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Inductive Bias and Over-Parameterization

Optimization and Inductive Bias:
@ Over-parameterized deep networks are very expressive
@ Optimization algorithm is plays a crucial role for generalization

Lazy Training: In certain regimes (over-parameterization, particular
initialization), neural networks behave like their linearization near ini-
tialization

f(X; (9) N f(X; (90) + <9 — HO,VQ]C(X; (90)>

Neural Tangent Kernels (NTK): In this regime, generalization prop-
erties are controlled by the limiting kernel [Jacot et al., 2018]

<VQf(X; (90), VQf(X/, 90)> — K(X, X,).

In particular, with squared loss and infinite width, we get the interpo-
lating solution with minimum RKHS norm.

Contributions:

@ Derivation of NTK for convolutional networks with generic linear
patch extraction/pooling operators;

@ Study of smoothness, stability, and approximation properties of
functions with finite RKHS norm:

@ Comparison to other ReLU kernels (e.g. training only last layer with
random weights): the NTK has weaker smoothness properties
but better approximation.

Approximation Properties (two layers)

Q: How rich is the RKHS for the NTK sn7x versus the simpler ker-
nel k4 obtained by training just the second layer (random features)?

Mercer decomposition with spherical harmonics:
Proposition (Mercer decomposition)

For any x,y € SP~', we have the following decomposition of the
NTK KNTK -

ENTK((X, V)
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where Yy ; are spherical harmonic polynomials of degree k, and
the non-negative eigenvalues i satisfy pg, 1 > 0, ux = 0 If kK =
2 +1 withj > 1, and otherwise nx ~ C(p)k=P as k — oc.

Julien Mairal -

This gives an explicit characterization of the RKHS norm of a function.

Approximation results: (following [Bach 2017])

@ The RKHS is “larger”: slower decay compared to x4, for which
pk = O(k™P~2);

@ f with p/2 n-bounded derivatives — f € H with ||f|| < O(n);

@ Weaker requirement compared to 1 (need p/2 + 1 derivatives);

@ Better rates for approximating Lipschitz functions on the sphere.
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Neural Tangent Kernels for CNNs

Two-layer ReLU Networks: f(x;0) =
oy

\/%zjn; ; vio(w x), NTK given

(X X') )

K () = [ o
Ix|H1x|
where knTi(U) = Uko(U) + k1(U), Ko/1 arccos kernels of degree 0/1

Convolutional networks:
e Signals x[u] in ¢2(Z9)

e Patch extraction operators P*x[u] = |Sk|~"/2(x[u + V])ves, € HI
e Linear pooling operators A*x[u] = > ,cz0 hk[U — V]X[V

Network: f(x;0) = &(W"H, a’) ., with

a[u] = \/2/ mx_y WKP*a[u],
(U] = Ao(@)ul, k=1.....n

NTK: Consider the non-linear operator

M(x, y)lu] = (%();[fé])z[%)])y [U]) ,

where (g, 1 are kernel mappings for kernels ¢ and «4.
Proposition (NTK feature map for CNN)

The NTK is given by
K(x,x') = (®(x), (X)) 2z,
with ®(x)[u] = A"M(x,, vo)[ul, ys[u] = x1[u] = P'x[u] and
xk[u] = PEA o4 (Xk—1)[U]
y[u] = P A M(Xk-1, yk—1)[u].
with the notation p+(x)|u] = wq(x|u]) for a signal x.

T — AkMkkakfl Q) = Hk a:k(w) = AkMkPka;fl (w) < Hk;

linear pooling
My Prxg-q : Q — Hy M Pyzy 1 (v) = op(Pyzi1(v)) € Hi
nel mapping

o

lllustration of feature maps construction for x.

Prxy1(v) € Py, (patch extraction)

rp1(u) € Hi 1 Tr—1: 0 — Hp
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Smoothness and Deformation Stability

Two-layer ReLU networks: The NTK (when training both layers) has
weaker smoothness compared to training only the second layer.

Proposition (Non-Lipschitzness)

The kernel mapping ®(-) of the two-layer NTK is not Lipschitz:

SUp [®(x) = *W)llx .
X,y Ix =yl
It follows that the RKHS H contains unit-norm functions with arbi-

trarily large Lipschitz constant.

Proposition (Smoothness for ReLU NTK)

The kernel mapping ¢ satisfies
[&(x) — o(y)|| < min([Ix[[, [yI)IIx = yIl + 2[Ix = y|.

Deformation stability for deep ReLU CNNs: Similar assumptions

to [Bietti and Mairal, 2019]

@ Continuous signals x(u) in L2(RY), t : RY —
deformations L. x(u) = x(u — 7(u))

@ Anti-aliasing of the original signal: Apx instead of x

@ Patch sizes controlled at current resolution: sup,cg, |V| < Bok-

Proposition (Stability of NTK)

RY O

Let ®n(x)
|®Pn(Lrx) —

= ®(Apx), and assume ||V 7| < 1/2. We have:

Pn(X)[| < (Conl VT2 + Chall Voo + —"lI7ll) I X]]:

n

Worse dependence on ||V 7|, for small deformations compared to
CKN/random feature kernel obtained when training just the last layer!

Comparison for MNIST digits + deformations
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