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Success of deep convolutional networks
Paradigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...
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Convolutional Neural Networks (CNNs):
Capture multi-scale and compositional structure in natural signals
Provide some invariance
Model local stationarity
State-of-the-art in many applications
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Understanding deep convolutional representations

Are they stable to deformations?
How can we achieve invariance to transformation groups?
Do they preserve signal information?
What are good measures of model complexity?
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A kernel perspective

Kernels?
Map data x to high-dimensional space, Φ(x) ∈ H (H: “RKHS”)
Non-linear f ∈ H takes linear form: f (x) = 〈f ,Φ(x)〉
Learning with a positive definite kernel K (x , x ′) = 〈Φ(x),Φ(x ′)〉

Here, we construct specific kernels based on convolutional architectures, following Mairal
(2016)

I Good empirical performance on image tasks (Mairal et al., 2014; Mairal, 2016)
I RKHS contains CNNs, leads to good regularizers (Bietti et al., 2019)
I Also related to neural tangent kernels for CNNs (Bietti and Mairal, 2019b)
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A kernel perspective

Why? Separate learning from representation: f (x) = 〈f ,Φ(x)〉
Φ(x): CNN architecture (stability, invariance, signal preservation)
f : CNN model, learning, generalization through RKHS norm ‖f ‖

|f (x)− f (x ′)| ≤ ‖f ‖ · ‖Φ(x)− Φ(x ′)‖

‖f ‖ controls both stability and model complexity!
→ discriminating small perturbations requires large ‖f ‖
→ learning stable functions may be “easier”
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A signal processing perspective

Consider images defined on a continuous domain Ω = R2.
τ : Ω→ Ω: C1-diffeomorphism.
Lτx(u) = x(u − τ(u)): action operator.
Much richer group of transformations than translations.

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed
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A signal processing perspective

Consider images defined on a continuous domain Ω = R2.
τ : Ω→ Ω: C1-diffeomorphism.
Lτx(u) = x(u − τ(u)): action operator.
Much richer group of transformations than translations.

Definition of stability
Representation Φ(·) is stable (Mallat, 2012) if:

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖.

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation.
‖τ‖∞ = supu |τ(u)| controls translation.
C2 → 0: translation invariance.
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Outline

1 Construction of the Convolutional Representation

2 Invariance and Stability

3 Learning Aspects: Model Complexity of CNNs

4 Regularizing with the RKHS norm
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A generic deep convolutional representation

x0 : Ω→ H0: initial (continuous) signal
I u ∈ Ω = Rd : location (d = 2 for images)
I x0(u) ∈ H0: value (H0 = R3 for RGB images)

xk : Ω→ Hk : feature map at layer k

xk = AkMkPkxk−1

I Pk : patch extraction operator, extract small patch of feature map xk−1 around each point u
I Mk : non-linear mapping operator, maps each patch to a new point with a pointwise

non-linear function ϕk(·)
I Ak : (linear, Gaussian) pooling operator at scale σk
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A generic deep convolutional representation

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Patch extraction operator Pk

Pkxk–1(u) := (v ∈ Sk 7→ xk–1(u + v)) ∈ Pk = HSk
k–1

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

Alberto Bietti Invariance and Stability of CNNs June 18, 2019 9 / 34



Patch extraction operator Pk

Pkxk–1(u) := (v ∈ Sk 7→ xk–1(u + v)) ∈ Pk = HSk
k–1

Sk : patch shape, e.g. box
Pk is linear, and preserves the L2 norm: ‖Pkxk–1‖ = ‖xk–1‖
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

xk–1 : Ω → Hk–1

Pkxk–1(v) ∈ Pk

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

ϕk : Pk → Hk pointwise non-linearity on patches (kernel map)
We assume non-expansivity: for z , z ′ ∈ Pk

‖ϕk(z)‖ ≤ ‖z‖ and ‖ϕk(z)− ϕk(z ′)‖ ≤ ‖z − z ′‖

Mk then satisfies, for x , x ′ ∈ L2(Ω,Pk)

‖Mkx‖ ≤ ‖x‖ and ‖Mkx −Mkx ′‖ ≤ ‖x − x ′‖

(at the cost of paying
∏

k ρk later)
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ϕk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z , z ′) = ‖z‖‖z ′‖κk

( 〈z , z ′〉
‖z‖‖z ′‖

)
= 〈ϕk(z), ϕk(z ′)〉.

κk(u) =
∑∞

j=0 bjuj with bj ≥ 0, κk(1) = 1
Commonly used for hierarchical kernels
‖ϕk(z)‖ = Kk(z , z)1/2 = ‖z‖
‖ϕk(z)− ϕk(z ′)‖ ≤ ‖z − z ′‖ if κ′k(1) ≤ 1
=⇒ non-expansive

Examples:
I κexp(〈z , z ′〉) = e〈z,z′〉−1 (Gaussian kernel on the sphere)
I κinv-poly(〈z , z ′〉) = 1

2−〈z,z′〉
I arc-cosine kernel of degree 1 (random features with ReLU activation)
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ϕk from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):

Approximate ϕk(z) by projection on span(ϕk(z1), . . . , ϕk(zp)) (Nystrom)
Leads to tractable, p-dimensional representation ψk(z)
Norm is preserved, and projection is non-expansive:

‖ψk(z)− ψk(z ′)‖ = ‖Πkϕk(z)− Πkϕk(z ′)‖
≤ ‖ϕk(z)− ϕk(z ′)‖ ≤ ‖z − z ′‖

Anchor points z1, . . . , zp (≈ filters) can be learned from data (K-means or backprop)
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ϕk from kernels: CKNs approximation

Unsupervised learning for convolutional kernel networks

Learn linear subspaces of finite-dimensions where we project the data

M0

x

x0

kernel trick

projection on F1

M0.5

 1(x)

 1(x
0)

M1

linear pooling
Hilbert space H1

F1

'1(x)

'1(x
0)

Figure: The convolutional kernel network model between layers 0 and 1.

Julien Mairal Towards deep kernel machines 31/51
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

xk–1 : Ω → Hk–1

MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

hσk : pooling filter at scale σk

hσk (u) := σ−d
k h(u/σk) with h(u) Gaussian

linear, non-expansive operator: ‖Ak‖ ≤ 1
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Recap: Pk , Mk , Ak

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Multilayer construction

Assumption on x0
x0 is typically a discrete signal aquired with physical device.
Natural assumption: x0 = A0x , with x the original continuous signal, A0 local integrator
with scale σ0 (anti-aliasing).

Multilayer representation

Φn(x) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

Sk , σk grow exponentially in practice (i.e., fixed with subsampling).
Prediction layer

e.g., linear f (x) = 〈w ,Φn(x)〉.
“linear kernel” K(x , x ′) = 〈Φn(x),Φn(x ′)〉 =

∫
Ω〈xn(u), x ′n(u)〉du.
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Discretization and signal preservationThe multilayer convolutional kernel

I0 : ⌦0 ! H0I0(!0) 2 H0

P!1 2 P0 (patch)

Kernel trick

I0.5(!1) = '1(P!1) 2 H1
I0.5 : ⌦0 ! H1

I1 : ⌦1 ! H1

Linear pooling

I1(!2) 2 H1

How do we go from I0.5 : ⌦0 ! H1 to I1 : ⌦1 ! H1?

Linear pooling!
Julien Mairal Towards deep kernel machines 28/51
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Discretization and signal preservation

x̄k : subsampling factor sk after pooling with scale σk ≈ sk :

x̄k [n] = AkMkPk x̄k–1[nsk ]

Claim: We can recover x̄k−1 from x̄k if subsampling sk ≤ patch size
How? Kernels! Recover patches with linear functions (contained in RKHS)

〈fw ,MkPkx(u)〉 = fw (Pkx(u)) = 〈w ,Pkx(u)〉
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Signal recovery: example in 1D

xk−1

Pkxk−1(u) ∈ Pk

MkPkxk−1

dot-product kernel

AkMkPkxk−1

linear pooling

downsampling

xk

recovery with linear measurements

Akxk−1

deconvolution

xk−1
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Outline

1 Construction of the Convolutional Representation

2 Invariance and Stability

3 Learning Aspects: Model Complexity of CNNs

4 Regularizing with the RKHS norm
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Stability to deformations: definitions

τ : Ω→ Ω: C1-diffeomorphism
Lτx(u) = x(u − τ(u)): action operator
Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Stability to deformations: definitions

Representation Φ(·) is stable (Mallat, 2012) if:

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation
‖τ‖∞ = supu |τ(u)| controls translation
C2 → 0: translation invariance
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Warmup: translation invariance

Representation:
Φn(x) := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1x .

Translation: Lcx(u) = x(u − c)

Equivariance - all operators commute with Lc : �Lc = Lc�

‖Φn(Lcx)− Φn(x)‖ = ‖LcΦn(x)− Φn(x)‖
≤ ‖LcAn − An‖ · ‖x‖

Mallat (2012): ‖LτAn − An‖ ≤ C2
σn
‖τ‖∞
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Stability to deformations

Representation:
Φn(x) := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1x .

Patch extraction Pk and pooling Ak do not commute with Lτ !

‖‖ ≤ C1‖∇τ‖∞ (from Mallat, 2012)
But: [Pk , Lτ ] is unstable at high frequencies!
Adapt to current layer resolution, patch size controlled by σk–1:

‖[PkAk–1, Lτ ]‖ ≤ C1,β‖∇τ‖∞ sup
u∈Sk

|u| ≤ βσk–1

C1,β grows as βd+1 =⇒ more stable with small patches (e.g., 3x3, VGG et al.)
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u∈Sk

|u| ≤ βσk–1

C1,β grows as βd+1 =⇒ more stable with small patches (e.g., 3x3, VGG et al.)
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Stability to deformations: final result

Theorem
If ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτx)− Φn(x)‖ ≤
(

C1,β (n + 1) ‖∇τ‖∞ + C2
σn
‖τ‖∞

)
‖x‖

translation invariance: large σn

stability: small patch sizes
signal preservation: subsampling factor ≈ patch size
=⇒ needs several layers

(also valid for generic CNNs with ReLUs: multiply by
∏

k ρk =
∏

k ‖Wk‖, but no direct
signal preservation).
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Beyond the translation group

Global invariance to other groups?

Rotations, reflections, roto-translations, ...
Group action Lgx(u) = x(g−1u)
Equivariance in inner layers + (global) pooling in last layer
Similar construction to Cohen and Welling (2016); Kondor and Trivedi (2018)
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G-equivariant layer construction

Feature maps x(u) defined on u ∈ G (G : locally compact group)
I Input needs special definition when G 6= Ω

Patch extraction:
Px(u) = (x(uv))v∈S

Non-linear mapping: equivariant because pointwise!
Pooling (µ: left-invariant Haar measure):

Ax(u) =
∫

G
x(uv)h(v)dµ(v) =

∫
G

x(v)h(u−1v)dµ(v)
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Group invariance and stability

Roto-translation group G = R2 o SO(2) (translations + rotations)
Stability w.r.t. translation group
Global invariance to rotations (only global pooling at final layer)

I Inner layers: patches and pooling only on translation group
I Last layer: global pooling on rotations
I Cohen and Welling (2016): pooling on rotations in inner layers hurts performance on Rotated

MNIST
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Outline

1 Construction of the Convolutional Representation

2 Invariance and Stability

3 Learning Aspects: Model Complexity of CNNs

4 Regularizing with the RKHS norm
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RKHS of patch kernels Kk

Kk(z , z ′) = ‖z‖‖z ′‖κ
( 〈z , z ′〉
‖z‖‖z ′‖

)
, κ(u) =

∞∑
j=0

bjuj

RKHS contains homogeneous functions:

f : z 7→ ‖z‖σ(〈g , z〉/‖z‖)

Smooth activations: σ(u) =
∑∞

j=0 ajuj

Norm: ‖f ‖2Hk
≤ C2

σ(‖g‖2) =
∑∞

j=0
a2j
bj
‖g‖2 <∞

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels Kk
Examples:

σ(u) = u (linear): C2
σ(λ2) = O(λ2)

σ(u) = up (polynomial): C2
σ(λ2) = O(λ2p)

σ ≈ sin, sigmoid, smooth ReLU: C2
σ(λ2) = O(ecλ2)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

f : x (x)
ReLU
sReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

f(x
)

f : x |x| (wx/|x|)
ReLU, w=1
sReLU, w = 0
sReLU, w = 0.5
sReLU, w = 1
sReLU, w = 2
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Constructing a CNN in the RKHS HK

Consider a CNN with filters W ij
k (u), u ∈ Sk

“Smooth homogeneous” activations σ
The CNN can be constructed hierarchically in HK
Norm upper bound:

‖fσ‖2H ≤ ‖Wn+1‖22 C2
σ(‖Wn‖22 C2

σ(‖Wn–1‖22 C2
σ(. . . )))

Linear layers: product of spectral norms
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Constructing a CNN in the RKHS HK

Consider a CNN with filters W ij
k (u), u ∈ Sk

“Smooth homogeneous” activations σ
The CNN can be constructed hierarchically in HK
Norm upper bound (linear layers):

‖fσ‖2H ≤ ‖Wn+1‖22 · ‖Wn‖22 · ‖Wn–1‖22 . . . ‖W1‖22

Linear layers: product of spectral norms

Alberto Bietti Invariance and Stability of CNNs June 18, 2019 29 / 34



Link with generalization

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ HK, ‖f ‖H ≤ B} =⇒ RadN(FB) ≤ O
( BR√

N

)

Leads to margin bound O(‖f̂N‖HR/γ
√

N) for a learned CNN f̂N with margin (confidence)
γ > 0
Related to generalization bounds for neural networks based on product of spectral
norms (e.g., Bartlett et al., 2017; Neyshabur et al., 2018)

Alberto Bietti Invariance and Stability of CNNs June 18, 2019 30 / 34



Link with generalization

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ HK, ‖f ‖H ≤ B} =⇒ RadN(FB) ≤ O
( BR√

N

)

Leads to margin bound O(‖f̂N‖HR/γ
√

N) for a learned CNN f̂N with margin (confidence)
γ > 0
Related to generalization bounds for neural networks based on product of spectral
norms (e.g., Bartlett et al., 2017; Neyshabur et al., 2018)

Alberto Bietti Invariance and Stability of CNNs June 18, 2019 30 / 34



Outline

1 Construction of the Convolutional Representation

2 Invariance and Stability

3 Learning Aspects: Model Complexity of CNNs

4 Regularizing with the RKHS norm

Alberto Bietti Invariance and Stability of CNNs June 18, 2019 31 / 34



Regularizing with the RKHS norm in practice

Deep learning struggles with small datasets and adversarial examples.

(Bietti, Mialon, Chen, and Mairal, 2019)Alberto Bietti Invariance and Stability of CNNs June 18, 2019 32 / 34



Regularizing with the RKHS norm in practice

Can we obtain better models through regularization?

Controlling upper bounds: spectral norm penalties/constraints
Controlling lower bounds using ‖f ‖H = sup‖u‖H≤1〈f , u〉
=⇒ consider tractable subsets of the unit ball

‖f ‖H ≥ sup
x ,‖δ‖≤1

(adversarial perturbations)

‖f ‖H ≥ sup
x ,‖τ‖≤C

f (Lτx)− f (x) (adversarial deformations)

‖f ‖H ≥ sup
x
‖∇f (x)‖2 (gradient penalty)

Best performance by combining upper + lower bound approaches
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Regularizing with the RKHS norm in practice

Can we obtain better models through regularization?
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A Kernel Perspective for Regularizing Deep Neural Networks

Table 2. Regularization on 300 or 1 000 examples from MNIST,
using deformations from Infinite MNIST. (⇤) indicates that random
deformations were included as training examples, while kfk2

⌧ and
kD⌧fk2 use them as part of the regularization penalty.

Method 300 VGG 1k VGG
Weight decay 89.32 94.08
SN projection 90.69 95.01
grad-`2 93.63 96.67
kfk2

� penalty 94.17 96.99
krfk2 penalty 94.08 96.82
Weight decay (⇤) 92.41 95.64
grad-`2 (⇤) 95.05 97.48
kD⌧fk2 penalty 94.18 96.98
kfk2

⌧ penalty 94.42 97.13
kfk2

⌧ + krfk2 94.75 97.40
kfk2

⌧ + kfk2
� 95.23 97.66

kfk2
⌧ + kfk2

� (⇤) 95.53 97.56
kfk2

⌧ + kfk2
� + SN proj 95.20 97.60

kfk2
⌧ + kfk2

� + SN proj (⇤) 95.40 97.77

erage pooling after each 3x3 convolution layer, in order to
more closely match the architecture assumptions of Bietti
& Mairal (2018) for deformation stability. We consider two
lower bound penalties that leverage the digit transformations
in Infinite MNIST: one based on “adversarial” deformations
around each digit, denoted kfk2

⌧ ; and a tangent propaga-
tion (Simard et al., 1998) variant, denoted kD⌧fk2, which
provides an approximation to kfk2

⌧ for small deformations
based on gradients along a few tangent vector directions
given by deformations (see Appendix B for details). Table 2
shows the obtained test accuracy for subsets of MNIST of
size 300 and 1 000. Overall, we find that combining both
adversarial penalties kfk2

⌧ and kfk2
� performs best, which

suggests that it is helpful to obtain tighter lower approxi-
mations of the RKHS norm by considering perturbations of
different kinds. Explicitly controlling the spectral norms can
further improve performance, as does training on deformed
digits, which may yield better margins by exploiting the
additional knowledge that small deformations preserve la-
bels. Note that data augmentation alone (with some weight
decay) does quite poorly in this case, even compared to our
lower bound penalties which do not use deformations.

Protein homology detection. Remote homology detec-
tion between protein sequences is an important problem
to understand protein structure. Given a protein sequence,
the goal is to predict whether it belongs to a superfamily
of interest. We consider the Structural Classification Of
Proteins (SCOP) version 1.67 dataset (Murzin et al., 1995),
which we process as described in Appendix A.3 in order to
obtain 102 balanced binary classification tasks with 100 pro-
tein sequences each, thus resulting in a low-sample regime.
Protein sequences were also cut to 400 amino acids.

Sequences are represented with a one-hot encoding

Table 3. Regularization on protein homology detection tasks, with
or without data augmentation (DA). Fixed hyperparameters are
selected using the first half of the datasets, and we report the
average auROC50 score on the second half. See Section A.3 in the
appendix for more details and statistical testing.

Method No DA DA
No weight decay 0.446 0.500
Weight decay 0.501 0.546
SN proj 0.591 0.632
PGD-`2 0.575 0.595
grad-`2 0.540 0.552
kfk2

� 0.600 0.608
krfk2 0.585 0.611
PGD-`2 + SN proj 0.596 0.627
grad-`2 + SN proj 0.592 0.624
kfk2

� + SN proj 0.630 0.644
krfk2 + SN proj 0.603 0.625

strategy—that is, a sequence of length l is represented as a
binary matrix in {0, 1}20⇥l, where 20 is the number of dif-
ferent amino acids (alphabet size of the sequences). Such a
structure can then be processed by convolutional neural net-
works (Alipanahi et al., 2015). In this paper, we do not try to
optimize the structure of the network for the task, since our
goal is only to evaluate the effect of regularization strategies.
Therefore, we use a simple convolutional network with 3
convolutional layers followed by global max-pooling and
a final fully-connected layer (we use filters of size 5, and a
max-pooling layer after the second convolutional layer).

Training was done using Adam with a learning rate fixed to
0.01, and a weight decay parameter tuned for each method.
Since hyper-parameter selection per dataset is difficult due
to the low sample size, we use the same parameters across
datasets. This allows us to use the first 51 datasets as a
validation set for hyper-parameter tuning, and we report
average performance with these fixed choices on the remain-
ing 51 datasets. The standard performance measure for this
task is the auROC50 score (area under the ROC curve up to
50% false positives). We note that the selection of hyper-
parameters has a transductive component, since some of the
sequences in the test datasets may also appear in the datasets
used for validation (possibly with a different label).

The results are shown in Table 3. The procedure used
for data augmentation (right column) is described in Ap-
pendix A.3. We found that the most effective approach is
the adversarial perturbation penalty, together with SN con-
straints. In particular, we found it to outperform the gradient
penalty krfk2, perhaps because in this case gradient penal-
ties are only computed on a discrete set of possible points
given by one-hot encodings, while adversarial perturbations
may increase stability to wider regions, potentially covering
different possible encoded sequences.

(Bietti, Mialon, Chen, and Mairal, 2019)Alberto Bietti Invariance and Stability of CNNs June 18, 2019 32 / 34
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around each digit, denoted kfk2
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tion (Simard et al., 1998) variant, denoted kD⌧fk2, which
provides an approximation to kfk2

⌧ for small deformations
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mations of the RKHS norm by considering perturbations of
different kinds. Explicitly controlling the spectral norms can
further improve performance, as does training on deformed
digits, which may yield better margins by exploiting the
additional knowledge that small deformations preserve la-
bels. Note that data augmentation alone (with some weight
decay) does quite poorly in this case, even compared to our
lower bound penalties which do not use deformations.

Protein homology detection. Remote homology detec-
tion between protein sequences is an important problem
to understand protein structure. Given a protein sequence,
the goal is to predict whether it belongs to a superfamily
of interest. We consider the Structural Classification Of
Proteins (SCOP) version 1.67 dataset (Murzin et al., 1995),
which we process as described in Appendix A.3 in order to
obtain 102 balanced binary classification tasks with 100 pro-
tein sequences each, thus resulting in a low-sample regime.
Protein sequences were also cut to 400 amino acids.

Table 3. Regularization on protein homology detection tasks, with
or without data augmentation (DA). Fixed hyperparameters are
selected using the first half of the datasets, and we report the
average auROC50 score on the second half.

Method No DA DA
No weight decay 0.446 0.500
Weight decay 0.501 0.546
SN proj 0.591 0.632
PGD-`2 0.575 0.595
grad-`2 0.540 0.552
kfk2

� 0.600 0.608
krfk2 0.585 0.611
PGD-`2 + SN proj 0.596 0.627
grad-`2 + SN proj 0.592 0.624
kfk2

� + SN proj 0.630 0.644
krfk2 + SN proj 0.603 0.625

Sequences are represented with a one-hot encoding
strategy—that is, a sequence of length l is represented as a
binary matrix in {0, 1}20⇥l, where 20 is the number of dif-
ferent amino acids (alphabet size of the sequences). Such a
structure can then be processed by convolutional neural net-
works (Alipanahi et al., 2015). In this paper, we do not try to
optimize the structure of the network for the task, since our
goal is only to evaluate the effect of regularization strategies.
Therefore, we use a simple convolutional network with 3
convolutional layers followed by global max-pooling and
a final fully-connected layer (we use filters of size 5, and a
max-pooling layer after the second convolutional layer).

Training was done using Adam with a learning rate fixed to
0.01, and a weight decay parameter tuned for each method.
Since hyper-parameter selection per dataset is difficult due
to the low sample size, we use the same parameters across
datasets. This allows us to use the first 51 datasets as a
validation set for hyper-parameter tuning, and we report
average performance with these fixed choices on the remain-
ing 51 datasets. The standard performance measure for this
task is the auROC50 score (area under the ROC curve up to
50% false positives). We note that the selection of hyper-
parameters has a transductive component, since some of the
sequences in the test datasets may also appear in the datasets
used for validation (possibly with a different label).

The results are shown in Table 3. The procedure used
for data augmentation (right column) is described in Ap-
pendix A.3. We found that the most effective approach is
the adversarial perturbation penalty, together with SN con-
straints. In particular, we found it to outperform the gradient
penalty krfk2, perhaps because in this case gradient penal-
ties are only computed on a discrete set of possible points
given by one-hot encodings, while adversarial perturbations
may increase stability to wider regions, potentially covering
different possible encoded sequences.
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Regularization for robustness

Robust optimization yields another lower bound (hinge/logistic loss)

1
N

N∑
i=1

sup
‖δ‖2≤ε

`(yi , f (xi + δ)) ≤ 1
N

N∑
i=1

`(yi , f (xi )) + ε‖f ‖H

Controlling ‖f ‖H allows a more global form of robustness
Leads to margin bounds for adversarial generalization with `2 perturbations

I Using ‖f ‖H ≥ ‖f ‖Lip near the margin
But, may cause a loss in accuracy in practice

(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularization for robustness

Robust vs standard accuracy trade-offs

0.800 0.825 0.850 0.875 0.900 0.925
standard accuracy

0.76

0.78

0.80

0.82

0.84

0.86

ad
ve

rs
ar

ia
l a

cc
ur

ac
y

2, test = 0.1
PGD- 2
grad- 2

|f|2

| f|2
PGD- 2+
SN proj
SN proj
SN pen
(SVD)
clean

0.5 0.6 0.7 0.8 0.9
standard accuracy

0.1

0.2

0.3

0.4

0.5
2, test = 1.0

(Bietti, Mialon, Chen, and Mairal, 2019)
Alberto Bietti Invariance and Stability of CNNs June 18, 2019 33 / 34



Regularization for robustness

Upper vs lower bounds
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Deep convolutional representations: conclusions

Study of generic properties
Deformation stability with small patches, adapted to resolution
Signal preservation when subsampling ≤ patch size
Group invariance by changing patch extraction and pooling

Applies to learned models
Same quantity ‖f ‖ controls stability and complexity:

I “higher capacity” is needed to discriminate small deformations
I Learning may be “easier” with stable functions

Better regularization of generic CNNs using RKHS norm
Links with optimization (Bietti and Mairal, 2019b)

Similar kernel (NTK) arises from optimization in a certain regime
Weaker stability guarantees, but better approximation properties
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