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Success of deep convolutional networks

C31 maps 16E10:10
g;PuT %gga&%"? maps S4: 1, maps 16@5:5
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Convolutional Neural Networks (CNNs):
o Capture multi-scale and compositional structure in natural signals
o Provide some invariance
o Model local stationarity

o State-of-the-art in many applications
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Understanding deep convolutional representations

©

Are they stable to deformations?

o How can we achieve invariance to transformation groups?

©

Do they preserve signal information?

()

What are good measures of model complexity?
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A kernel perspective

Kernels?
o Map data x to high-dimensional space, ®(x) € H (H: "RKHS")
o Non-linear f € H takes linear form: f(x) = (f, ®(x))
o Learning with a positive definite kernel K(x, x") = (®(x), ®(x'))
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A kernel perspective

Kernels?
o Map data x to high-dimensional space, ®(x) € H (H: "RKHS")
Non-linear f € H takes linear form: f(x) = (f, d(x))
Learning with a positive definite kernel K(x,x’) = (®(x), d(x'))
o Here, we construct convolutional kernels, following Mairal (2016)

» Good empirical performance on image tasks using kernel approximations (Mairal et al., 2014;
Mairal, 2016)

» RKHS contains CNNs, leads to good regularizers (Bietti and Mairal, 2019a; Bietti et al.,
2019)

» (Also related to neural tangent kernels for CNNs (Bietti and Mairal, 2019b))

©

©
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A kernel perspective

Why? Separate learning from representation: f(x) = (f, ®(x))
o ®(x): CNN architecture (stability, invariance, signal preservation)

o f: CNN model, learning, generalization through RKHS norm || f||
() = FODI < NIFI- 19(x) = o]

o ||f|| controls both stability and model complexity!
— discriminating small perturbations requires large || f||

— learning stable functions may be “easier”

Alberto Bietti Invariance and Stability of CNNs June 20, 2019 4 /34



A signal processing perspective

o Consider images defined on a continuous domain Q = R2.
o 7:Q — Q: Cl-diffeomorphism.
o Lyx(u) = x(u—7(u)): action operator.

o Much richer group of transformations than translations.
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A signal processing perspective

Consider images defined on a continuous domain Q = R?.

©

o 7:Q — Q: Cl-diffeomorphism.

©

Ly x(u) = x(u — 7(u)): action operator.
o Much richer group of transformations than translations.

Definition of stability
o Representation ®(-) is stable (Mallat, 2012) if:

1P(Lrx) = @) < (G1[VT[loo + Co|T[|oo) I x]]-

0 ||VT|loc = sup, ||V7T(u)|| controls deformation.
o ||7|loc = sup, |7(u)| controls translation.

o (5 — 0: translation invariance.
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Outline

(@ Construction of the Convolutional Representation
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A generic deep convolutional representation

o xo: Q — Ho: initial (continuous) signal
» u € Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R? for RGB images)
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A generic deep convolutional representation

o xo: Q — Ho: initial (continuous) signal
» u € Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R? for RGB images)

o xx : Q — Hy: feature map at layer k

Prxi—1

» Py: patch extraction operator, extract small patch of feature map xx_1 around each point u
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A generic deep convolutional representation

o xo: Q — Ho: initial (continuous) signal
» u € Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R? for RGB images)

o xx : Q — Hy: feature map at layer k

My Piexi—1

» Py: patch extraction operator, extract small patch of feature map xx_1 around each point u
» My: non-linear mapping operator, maps each patch to a new point with a pointwise
non-linear function ¢k(+)
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A generic deep convolutional representation

o xo: Q — Ho: initial (continuous) signal
» u € Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R? for RGB images)

o xx : Q — Hy: feature map at layer k
Xk = AxMyPiexi—1
» Py: patch extraction operator, extract small patch of feature map xx_1 around each point u
» My: non-linear mapping operator, maps each patch to a new point with a pointwise

non-linear function ¢k(+)
» A (linear, Gaussian) pooling operator at scale oy
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A generic deep convolutional representation

T = AgMyPrrg 1 : Q — Hy :Ifk(w) = Ap My Py 1(w) € Hg

linear pooling

M Pyxiq: Q — Hy My Prxp 1 (v) = pp(Prag-1(v)) € Hg

non-linear mapping

Prxy-1(v) € Pr (patch extraction)

Tk 1(u) € Hi1 Tp1: 80 — Hiq
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Patch extraction operator Py

Pixk-1(u) := (v € Sk = xk1(u+v)) € P = "Hfﬁl

Pyxy-1(v) € P (patch extraction)

Tk ](U) S Hk’ 1 Lh-1 - Q — Hk*l
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Patch extraction operator Py

Pixk-1(u) := (v € Sk = xk1(u+v)) € P = Hfﬁl

o Sk: patch shape, e.g. box
o Py is linear, and preserves the L2 norm: ||Pyxi—1|| =[xkl
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Non-linear mapping operator M

MkPka_l(U) = gOk(Pka_l(U)) € Hy

My Prag 1 Q — Hy My, Py (7)) = @Yk (Pkﬁl,‘k;[ (1))) € Hy

non-linear mapping

Pk.'l‘k» 1(1‘) (S Pk
L1 - QO — Hk 1
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Non-linear mapping operator M

MkPka_l(U) = (,Ok(Pka_l(U)) € Hy

o ¢k : Px — Hy pointwise non-linearity on patches (kernel map)
o We assume non-expansivity: for z, 2 € P

lex(@)F < 1zl and  Jlow(z) — er(2)I] < [z = 2|
o My then satisfies, for x,x" € L%(Q, Px)

IMx|| < [Ix]l and [[Mix = Mix'|| < [lx = X'|
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Non-linear mapping operator M

MkPka_l(U) = (,Ok(Pka_l(U)) € Hy

©

Yk : Px — Hy pointwise non-linearity on patches
o We assume: for z,z' € Py

ler()l < pellzll - and  lpw(2) = ou(Z)I < pucllz = 2]

M then satisfies, for x, x’ € L2(Q, Py)

©

IMix|| < pilix|l and  [[Mix — Mix'|] < pillx — X'||

©

(at the cost of paying [, pk later)
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i from kernels

o Kernel mapping of homogeneous dot-product kernels:

(z,7)

111121l

Kulz,2) =l 12/ 20 ) = (ula). oul@)-

o rp(u) =272 bjtd with bj >0, ri(1) =1

o Commonly used for hierarchical kernels
o llek(2)ll = K(z,2)"* = |z
o |lew(z) = er(2) < llz = 2] if w3 (1) < 1

o = non-expansive

Alberto Bietti Invariance and Stability of CNNs June 20, 2019 11 / 34



i from kernels

o Kernel mapping of homogeneous dot-product kernels:

(z,7)

111121l

Kulz,2) =l 12/ 20 ) = (ula). oul@)-

o rp(u) =272 bjtd with bj >0, ri(1) =1

o Commonly used for hierarchical kernels
o llek(2)ll = K(z,2)"* = |z
o |lew(z) = er(2) < llz = 2] if w3 (1) < 1

o = non-expansive

©

Examples:
> Fep((2,2')) = /%771 (Gaussian kernel on the sphere)
> Kinvpoly((2,2) = 5=y
» arc-cosine kernel of degree 1 (random features with ReLU activation)
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i from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):
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i from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):
o Approximate ¢ (z) by projection on span(yk(z1),...,¢k(2p)) (Nystrom)
o Leads to tractable, p-dimensional representation 4(z)

o Norm is preserved, and projection is non-expansive:

19(2) = Yi(2) ]| = [INkpr(2) = Nipr(2)
< lpw(2) = en(Z) < [z = 2|

©

Anchor points zi, ..., z, (= filters) can be learned from data (K-means or backprop)
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i from kernels: CKNs approximation

linear pooling

= |
%5 o1(x)| Hilbert space H;
1 (x)

\r/
ction on Fi i
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Pooling operator Ay

xk(u) = AkMkPka_l(u) = /]Rd ho’k(u — V)MkPka_l(V)dV € Hy

T = AkI\/IkPkrk,l (0 — Hy ,’I,‘;,.(U,‘) = /’1]\.J\11ﬂ.]‘);‘..lﬁj,; 1('!1,‘) € Hy

linear pooling

MypPrxy 1 :Q — Hy

Th-1 ° Q— Hi
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Pooling operator Ay

xk(u) = AkMkPka_l(u) = /]Rd ho’k(u — V)MkPka_l(V)dV € Hy

o hg,: pooling filter at scale oy
o hy,(u) := o %h(u/ok) with h(u) Gaussian

o linear, non-expansive operator: ||Ax| <1
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Recap: Pk, Mk, Ak

rp = A M Prxy1 - Q — Hy lk(w) = A My, Py 1(’UJ> € Hy

linear pooling

M Pyxiq: Q — Hy My Prxp 1 (v) = pp(Prag-1(v)) € Hg
kernel mapping

Prxy-1(v) € Pr (patch extraction)

Tk 1(u) € Hi1 Tp1: 80 — Hiq
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Multilayer construction

Assumption on xg
o X is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal, Ag local integrator
with scale o (anti-aliasing).
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Multilayer construction

Assumption on xg
o X is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal, Ag local integrator
with scale o (anti-aliasing).

Multilayer representation

®p(x) = AgMuPrAn 1My 1Pn 1 - AIMiPixo € L2(Q,H,).

o Sy, ok grow exponentially in practice (i.e., fixed with subsampling).
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Multilayer construction

Assumption on xg

o X is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal, Ag local integrator
with scale o (anti-aliasing).

Multilayer representation

®p(x) = AgMuPrAn 1My 1Pn 1 - AIMiPixo € L2(Q,H,).

o Sy, ok grow exponentially in practice (i.e., fixed with subsampling).
Prediction layer

o e.g., linear f(x) = (w, ®,(x)).
o “linear kernel” K(x, x") = (®n(x), Pn(x’)) = [q(xn(u), x}(u))du.

Invariance and Stability of CNNs June 20, 2019 15 / 34



Discretization and signal preservation

Ins : Qo — Ha Ins(wi) = 01(Pu,) € Ha
Kernel trick

P,, € Py (patch)
IO : QO — Ho
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Discretization and signal preservation

o Xk: subsampling factor sy after pooling with scale oy ~ si:

)'(k[n] = Ak Mk Pk>_<k—1 [nsk]
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o) =~ si:

)'(k[n] = Ak Mk Pk>_<k_1 [nsk]

o Claim: We can recover xx_1 from X, if subsampling s, < patch size
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o) =~ si:

)'(k[n] = Ak Mk Pk>_<k_1 [nsk]

o Claim: We can recover xx_1 from X, if subsampling s, < patch size

o How? Kernels! Recover patches with linear functions (contained in RKHS)

(fw, Mk Pix(u)) = fu (Prx(u)) = (w, Pgx(u))
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Signal recovery: example in 1D

Tr—1 | |

deconvolution

Ak‘»rk,—l | |

recovery with linear measurements
[ ] ] |

/ downsampling

Ak]LIkszk-—ll | | | | | |

linear pooling K

My Pyxyp_1 | | | | | |

dot-product kernel

S I |

Prag_1(u) € Pi
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Stability to deformations: definitions

o 7:Q — Q: Cl-diffeomorphism
o Lyx(u) = x(u—7(u)): action operator

o Much richer group of transformations than translations

FRAYyqbhy ¥y
5555585556 ¢
7717717777
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o Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Stability to deformations: definitions

©

Representation ®(-) is stable (Mallat, 2012) if:

18(Lrx) = ®(X)]| < (G| VTlloo + CollT]lo0) 1]l

0 ||VT|loo = sup, ||[VT(u)|| controls deformation
0 ||7]|co = sup, |7(u)| controls translation
o (G, — 0: translation invariance
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Warmup: translation invariance

o Representation:
CD,,(X) = AnMnPnAn_an_lp -1 A1M1P1X.

o Translation: Lcx(u) = x(u — ¢)
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Warmup: translation invariance

o Representation:
CD,,(X) = AnMnPnAn_an_lp -1 A1M1P1X.

o Translation: Lcx(u) = x(u — ¢)

o Equivariance - all operators commute with L.: UL, = L [

[®n(Lex) — Pua(x)|| = [[LcPa(x) — Pa(x)]|
< |[LeAn = Anll - lIx]]
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Warmup: translation invariance

©

Representation:
CD,,(X) = AnMnPnAn_an_lp -1 A1M1P1X.

©

Translation: Lcx(u) = x(u — ¢)

©

Equivariance - all operators commute with L.: OL. = L [

[®n(Lex) — Pua(x)|| = [[LcPa(x) — Pa(x)]|
< |[LeAn = Anll - lIx]]

©

Mallat (2012): ||L-An — Aul| < €|17]|
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Warmup: translation invariance

©

Representation:
CD,,(X) = AnMnPnAn_an_lp -1 A1M1P1X.

©

Translation: Lcx(u) = x(u — ¢)

©

Equivariance - all operators commute with L.: OL. = L [

[®n(Lex) — Pua(x)|| = [[LcPa(x) — Pa(x)]|
< |[LeAn = Anll - lIx]]

©

Mallat (2012): ||LcA, — An| < Sc
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Stability to deformations

o Representation:
(Dn(X) = AnMnPnAn_an_lp -1 A1M1P1X.

o Patch extraction P, and pooling Ax do not commute with L;!
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Stability to deformations

o Representation:
(Dn(X) = AnMnPnAn_an_lp -1 A1M1P1X.

o Patch extraction P, and pooling Ax do not commute with L;!
o ||AkL: — Ly Akl < Gi||VT|loo (from Mallat, 2012)
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Stability to deformations

o Representation:
(Dn(X) = AnMnPnAn_an_lp -1 A1M1P1X.

o Patch extraction P, and pooling Ax do not commute with L;!
o ||[Ak, Le]|l < Gi]| VTl (from Mallat, 2012)
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Stability to deformations

©

Representation:
(Dn(X) = AnMnPnAn_an_lp -1 A1M1P1X.

©

Patch extraction Py and pooling Ay do not commute with L,!
I[Ak, L]|] < Gi]|VT]|so (from Mallat, 2012)
But: [Px, L;] is unstable at high frequencies!

()

()
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Stability to deformations

©

Representation:

®p(x) 1= AnMnPpAniMp1 Py -+ AL My Py Aox.

©

Patch extraction Py and pooling Ay do not commute with ;!
I[Ak; L7]|| < Gi]|VT|loo (from Mallat, 2012)
But: [Py, L;] is unstable at high frequencies!

©

©

©

Adapt to current layer resolution, patch size controlled by oj_;:

IPkAK-1, Lr]ll < Gl VTlloo sup [u] < Bok

u€ESy
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Stability to deformations

o Representation:

®p(x) 1= AnMnPpAniMp1 Py -+ AL My Py Aox.

©

Patch extraction Py and pooling Ay do not commute with ;!
I[Ak; L7]|| < Gi]|VT|loo (from Mallat, 2012)
But: [Py, L;] is unstable at high frequencies!

©

©

©

Adapt to current layer resolution, patch size controlled by oj_;:

IPkAK-1, Lr]ll < Gl VTlloo sup [u] < Bok

u€ESy

©

C15 grows as 3971 = more stable with small patches (e.g., 3x3, VGG et al.)
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Stability to deformations: final result

Theorem
If|VT]leo <1/2,

C
[9n(Lex) = @400l < (G (14 ) [Vl + 27l ) ]

o translation invariance: large o,

o stability: small patch sizes

©

signal preservation: subsampling factor ~ patch size

o = needs several layers
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Stability to deformations: final result

Theorem
If |VT]leo <1/2,

C
[9a(Lrx) = @a) < Tk (o (0 + DT oo+l ) x|
k

n

o translation invariance: large o,

()

stability: small patch sizes

©

signal preservation: subsampling factor ~ patch size
o = needs several layers

(also valid for generic CNNs with ReLUs: multiply by [T, px = [T | Wk
signal preservation).

©

|, but no direct
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Beyond the translation group

Global invariance to other groups?

©

Rotations, reflections, roto-translations, ...

o Group action Lgx(u) = x(g~u)

o Equivariance in inner layers + (global) pooling in last layer

o Similar construction to Cohen and Welling (2016); Kondor and Trivedi (2018)

Alberto Bietti Invariance and Stability of CNNs June 20, 2019 24 / 34



G-equivariant layer construction

©

Feature maps x(u) defined on u € G (G: locally compact group)
» Input needs special definition when G # Q

Patch extraction:

©

Px(u) = (x(uv))ves
o Non-linear mapping: equivariant because pointwise!

Pooling (y: left-invariant Haar measure):

©

Ax(u):/GX(uv)h(v)d,u(v):/Gx(v)h(u_lv)du(v)
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Group invariance and stability

Roto-translation group G = R? x SO(2) (translations + rotations)

o Stability w.r.t. translation group
o Global invariance to rotations (only global pooling at final layer)

» Inner layers: patches and pooling only on translation group

» Last layer: global pooling on rotations

» Cohen and Welling (2016): pooling on rotations in inner layers hurts performance on Rotated
MNIST
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Outline

(3 Learning Aspects: Model Complexity of CNNs
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RKHS of patch kernels K

(z,7))

Ki(z,Z') = ||z||||Z Ii(), k(u) = b’

o RKHS contains homogeneous functions:

fze|lzllo((g,2)/llz])

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels K

(z,7))

Ki(z,Z') = ||z||||Z Ii(), k(u) = b’

o RKHS contains homogeneous functions:
f:zm|zllo((g,2)/lzl)
o Smooth activations: o(u) = > 7%, ajt/

a2
o Norm: [[f[3, < C(llgl®) = 32720 7 llgl* < o0

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels K

Examples:
o o(u) = u (linear): C2(\?) = O(\?)

o o(u) = uP (polynomial): C2()\?) = O(\?P)

o o =~ sin, sigmoid, smooth ReLU: C2(\?) = O(e)

f(x)

f: x| x|o(wx/|x]|)

f:xm0(x)
41 -
2.0 1 RelU —— RelLU, w=1
~——— sRelLU —— sReLU,w =0
1.5 4 3{ —— sRelLU,w=0.5
' — sRelU,w=1
— —— sRelLU, w =2
1.0 2 21
0.5 14
0.0 A 0 -
-20 -15 -1.0 -05 0.0 05 10 15 2.0 -20 -15 -1.0 -05 00 05 1.0 15 2.0

X

Alberto Bietti

Invariance and Stability of CNNs

X

June 20, 2019
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Constructing a CNN in the RKHS H

Consider a CNN with filters W,ij(u), u e Sk

“Smooth homogeneous” activations o

©

©

o The CNN can be constructed hierarchically in Hy

©

Norm upper bound:

1115 < IWaiall3 CUIWallz C(IWaillz C3(--)))
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Constructing a CNN in the RKHS H

Consider a CNN with filters W,ij(u), u e Sk

o “Smooth homogeneous” activations o

©

o The CNN can be constructed hierarchically in Hy

o Norm upper bound (linear layers):
1o llF < 1Waiall3 - IWall3 - [Waall5 - - [[WA13
o Linear layers: product of spectral norms
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Link with generalization

o Simple bound on Rademacher complexity for linear/kernel methods:

BR
Fg={f € H,|fllu < B :>Rd]-"§0()
B={ i [Ifll% < B} adn(Fs) N
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Link with generalization

o Simple bound on Rademacher complexity for linear/kernel methods:

BR
Fg={f € H,|fllu < B :>Rd]-"§0()
B={ i [Ifll% < B} adn(Fs) N

o Leads to margin bound O(||fy||%R/vV/'N) for a learned CNN fy with margin (confidence)
v>0

o Related to generalization bounds for neural networks based on product of spectral
norms (e.g., Bartlett et al., 2017; Neyshabur et al., 2018)
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QOutline

1) Construction of the Convolutional Representation
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Regularizing with the RKHS norm in practice

Deep learning struggles with small datasets and adversarial examples.
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Regularizing with the RKHS norm in practice

Can we obtain better models through regularization?

o Controlling upper bounds: spectral norm penalties/constraints
o Controlling lower bounds using ||f||3; = supj,,, <1 (f, u)
o — consider tractable subsets of the unit ball

Ifllxg > sup (f,P(x+3J)—D(x))n (adversarial perturbations)
x[loll<1
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o — consider tractable subsets of the unit ball
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Regularizing with the RKHS norm in practice

Can we obtain better models through regularization?

o Controlling upper bounds: spectral norm penalties/constraints
o Controlling lower bounds using ||f||3; = supj,,, <1 (f, u)
o = consider tractable subsets of the unit ball
|fllg > sup f(x+0)—1f(x) (adversarial perturbations)
x[|6]]<1
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Regularizing with the RKHS norm in practice

Can we obtain better models through regularization?

o Controlling upper bounds: spectral norm penalties/constraints
o Controlling lower bounds using ||f||3; = supj,,, <1 (f, u)
o = consider tractable subsets of the unit ball
|fllg > sup f(x+0)—1f(x) (adversarial perturbations)
x[|6]]<1

| fll > HSUHP<C f(L;x)— f(x) (adversarial deformations)

|l > sup|VFf(x)|l2 (gradient penalty)

o Best performance by combining upper + lower bound approaches
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Regularizing with the RKHS norm in practice

Can we obtain better models through regularization?

Table 2. Regularization on 300 or 1000 examples from MNIST,
using deformations from Infinite MNIST. (%) indicates that random
deformations were included as training examples, while || f||? and
| D+ ]|? use them as part of the regularization penalty.

[ Method [ 300 VGG | 1k VGG |
Weight decay 89.32 94.08
SN projection 90.69 95.01
grad-C; 93.63 96.67
[ /113 penalty 94.17 96.99
IV /1[* penalty 94.08 96.82
Weight decay () 9241 05.64
grad-la (%) 95.05 97.48
D~ £1|* penalty 94.18 96.98
Il £]|? penalty 94.42 97.13
12+ IV £112 94.75 97.40
713+ 117113 95.23 97.66
I+ 17115 ¢ 95.53 97.56
11 + 117115 + SN proj 95.20 97.60
IF112 + I £]IZ + SN proj (x) |  95.40 97.77
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Regularizing with the RKHS norm in practice

Can we obtain better models through regularization?

Table 3. Regularization on protein homology detection tasks, with
or without data augmentation (DA). Fixed hyperparameters are
selected using the first half of the datasets, and we report the
average auROC50 score on the second half.

[ Method [ NoDA | DA |
No weight decay 0.446 | 0.500
Weight decay 0.501 0.546
SN proj 0.591 | 0.632
PGD-/, 0.575 | 0.595
grad-{ 0.540 | 0.552
713 0.600 | 0.608
IV £II? 0.585 | 0.611
PGD-l5 + SN proj | 0.596 | 0.627
grad-¢2 + SN proj 0.592 | 0.624
l£11? + SN proj 0.630 | 0.644
IV£II> + SN proj | 0.603 | 0.625
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Regularization for robustness

o Robust optimization yields another lower bound (hinge/logistic loss)
1N N
NZ sup é(yhf(xl_}'(s Z yla +€Hf||7{
i=1[16]l2<e i=1

©

Controlling ||f]|3 allows a more global form of robustness
o Leads to margin bounds for adversarial generalization with ¢, perturbations
» Using ||f|l% > ||f|lLip near the margin

©

But, may cause a loss in accuracy in practice

(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularization for robustness

Robust vs standard accuracy trade-offs

lz, Etest = 0.1
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(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularization for robustness

Upper vs lower bounds

le3 norm comparison

(Bietti, Mialon, Chen, and Mairal, 2019) Ifls
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Deep convolutional representations: conclusions

Study of generic properties
o Deformation stability with small patches, adapted to resolution
o Signal preservation when subsampling < patch size

o Group invariance by changing patch extraction and pooling

Alberto Bietti Invariance and Stability of CNNs June 20, 2019

34 /34



Deep convolutional representations: conclusions

Study of generic properties
o Deformation stability with small patches, adapted to resolution
o Signal preservation when subsampling < patch size
o Group invariance by changing patch extraction and pooling

Applies to learned models
o Same quantity ||f|| controls stability and complexity:

» “higher capacity” is needed to discriminate small deformations
» Learning may be “easier” with stable functions

o Better regularization of generic CNNs using RKHS norm
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Deep convolutional representations: conclusions

Study of generic properties
o Deformation stability with small patches, adapted to resolution
o Signal preservation when subsampling < patch size
o Group invariance by changing patch extraction and pooling
Applies to learned models

o Same quantity ||f|| controls stability and complexity:

» “higher capacity” is needed to discriminate small deformations
» Learning may be “easier” with stable functions

o Better regularization of generic CNNs using RKHS norm
Links with optimization (Bietti and Mairal, 2019b)
o Similar kernel (NTK) arises from optimization in a certain regime

o Weaker stability guarantees, but better approximation properties
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