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Inductive Bias and Over-Parameterization
Optimization and Inductive Bias:

Over-parameterized deep networks are very expressive
Optimization algorithm is plays a crucial role for generalization

Lazy Training: In certain regimes (over-parameterization, particular
initialization), neural networks behave like their linearization near ini-
tialization

f (x ; θ) ≈ f (x ; θ0) + 〈θ − θ0,∇θf (x ; θ0)〉

Neural Tangent Kernels (NTK): In this regime, generalization prop-
erties are controlled by the limiting kernel [Jacot et al., 2018]

〈∇θf (x ; θ0),∇θf (x ′, θ0)〉 → K (x , x ′).
In particular, with squared loss and infinite width, we get the interpo-
lating solution with minimum RKHS norm.

Contributions:
Derivation of NTK for convolutional networks with generic linear
patch extraction/pooling operators;
Study of smoothness, stability, and approximation properties of
functions with finite RKHS norm;
Comparison to other ReLU kernels (e.g. training only last layer with
random weights): the NTK has weaker smoothness properties
but better approximation.

Approximation Properties (two layers)

Q: How rich is the RKHS for the NTK κNTK versus the simpler ker-
nel κ1 obtained by training just the second layer (random features)?

Mercer decomposition with spherical harmonics:

Proposition (Mercer decomposition)

For any x , y ∈ Sp−1, we have the following decomposition of the
NTK κNTK :

κNTK (〈x , y〉) =
∞∑

k=0
µk

N(p,k)∑
j=1

Yk ,j(x)Yk ,j(y), (1)

where Yk ,j are spherical harmonic polynomials of degree k, and
the non-negative eigenvalues µk satisfy µ0, µ1 > 0, µk = 0 if k =
2j + 1 with j ≥ 1, and otherwise µk ∼ C(p)k−p as k →∞.

This gives an explicit characterization of the RKHS norm of a function.

Approximation results: (following [Bach 2017])
The RKHS is “larger”: slower decay compared to κ1, for which
µk = O(k−p−2);
f with p/2 η-bounded derivatives =⇒ f ∈ H with ‖f‖ ≤ O(η);
Weaker requirement compared to κ1 (need p/2 + 1 derivatives);
Better rates for approximating Lipschitz functions on the sphere.

Neural Tangent Kernels for CNNs

Two-layer ReLU Networks: f (x ; θ) =
√

2
m

∑m
j=1 vjσ(w>j x), NTK given

by

K (x , x ′) = ‖x‖‖x ′‖κNTK

 〈x , x ′〉
‖x‖‖x ′‖

 ,
where κNTK (u) := uκ0(u) + κ1(u), κ0/1 arccos kernels of degree 0/1

Convolutional networks:
Signals x [u] in `2(Zd)

Patch extraction operators Pkx [u] = |Sk |−1/2(x [u + v ])v∈Sk ∈ H|Sk |

Linear pooling operators Akx [u] =
∑

v∈Zd hk [u − v ]x [v ]

Network: f (x ; θ) =
√

2
mn
〈wn+1,an〉`2, with

ãk [u] =
√

2/mk–1W kPkak–1[u],

ak [u] = Akσ(ãk)[u], k = 1, . . . ,n,

NTK: Consider the non-linear operator

M(x , y)[u] =

ϕ0(x [u])⊗ y [u]
ϕ1(x [u])

 ,
where ϕ0, ϕ1 are kernel mappings for kernels κ0 and κ1.

Proposition (NTK feature map for CNN)
The NTK is given by

K (x , x ′) = 〈Φ(x),Φ(x ′)〉`2(Zd),

with Φ(x)[u] = AnM(xn, yn)[u], y1[u] = x1[u] = P1x [u] and
xk [u] = PkAk–1ϕ1(xk–1)[u]

yk [u] = PkAk–1M(xk–1, yk–1)[u],

with the notation ϕ1(x)[u] = ϕ1(x [u]) for a signal x.

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Illustration of feature maps construction for xk .
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Smoothness and Deformation Stability

Two-layer ReLU networks: The NTK (when training both layers) has
weaker smoothness compared to training only the second layer.

Proposition (Non-Lipschitzness)

The kernel mapping Φ(·) of the two-layer NTK is not Lipschitz:

sup
x ,y

‖Φ(x)− Φ(y)‖H
‖x − y‖ → +∞.

It follows that the RKHS H contains unit-norm functions with arbi-
trarily large Lipschitz constant.

Proposition (Smoothness for ReLU NTK)

The kernel mapping Φ satisfies
‖Φ(x)− Φ(y)‖ ≤

√
min(‖x‖, ‖y‖)‖x − y‖ + 2‖x − y‖.

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Deformation stability for deep ReLU CNNs: Similar assumptions
to [Bietti and Mairal, 2019]

Continuous signals x(u) in L2(Rd), t : Rd → Rd ,C1,
deformations Lτx(u) = x(u − τ (u))

Anti-aliasing of the original signal: A0x instead of x
Patch sizes controlled at current resolution: supv∈Sk

|v | ≤ βσk–1

Proposition (Stability of NTK)

Let Φn(x) = Φ(A0x), and assume ‖∇τ‖∞ ≤ 1/2. We have:

‖Φn(Lτx)− Φn(x)‖ ≤ (Cβ,n‖∇τ‖1/2
∞ + C ′β,n‖∇τ‖∞ +

C ′′n
σn
‖τ‖∞)‖x‖.

Worse dependence on ‖∇τ‖∞ for small deformations compared to
CKN/random feature kernel obtained when training just the last layer!

Comparison for MNIST digits + deformations
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