N'(0,1/d) entries:

[Wuil| =1 and o Wu; = O(1/Vd)

o Value/Output matrices help with token remapping: — Mr, Bacon — Bacon
{t+1, Mr, Bacon} ... (T, ,Iiacon)
{t+1, Mr, Bar:;n) o AT,
P 7//,//
{t, I} {t+1, Bacon} o AT}
K\,,,,,i,,, /
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Induction head with associative memories

Layer 2 ‘ * ‘ * ‘ ‘ * ‘ * ‘ wg(a)

Attn2: 3, wi(k)wp (k)" _——"“/I;gﬂf"%: S wu(k)wp(k)T

Layer 1 ‘ * ‘ wg(a) ‘ ‘ wy(a) [ 1‘1:’5’(1)) ‘
>4
WV(BH:‘E”’AMHI' Sop T ““*“1”"‘5 Prediction
/,—\ D Ps—1Dd :
Layer 0 ‘ Pi-1 ‘ wg(a) ‘ ‘ Pt ‘ wg(b) ‘

Sequence a b [-] @ ’7177

T N
Wik = b1, WE=Y we(k)wa(k)", W3 = wy(k)(Wewe(k))",
t=2 keq@ k=1

o Random embeddings wg(k), wy(k), random matrices WY, W}, W2, fix Wg = 1
o Remapped previous tokens: wi (k) := WL WL we (k)
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Induction head with associative memories

ez [+ [+ ] [+ [+ ]
Attnz: 5, u(h)uw(k)] e AW Sy vl
ot [+ [wet0] [0 ]
”:%”ﬁ*':;tm _—— Resicual | Prediction
Layer 0 [cr Jws(@] [ 2 Jwe)]

Sequence a b [++-] a ’7117

T N
Wik = b1, WE=Y we(k)wa(k)", W3 = wy(k)(Wewe(k))",
t=2 keq@ k=1

o Random embeddings wg(k), wy(k), random matrices WY, W}, W2, fix Wg = 1
o Remapped previous tokens: wi (k) := WL WL we (k)

Q: Does this match practice?
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Empirically probing the dynamics

Train only Wi, W2, W3, loss on deterministic output tokens only

2
freeze W3 freeze W} and W} freeze W3 freeze W}
10- 10- 10- 10-
9
8 os- 08- 08- 058-
gos 06- 06 06-
% 0a- 04- 0a- 04-
Soz 02- 02 02-
~ 0o0- : ! . —g ,, P e ] M e————— , , L S e —
0 200 400 600 800 1000 O 200 400 600 80 1000 0 200 400 600 800 1000 O 200 400 600 800 1000
10- 10- 10- 10-
—— R
= 08 0o el o 0s- ~
8 o
Sos 06- 06- / 06- /
S 0a- 04- 04- 04- — Wo2
§ — w2
Eo02- 02- / 02- 02- WKL (t<64)
— wa
00 00- 00- 00-

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration iteration iteration

© “Memory recall probes”: for target memory Wi =3 ; e vju,-T, compute
~ 1 A
R(W,W,) = — Z 1{j = argmax vj—,r Wu;}
Ml e ’
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Empirically probing the dynamics

Train only Wi, W2, W3, loss on deterministic output tokens only

freeze W3

08-

0.4-

context accuracy

in-s

0 200 400 600

04-

memory recal

02-

0 200 400 600
iteration

800 1000

800 1000

10-

0.8-

0.6-

0.4-

02-

0.0-

10-

0.8-

06-

0.4-

02-

0.0-

iteration iteration

freeze W} and W32 freeze W} freeze W}
10- 10-
o8- 08-
06 06-
0.4 04-
02- 02-
0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000
10- 10-
— =
/’“’_r 0s- o’ 08~
06- / 06~ /
04 0.4- — wo2
— w2
[ 02- 02- WKL (t<64)
J — w1
00- 0.0-
0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000

iteration

© “Memory recall probes”: for target memory Wi =3 ; e vju,-T, compute

1

RIW,W,)=— Z 1{j = arg

’ ’ (ij)emM

o Natural learning “order": W(% first, W}% next, W,% last

o Joint learning is faster

Alberto Bietti

Transformers and Associative Memories

~

max vj—/r Wu;}
J'/

MIT 9.520/6.7910

23/34



Theoretical analysis with population gradient steps

Setting
o Focus on predicting second output token
o All distributions are uniform

o Some simplifications to architecture
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Theoretical analysis with population gradient steps

Setting

o Focus on predicting second output token
o All distributions are uniform

o Some simplifications to architecture

Theorem (informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss, assuming near-orthonormal embeddings: first on W(%, then W}% then W;%.
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Theoretical analysis with population gradient steps

Setting

o Focus on predicting second output token
o All distributions are uniform

o Some simplifications to architecture

Theorem (informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss, assuming near-orthonormal embeddings: first on W(%, then W}% then W;%.

Key ideas
o Attention is uniform at initialization = inputs are sums of embeddings
o W(%: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of zt

1/2 . .
o WK/ : correct associations lead to more focused attention
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Global vs in-context learning and role of data

Train on all tokens, with added W after second attention layer

in-context vs global loss out of distribution attention and feed-forward probes

5- —— K=1, fix q frequent G ECR 0.8+ —— Wo2 recall S22
—— K=5, fix q rare 08 —— WK2 recall
4 ~—— K=1, random q ® = 06- —— WKL recall (t<64) >
—— K=5, random q 306 S M — -1.83
03 Ywa g ° 5
s Y\ I Roa- - 504 1o
2- < _.— unif (train unif) g 14
1- $ 0.2 7 —— bigram (train unif) g02 12
£ === unif (train bigram) :
0 0.0 === bigram (train bigram) 0.0- — WFKL -10
6 160 260 360 460 560 0 160 260 360 460 560 6 160 260 360 460 560

iteration iteration iteration

o Global bigrams learned quickly with Wg before induction mechanism
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Train on all tokens, with added W after second attention layer

in-context vs global loss out of distribution attention and feed-forward probes

5- —— K=1, fix q frequent G ECR 0.8+ —— Wo2 recall S22
—— K=5, fix q rare 5 0.8 —— WKk2 recall
4- —— K=1, random q ® — 06 —— WKL recall (t<64) >
—— K=5, random q 306 S M — -1.83
03 Wa g ° 5
s Y\ I foa- o F 504 1o
2- < _.— unif (train unif) (% 14
1- $ 0.2 7 —— bigram (train unif) g02 12
£ === unif (train bigram) :
0 0.0 === bigram (train bigram) 0.0- — WFKL -10
6 160 260 360 460 560 0 160 260 360 460 560 6 160 260 360 460 560

iteration iteration iteration

o Global bigrams learned quickly with Wg before induction mechanism

o More frequent triggers = faster learning of induction head
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Global vs in-context learning and role of data

Train on all tokens, with added W after second attention layer

in-context vs global loss out of distribution attention and feed-forward probes
5- —— K=1, fix q frequent G ECR 0.8+ —— Wo2 recall S22
—— K=5, fix q rare 5 0.8 —— WKk2 recall 220
4- K=1, random q ) =06 WK1 recall (t<64)
—— K=5, random q 306 S 1.8 3
N % :
4 1.6
S . % 04- 4f [ aeena- 50 =
= T unif (train unif) g 1.4 j
1 g 0.2 A" —— bigram (train unif) £ 02 15
£ — =~ unif (train bigram) )
o 0.0 === bigram (train bigram) 0.0- 1.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

iteration iteration iteration

o Global bigrams learned quickly with Wg before induction mechanism
o More frequent triggers = faster learning of induction head

o More uniform output tokens helps OOD performance
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What about more complex models?

o Factorizations (e.g., W)} Wg): y T UVx
» Low rank factorization can save parameters/compute
» One joint gradient step from random initialization still works
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What about more complex models?

o Factorizations (e.g., W)} Wg): y T UVx
» Low rank factorization can save parameters/compute
» One joint gradient step from random initialization still works

o Non-linear MLP: y " Uo(Vx)

» More expressive when x,y are superpositions/sums of embeddings

T_Wx
[ W]

» Prevents repeated updates when Wx and y are already aligned

o Layer-norm: y
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o Factorizations (e.g., W)} Wg): y T UVx

» Low rank factorization can save parameters/compute

» One joint gradient step from random initialization still works
o Non-linear MLP: y " Uo(Vx)

» More expressive when x,y are superpositions/sums of embeddings
o Layer-norm: yT”%);H

» Prevents repeated updates when Wx and y are already aligned

Trained embeddings

» Single gradient steps capture basic co-occurrence statistics/BoW /topics
» Or more complex learning of structured embeddings (e.g., “grokking modular arithmetic")

©
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What about more complex models?

o Factorizations (e.g., W)} Wg): y T UVx

» Low rank factorization can save parameters/compute

» One joint gradient step from random initialization still works
o Non-linear MLP: y " Uo(Vx)

» More expressive when x,y are superpositions/sums of embeddings
o Layer-norm: yT”%’;H

» Prevents repeated updates when Wx and y are already aligned

Trained embeddings

» Single gradient steps capture basic co-occurrence statistics/BoW /topics
» Or more complex learning of structured embeddings (e.g., “grokking modular arithmetic")

©

Does it work empirically on the bigram task? Yes!

o Memory recall probes — 1 as in previous experiment
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What about more complex models?

o Factorizations (e.g., W)} Wg): y T UVx

» Low rank factorization can save parameters/compute

» One joint gradient step from random initialization still works
o Non-linear MLP: y " Uo(Vx)

» More expressive when x,y are superpositions/sums of embeddings
o Layer-norm: yT”%’;H

» Prevents repeated updates when Wx and y are already aligned

Trained embeddings

» Single gradient steps capture basic co-occurrence statistics/BoW /topics
» Or more complex learning of structured embeddings (e.g., “grokking modular arithmetic")

©

Does it work empirically on the bigram task? Yes!
o Memory recall probes — 1 as in previous experiment
o But: adding heads and layers loses identifiability
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QOutline

1) Associative memories

2) Transformers and in-context learning

(@ Scaling laws and optimization



Questions

o Finite capacity? how much can we “store” with finite d?
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o Role of optimization algorithms? multiple gradient steps? Adam?
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Questions

o Finite capacity? how much can we “store” with finite d?
o Finite samples? how well can we learn with finite data?

o Role of optimization algorithms? multiple gradient steps? Adam?

— study through scaling laws (a.k.a. generalization bounds/statistical rates)
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:

L(%n) = P(y 7& ?n(z))
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Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:

L(?n) = P(y 7& ?n(z))
o Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

«

p(z) x z~
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:
L(?n) = P(y 7& ?n(z))
o Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)
«

p(z) x z~

o Hutter (2021): with infinite memory, we have

a—1

L(F) <n s
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:

L(%n) = P(y 7& ?n(z))
o Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)
«

p(z) x z~

o Hutter (2021): with infinite memory, we have

a—1

L(F) <n "5

o Q: What about finite capacity?
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1
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N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1

o Single population gradient step: q(z) = p(z)
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?n,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;
z=1
o Single population gradient step: q(z) = p(z)
Theorem (Cabannes, Dohmatob, B., 2023, informal)

@ Forq(z) = ¥ Mz =z} L(fha) S5 +d~ 5
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o Estimator: ?n,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1
o Single population gradient step: q(z) = p(z)
Theorem (Cabannes, Dohmatob, B., 2023, informal)

@ Forq(z) = ¥ Mz =z} L(fha) S5 +d~ 5
@ Forq(z) = 1{z € S,}, and d > N: L(Fq) S n™°5 +d* for any k
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?n,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1
o Single population gradient step: q(z) = p(z)
Theorem (Cabannes, Dohmatob, B., 2023, informal)
@ Fqu(Z) Z-H{Z:Z,'}' L(?nd)<n_a7_1+d—a27_1
@ Forq(z) = 1{z € Sy}, and d > N: L(Fg) S0 "% + d*k for any k
@ For q(z) = 1{z seen at least s times in Sp}: L(fpq) < n~ S L Gpen
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with
N

|/Vn,d = Z q(Z)Vf*(Z)U;

z=1

o Single population gradient step: q(z) = p(z)

Theorem (Cabannes, Dohmatob, B., 2023, informal)
@ Forq(z) =Y, 1{z=2z} L(fg) Sn~ & +d %=
@ Forq(z) =1{z€ Sy}, and d > N: L(fq) S n & = —i—d*k foranyk
(z) =

@ For q(z) = 1{z seen at least s times in Sp}: L(fpq) < n~ a4 dott

o n~“& is the same as (Hutter, 2021)
o g =1 is best if we have enough capacity

o Can store at most d memories (approximation error: d~2*1)
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Scaling laws with optimization algorithms

Different algorithms lead to different memory schemes ¢(z):
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Scaling laws with optimization algorithms

Different algorithms lead to different memory schemes ¢(z):
o One step of SGD with large batch: g(z) ~ p(z)
SGD with batch size one + large step-size, d > N: q(z) =~ 1

©

For d < N, smaller step-sizes can help later in training

©

Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

©
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Scaling laws with optimization algorithms

Different algorithms lead to different memory schemes ¢(z):
o One step of SGD with large batch: g(z) ~ p(z)
o SGD with batch size one + large step-size, d > N: g(z) = 1
o For d < N, smaller step-sizes can help later in training

o Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

SGD, |B|=64, T=10240 SGD, T'=1024 ~v=1.0, | B|=1024, T=10240

i~ S]]

— SGD

—— Adam \
— 4=10.0 —— SGD+LN
— 7=100.0 — Adam+LN

T T T T T T T T T
10! 102 10% 10! 102 103 10! 102 10%

d d d

Error

H
o
3
.
22
i
Ly
g
Error

Error
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Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere
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Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)
o Nearest-neighbor lookup: set u, = v¢.(,) and take ?(z) = arg max, vyTuZ
o Attention: soft-max instead of hard-max to retrieve from context
o MLP: f(z) = arg max, v;— SN, vf*(z/)a(u;r,uz —b)

But: higher computational cost, more sensitive to noise, harder to learn

Alberto Bietti Transformers and Associative Memories MIT 9.520/6.7910 32/34



Discussion and next steps

Summary

©

Bigram model: simple but rich toy model for discrete data

©

Transformer weights as associative memories

©

Learning via few top-down gradient steps

©

Better algorithms help for better scaling laws for heavy-tailed data
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Discussion and next steps

Summary

©

Bigram model: simple but rich toy model for discrete data

©

Transformer weights as associative memories

©

Learning via few top-down gradient steps

©

Better algorithms help for better scaling laws for heavy-tailed data

Future directions

o More complex “reasoning” mechanisms, links with “emergence”

©

Learning dynamics: multiple gradient steps? joint training? embeddings?

©

Applications: interpretability, model editing, factual recall, efficient fine-tuning

o LLM large-width scalings (links with pP)

©

(Replace weights by hash tables??)
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Thank you!

Main references

A. B., V. Cabannes, D. Bouchacourt, H. Jegou, L. Bottou. Birth of a Transformer: a Memory
Viewpoint, NeurlPS 2023.

V. Cabannes, E. Dohmatob, A. B. Scaling Laws for Associative Memories, arXiv:2310.02984.

Contact
o alberto@bietti.me

Internships and postdoc positions at Flatiron Institute
o Internships: https://apply.interfolio.com/137386
o Postdoc/Research Fellow: https://apply.interfolio.com/134615
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