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Motivation: success of deep CNNsParadigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

Convolutional Neural Networks:
Work very well for natural signals (images, audio, graphs...)
Key ingredient for state-of-the-art in image classification, object
detection, speech recognition
Exploit properties of natural signals:

I multi-scale, compositional structure
I local stationarity
I some invariance
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This work

Why do CNNs work so well?
Formal study of desirable properties
Understand the impact of the network architecture
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This work

Approach:
Introduce a generic deep convolutional representation based on
kernels

I ≈ CNN with large number of feature maps/filters
I Only depends on architecture, not data
I Leads to successful, tractable approximation (CKNs, Mairal, 2016)

Formal study of its properties (stability, invariance, signal
preservation)
How do results apply to learned CNNs?

I Induced space of functions contains CNNs
I Study model complexity (“norm”) of a given CNN
I =⇒ stability, invariance, generalization
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A kernel perspective...

What??
Map data x to high-dimensional space, Φ(x) ∈ H (H: “RKHS”)
Non-linear function f ∈ H becomes linear: f (x) = 〈f ,Φ(x)〉
Learning with a positive definite kernel K (x , x ′) = 〈Φ(x),Φ(x ′)〉

Why?
Separate learning and data representation: f (x) = 〈f ,Φ(x)〉

I Φ(x): CNN architecture (stability, invariance, signal preservation)
I f : CNN parameters, learning, generalization through RKHS norm ‖f ‖

Properties of representation extend to predictions:

|f (x)− f (x ′)| ≤ ‖f ‖ · ‖Φ(x)− Φ(x ′)‖
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Outline

1 Studied Properties

2 Construction of the Convolutional Representation

3 Invariance, Stability, Signal Preservation

4 Model Complexity and Generalization
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Property 1: Stability to deformations
Invariant SVM using Selective Sampling

Figure 6: This figure shows 16 variations of a digit with all the transformations cited here.

3.2.5 Large translations

All the transformations described above are small sub-pixel transformations. Even though
the MNIST digit images are roughly centered, experiments indicate that we still need to
implement invariance with respect to translations of magnitude one or two pixels. Thus we
also apply randomly chosen translations of one or two pixels. These full-pixel translations
come on top of the sub-pixel translations implemented by the random deformation fields.

4. Application

This section reports experimental results achieved on the MNIST database using the tech-
niques described in the previous section. We have obtained state-of-the-art results using 10
SVM classifiers in one-versus-rest configuration. Each classifier is trained using 8 million
transformed examples using the standard RBF kernel < x, x′ >= exp(−γ∥x − x′∥2). The
soft-margin C parameter was always 1000.

As explained before, the untransformed training examples and their two translation
tangent vectors are stored in memory. Transformed exemples are computed on the fly and
cached. We allowed 500MB for the cache of transformed examples, and 6.5GB for the cache
of kernel values. Indeed, despite the favorable characteristics of our algorithm, dealing with
millions of examples quickly yields tens of thousands support vectors.

13

Go beyond simple translation invariance
Small local deformations don’t change content of images (“label”)
Formally studied for wavelet-based scattering transform (Mallat,
2012; Bruna and Mallat, 2013)
Can we do the same for deep CNNs?
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Property 2: Group invariance

Convolutions + pooling → translation invariance
Encode more general transformation groups in the architecture?
(e.g. rotations, roto-translations, rigid motion)
How does this relate to stability?
(Cohen and Welling, 2016; Mallat, 2012; Sifre and Mallat, 2013)
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Property 3: Signal preservation

How do deep convolutional representations preserve signal
information?
Can x be recovered from Φ(x)?
At odds with invariance and stability
Tentative study through kernel methods
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Property 4: Model Complexity and Generalization

How do we measure model complexity of a generic, learned CNN?
Can we get meaningful bounds on generalization for a CNN?
Tentative study through kernel methods:

I Some CNNs are contained in our RKHS
I RKHS norm of a generic CNN
I Impact of activation function
I Same norm also controls stability (“stable functions generalize better”)
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A generic deep convolutional representation

x0 : Ω→ H0: initial (continuous) signal
I u ∈ Ω = Rd : location (d = 2 for images)
I x0(u) ∈ H0: value (H0 = R3 for RGB images)

xk : Ω→ Hk : feature map at layer k

xk = AkMkPkxk−1

I Pk : patch extraction operator, extract small patch of feature map
xk−1 around each point u

I Mk : non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function ϕk(·)

I Ak : (linear, Gaussian) pooling operator at scale σk
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A generic deep convolutional representation

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Patch extraction operator Pk

Pkxk–1(u) := (v 7→ xk–1(u + v))v∈Sk ∈ Pk

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)
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Patch extraction operator Pk

Pkxk–1(u) := (v 7→ xk–1(u + v))v∈Sk ∈ Pk

Sk : patch shape, e.g. box
Pk = HSk

k–1
Pk is linear, and preserves the norm: ‖Pkxk–1‖ = ‖xk–1‖
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

xk–1 : Ω → Hk–1

Pkxk–1(v) ∈ Pk

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

ϕk : Pk → Hk pointwise non-linearity on patches (kernel map)
We assume non-expansivity: for z , z ′ ∈ Pk

‖ϕk(z)‖ ≤ ‖z‖ and ‖ϕk(z)− ϕk(z ′)‖ ≤ ‖z − z ′‖

Mk then satisfies, for x , x ′ ∈ L2(Ω,Pk)

‖Mkx‖ ≤ ‖x‖ and ‖Mkx −Mkx ′‖ ≤ ‖x − x ′‖

(can think instead: ϕk(z) = ReLU(Wkz), ρk -Lipschitz with
ρk = ‖Wk‖)
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ϕk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z , z ′) = ‖z‖‖z ′‖κk

( 〈z , z ′〉
‖z‖‖z ′‖

)
with κk(1) = 1.

Commonly used for hierarchical kernels
‖ϕk(z)‖ = Kk(z , z)1/2 = ‖z‖
‖ϕk(z)− ϕk(z ′)‖ ≤ ‖z − z ′‖ if κ′k(1) ≤ 1
=⇒ non-expansive

Examples:
I κexp(〈z , z ′〉) = e〈z,z′〉−1 (Gaussian kernel on the sphere)
I κinv-poly(〈z , z ′〉) = 1

2−〈z,z′〉
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ϕk from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):
Approximate ϕk(z) by projection on span(ϕk(z1), . . . , ϕk(zp))
(Nystrom)
Leads to tractable, p-dimensional representation ψk(z)

Norm is preserved, and projection is non-expansive:

‖ψk(z)− ψk(z ′)‖ = ‖Πkϕk(z)− Πkϕk(z ′)‖
≤ ‖ϕk(z)− ϕk(z ′)‖ ≤ ‖z − z ′‖

Non-expansive =⇒ robust to additive perturbations! (e.g.,
adversarial examples, Cisse et al., 2017)
Anchor points z1, . . . , zp (≈ filters) can be learned from data
(K-means or backprop)
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ϕk from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):
Unsupervised learning for convolutional kernel networks

Learn linear subspaces of finite-dimensions where we project the data

M0

x

x0

kernel trick

projection on F1

M0.5

 1(x)

 1(x
0)

M1

linear pooling
Hilbert space H1

F1

'1(x)

'1(x
0)

Figure: The convolutional kernel network model between layers 0 and 1.

Julien Mairal Towards deep kernel machines 31/51
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

xk–1 : Ω → Hk–1

MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

hσk : pooling filter at scale σk

hσk (u) := σ−d
k h(u/σk) with h(u) Gaussian

linear, non-expansive operator: ‖Ak‖ ≤ 1
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Recap: Pk , Mk , Ak

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Multilayer construction

xn := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1x0 ∈ L2(Ω,Hn)

Sk , σk grow exponentially in practice (i.e. fixed with subsampling)

x0 is typically a discrete signal aquired with physical device
I Natural assumption: x0 = A0x , with x the original continuous signal,

A0 local integrator (anti-aliasing)
Prediction layer: e.g. linear

I f (x0) = 〈w , xn〉
I “linear kernel” K(x0, x ′0) = 〈xn, x ′n〉 =

∫
Ω〈xn(u), x ′n(u)〉du
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Stability to deformations: definitions

τ : Ω→ Ω: C1-diffeomorphism
Lτx(u) = x(u − τ(u)): action operator
Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed
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Stability to deformations: definitions

Representation Φ(·) is stable (Mallat, 2012) if:

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation
‖τ‖∞ = supu |τ(u)| controls translation
C2 → 0: translation invariance
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Warmup: translation invariance

Representation:

Φn(x) := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1x .

Translation: Lcx(u) = x(u − c)

Equivariance - all operators commute with Lc : �Lc = Lc�

‖Φ(Lcx)− Φ(x)‖ = ‖LcΦ(x)− Φ(x)‖
≤ ‖LcAn − An‖ · ‖x‖

Mallat (2012): ‖LτAn − An‖ ≤ C2
σn
‖τ‖∞
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Stability to deformations

Representation:

Φn(x) := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1x .

Patch extraction Pk and pooling Ak do not commute with Lτ !

Mallat (2012): ‖‖ ≤ C1‖∇τ‖∞
But: [Pk , Lτ ] is unstable at high frequencies!
Adapt to current layer resolution, patch size controlled by σk–1:

‖[PkAk–1, Lτ ]‖ ≤ C1‖∇τ‖∞ sup
u∈Sk

|u| ≤ κσk–1

C1 grows as κd+1 =⇒ more stable with small patches (e.g., 3x3,
VGG et al.)
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Stability to deformations: final result

Representation:

Φn(x) := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x .

Result: if ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτx)− Φn(x)‖ ≤
(

C1 (1 + n) ‖∇τ‖∞ + C2
σn
‖τ‖∞

)
‖x‖

(for generic CNNs, multiply by
∏

k ρk =
∏

k ‖Wk‖)
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Controlling stability

How is stability controlled?
full kernels: ‖f ‖HK (regularizer)
CKN: ‖W ‖2, `2 norm of last layer (regularizer)
CNN: ‖W ‖2 ·

∏
k ρk (luck...? SGD magic? Parseval nets?)
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Beyond the translation group

Global invariance to other groups? (rotations, reflections,
roto-translations, ...)
Group action Lgx(u) = x(g−1u)
Equivariance in inner layers + (global) pooling in last layer
Similar construction to (Cohen and Welling, 2016)
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G-equivariant layer construction

Feature maps x(u) defined on u ∈ G (G : locally compact group)
Patch extraction:

Px(u) = (x(uv))v∈S

Non-linear mapping: equivariant because pointwise!
Pooling (µ: left-invariant Haar measure):

Ax(u) =
∫

G
x(uv)h(v)dµ(v) =

∫
G

x(v)h(u−1v)dµ(v)
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Group invariance and stability

Stability analysis should work on “compact Lie groups” (similar to
Mallat, 2012), e.g., rotations only
For more complex groups (e.g., roto-translations):

I Stability only w.r.t. subgroup (translations) is enough?
I Inner layers: only pool on translation group
I Last layer: global pooling on rotations
I Cohen and Welling (2016): rotation pooling in inner layers hurts

performance on Rotated MNIST
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Discretization and signal preservation
The multilayer convolutional kernel

I0 : ⌦0 ! H0I0(!0) 2 H0

P!1 2 P0 (patch)

Kernel trick

I0.5(!1) = '1(P!1) 2 H1
I0.5 : ⌦0 ! H1

I1 : ⌦1 ! H1

Linear pooling

I1(!2) 2 H1

How do we go from I0.5 : ⌦0 ! H1 to I1 : ⌦1 ! H1?

Linear pooling!
Julien Mairal Towards deep kernel machines 28/51
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Discretization and signal preservation

x̄k : subsampling factor sk after pooling with scale σk ≈ sk :

x̄k [n] = AkMkPk x̄k–1[nsk ]

Claim: We can recover x̄k−1 from x̄k if subsampling sk ≤ patch size
How? Kernels! Recover patches with linear functions (contained in
RKHS)

〈fw ,MkPkx(u)〉 = fw (Pkx(u)) = 〈w ,Pkx(u)〉
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Signal recovery: example in 1D

xk−1

Pkxk−1(u) ∈ Pk

MkPkxk−1

dot-product kernel

AkMkPkxk−1

linear pooling

downsampling

xk

recovery with linear measurements

Akxk−1

deconvolution

xk−1
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Outline

1 Studied Properties

2 Construction of the Convolutional Representation

3 Invariance, Stability, Signal Preservation

4 Model Complexity and Generalization
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From kernel representation to CNNs?

Functions in the RKHS Hk of patch kernels Kk?
CNNs in the RKHS HK of the full kernel K(x , x ′) = 〈Φ(x),Φ(x ′)〉?
RKHS norm ‖f ‖HK for a typical CNN:

I Stability
I Generalization
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RKHS of patch kernels Kk

Kk(z , z ′) = ‖z‖‖z ′‖κk

( 〈z , z ′〉
‖z‖‖z ′‖

)
, κk(u) =

∞∑
j=0

bjuj

RKHS contains homogeneous functions:

f : z 7→ ‖z‖σ(〈g , z〉/‖z‖)

Smooth activations: σ(u) =
∑∞

j=0 ajuj

Norm: ‖f ‖2Hk
≤ C2

σ(‖g‖2)
Examples:

I σ(u) = u (linear): C2
σ(λ2) = O(λ2)

I σ(u) = up (polynomial): C2
σ(λ2) = O(λ2p)

I σ ≈ sin, sigmoid, smooth ReLU: C2
σ(λ2) = O(ecλ2)

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels Kk

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

f : x (x)
ReLU
sReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

f(x
)

f : x |x| (wx/|x|)
ReLU, w=1
sReLU, w = 0
sReLU, w = 0.5
sReLU, w = 1
sReLU, w = 2
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Constructing a CNN in the RKHS HK

Consider a CNN with filters w ij
k (u), u ∈ Sk

“Homogeneous” activations σ
The CNN can be constructed hierarchically in HK (define one
function f i

k ∈ Hk for each feature map)
Norm:

‖fσ‖2 ≤ ‖wn+1‖22C2
σ(‖wn‖22C2

σ(‖wn–1‖22C2
σ(. . . )))

Linear layers: product of spectral norms
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Link with generalization

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ HK, ‖f ‖ ≤ B} =⇒ Radn(FB) ≤ O
(BR√

n

)

Leads to margin bound O(‖f̂n‖R/
√

n) for a learned CNN f̂n
(margin = 1/‖f̂n‖)

For linear activations (‖f ‖ ≤ ‖wn+1‖ · · · ‖w1‖), similar to Rademacher
complexity lower bound of Bartlett et al. (2017)
Their bound has additional factors:

(a) Margins. (b) Normalized margins.

Figure 2: Margin distributions at the end of training AlexNet on cifar10, with and without random
labels. With proper normalization, random labels demonstrably correspond to a harder problem.

let FA denote the function computed by the corresponding network:

FA(x) := �L(AL�L�1(AL�1 · · ·�1(A1x) · · · )).

Whenever data (x1, . . . , xn) are given, collect them as rows of a matrix X 2 Rn⇥d. Occasionally, notation
will be overloaded to discuss FA(XT ), a matrix whose ith column is FA(xi). The l2 norm k · k2 is always
computed entry-wise; thus, for a matrix, it corresponds to the Frobenius norm.

Next, define a collection of reference matrices (M1, . . . , ML) with each dimension at most W ; for
instance, to obtain a good bound for ResNet (He et al., 2016), it is sensible to set Mi := I, the identity
map, and the bound below will worsen as the network moves farther from the identity map; for AlexNet
(Krizhevsky et al., 2012), the simple choice Mi = 0 suffices. Finally, letting k · k� and k · k1 respectively
denote spectral norm and the unrolled l1 vector norm, the spectral complexity RFA = RA of a network
FA with weights A is

RA :=

0
@

LY

i=1

⇢ikAik�

1
A
0
@

LX

i=1

kAi � Mik2/3
1

kAik2/3
�

1
A

3/2

. (1.1)

The following theorem provides a generalization bound for neural networks whose nonlinearities are
fixed but whose weight matrices A have bounded spectral complexity RA.

Theorem 1.1. Let nonlinearities (�1, . . . , �L) and reference matrices (M1, . . . , ML) be given as above
(i.e., �i is ⇢i-Lipschitz and �i(0) = 0). Then with probability at least 1� � over an iid draw of n examples
((xi, yi))

n
i=1, every margin � > 0 and network FA : Rd ! Rk with weight matrices A = (A1, . . . , AL)

satisfy

Pr
h
arg max

j
FA(x)j 6= y

i
 bR�(FA) + eO

 
kXk2RA

�n
ln(n) ln(W ) +

r
ln(1/�)

n

!
,

where bR�(f)  n�1
P

i 1
⇥
f(xi)yi

 � + maxj 6=yi
f(xi)j

⇤
and kXk2 =

pP
i kxik2

2.

The full proof (based on metric entropy) is relegated to the appendix, but a sketch is provided in
Section 3, along with a more general form (not limited to spectral norms), along with a (non-matching!)
lower bound. Section 3 also gives a discussion of related work, but briefly it’s essential to note that
margin and Lipschitz-sensitive bounds have a long history in the neural networks literature (Bartlett,
1996; Anthony and Bartlett, 1999; Neyshabur et al., 2015); the distinction here is the sensitivity to
specifically the spectral norm, as well as no explicit appearance of combinatorial quantities such as
numbers of parameters or layers (outside of log terms, and indices to summations and products).

To close, miscellaneous observations and open problems are collected in Section 4.

3
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Deep convolutional representations: conclusions

Study of generic properties
Deformation stability with small patches, adapted to resolution
Signal preservation when subsampling ≤ patch size
Group invariance by changing patch extraction and pooling

Applies to learned models
RKHS norm as a measure of model complexity
Useful generalization bounds for CNNs
Same quantity controls stability and generalization:

I “higher capacity” (small margin) is needed to discriminate small
deformations

I Learning is “easier” on deformation manifold? (“manifold assumption”)
I Open: how do SGD and friends control capacity in generic CNNs?
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Simple stability experiment: scaling
τ(u) = εu (1 + ε ≡ zoom), full kernel, 2 layers, single CIFAR image
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Stability to deformations: proof idea

Generic bound with commutators [A,B] = AB − BA:

‖Φn(Lτx)− Φn(x)‖

≤
( n∑

k=1
‖[PkAk−1, Lτ ]‖+ ‖[An, Lτ ]‖+ ‖LτAn − An‖

)
‖x‖.

Use small patch assumption to bound:

‖[PkAk−1, Lτ ]‖ ≤ sup
c∈Sk

‖[LcAk−1, Lτ ]‖ ≤ C1‖∇τ‖∞

From (Mallat, 2012):

‖LτAσ − Aσ‖ ≤
C2
σ
‖τ‖∞.
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Stability to deformations: takeaways

Small patches adapted to resolution are important for stability
Translation invariance comes from

I Last pooling layer
I Exact equivariance in inner layers (“commute with translations”)

Intermediate pooling is for antialiasing/stable downsampling (strided
convolutions enough in practice?)
Why not just skip intermediate layers..? Loss of signal information!
(See discretization below...)
How is stability controlled?

I full kernels: ‖f ‖H (regularizer)
I CKN: ‖W ‖2, `2 norm of last layer (regularizer)
I CNN: ‖W ‖2 ·

∏
k ρk (luck...? SGD magic? Parseval nets?)
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Signal recovery with kernels

Idea:
“Invert” kernel mapping with linear functions to reconstruct patches
(non-overlapping)
Recover full higher resolution (pooled) signal before downsampling
Deconvolve to recover signal before pooling

Linear functions?
fw ∈ Hk s.t. fw (z) = 〈fw , ϕk(z)〉Hk = 〈w , z〉Pk for a patch z
Consider w in a basis of Hk–1 for each patch location to recover signal
Contained in RKHS of most dot-product kernels considered!
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Signal recovery: takeaways

Kernels allow recovery of the signal (up to pooling deconvolutions),
when subsampling ≤ patch size
Φ(x) contains all signal information, f (x) = 〈f ,Φ(x)〉 may focus on
what’s relevant to the task
Harder to obtain for CNNs or kernel approximations, but can do well
when data-dependent?
High frequencies are hard to recover if we want translation invariance
(vs. full “horizontal” multi-resolution approach like scattering):
An . . .A0x ≈ Anx
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RKHS of patch kernels Kk

Kk(z , z ′) = ‖z‖‖z ′‖κk

( 〈z , z ′〉
‖z‖‖z ′‖

)

Expansion κk(u) =
∑∞

j=0 bjuj

If
I σ(u) :=

∑∞
j=0 ajuj (activation)

I C2
σ(‖w‖2) :=

∑∞
j=0(a2j /bj)‖w‖2j < +∞

Then
f : z 7→ ‖z‖σ(〈g , z〉/‖z‖)

is in Hk with ‖f ‖2Hk
≤ C2

σ(‖w‖2).
Homogeneous version of (Zhang et al., 2016, 2017)

Linear functions contained when b1 > 0
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RKHS of full kernel K

Theorem (e.g., Saitoh, 1997)
If Φ : X → H (e.g., X = L2(Ω,H0),H = L2(Ω,Hn))
The RKHS of K(x , x ′) = 〈Φ(x),Φ(x ′)〉H is

HK := {fw ; w ∈ H} s.t. fw : z 7→ 〈w ,Φ(z)〉H ,

‖fw‖2HK := inf
w ′∈H
{‖w ′‖2H s.t. fw = fw ′}≤ ‖w‖2H

Goal: construct a w ∈ L2(Ω,Hn) hierarchically to obtain a CNN
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Constructing a CNN in the RKHS

CNN:
Filters w ij

k ∈ L2(Sk ,R)
Feature maps z i

k = Ak z̃ i
k ∈ L2(Ω,R) (z0 = x0):

z̃ i
k(u) = σ

(
〈w i

k ,Pkzk–1(u)〉
)

RKHS construction:
f i
k in Hk and g i

k in Pk

g i
k(v) =

pk–1∑
j=1

w ij
k (v)f j

k–1 where w i
k(v) = (w ij

k (v))j=1,...,pk–1

f i
k (z) = ‖z‖σ(〈g i

k , z〉/‖z‖) for z ∈ Pk .
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Constructing a CNN in the RKHS

CNN:
Linear prediction layer: w j

n+1 ∈ L2(Ω,R)
fσ(x0) = 〈wn+1, zn〉

RKHS construction:
gσ ∈ L2(Ω,Hn)

gσ(u) =
pn∑

j=1
w j

n+1(u)f j
n for all u ∈ Ω,

We have: 〈gσ,Φ(x0)〉 = fσ(x0) =⇒ fσ ∈ HK
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Norm of the CNN

Simple recursive bound

‖fσ‖2 ≤ pn

pn∑
i=1
‖w i

n+1‖22Bn,i ,

with

B1,i = C2
σ(‖w i

1‖22)

Bk,i = C2
σ

pk–1

pk–1∑
j=1
‖w ij

k ‖
2
2Bk–1,j

 .
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Norm of the CNN

Spectral norm bound

‖fσ‖2 ≤ ‖wn+1‖22C2
σ(‖wn‖22C2

σ(‖wn–1‖22C2
σ(. . .))),

where ‖wk‖22 =
∫

Sk
‖wk(u)‖22du and ‖wk(u)‖2 is the spectral norm of the

matrix (w ij
k (u))ij .

With 1x1 patches (fully-connected) and no activations (linear),
C2
σ(λ) = λ, we get product of spectral norms
I Similar form to Rademacher complexity lower bound of (Bartlett et al.,

2017)
I In contrast, their bound has L1 norm factors
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