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Motivation: success of deep CNNs
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Ganvolutions. Convolutions.

Convolutional Neural Networks:
o Work very well for natural signals (images, audio, graphs...)
o Key ingredient for state-of-the-art in image classification, object
detection, speech recognition

o Exploit properties of natural signals:

» multi-scale, compositional structure
» local stationarity
» some invariance
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This work

Why do CNNs work so well?
o Formal study of desirable properties

o Understand the impact of the network architecture
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This work

Approach:

o Introduce a generic deep convolutional representation based on
kernels
» =~ CNN with large number of feature maps/filters
» Only depends on architecture, not data
» Leads to successful, tractable approximation (CKNs, Mairal, 2016)
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This work

Approach:

o Introduce a generic deep convolutional representation based on
kernels

» ~ CNN with large number of feature maps/filters
» Only depends on architecture, not data
» Leads to successful, tractable approximation (CKNs, Mairal, 2016)
o Formal study of its properties (stability, invariance, signal
preservation)
o How do results apply to learned CNNs?

» Induced space of functions contains CNNs
» Study model complexity (“norm”) of a given CNN
» — stability, invariance, generalization
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A kernel perspective...

What??
o Map data x to high-dimensional space, ®(x) € H (H: “RKHS")
o Non-linear function f € H becomes linear: f(x) = (f, ®(x))
o Learning with a positive definite kernel K(x, x") = (®(x), ®(x'))
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o Map data x to high-dimensional space, ®(x) € H (H: “RKHS")
o Non-linear function f € H becomes linear: f(x) = (f, ®(x))
o Learning with a positive definite kernel K(x, x") = (®(x), ®(x'))
Why?
o Separate learning and data representation: f(x) = (f, ®(x))

» ®(x): CNN architecture (stability, invariance, signal preservation)
» f: CNN parameters, learning, generalization through RKHS norm || f||
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A kernel perspective...

What??
o Map data x to high-dimensional space, ®(x) € H (H: “RKHS")
o Non-linear function f € H becomes linear: f(x) = (f, ®(x))
o Learning with a positive definite kernel K(x, x") = (®(x), ®(x'))
Why?
o Separate learning and data representation: f(x) = (f, ®(x))

» ®(x): CNN architecture (stability, invariance, signal preservation)
» f: CNN parameters, learning, generalization through RKHS norm || f||

o Properties of representation extend to predictions:

F(x) = FOD < IFI]- 19(x) = D))
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QOutline

(@ Studied Properties

2) Construction of the Convolutional Representation

3) Invariance, Stability, Signal Preservation

4) Model Complexity and Generalization



Property 1: Stability to deformations

Go beyond simple translation invariance

©

©

Small local deformations don't change content of images (“label”)

©

Formally studied for wavelet-based scattering transform (Mallat,
2012; Bruna and Mallat, 2013)

Can we do the same for deep CNNs?

©
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Property 2: Group invariance

o Convolutions + pooling — translation invariance

o Encode more general transformation groups in the architecture?
(e.g. rotations, roto-translations, rigid motion)

©

How does this relate to stability?
(Cohen and Welling, 2016; Mallat, 2012; Sifre and Mallat, 2013)

©

Alberto Bietti Deep Convolutional Representations NYU, October 16, 2017 7 /37



Property 3: Signal preservation

How do deep convolutional representations preserve signal
information?

()

o Can x be recovered from ®(x)?
o At odds with invariance and stability

o Tentative study through kernel methods
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Property 4: Model Complexity and Generalization

o How do we measure model complexity of a generic, learned CNN?

o Can we get meaningful bounds on generalization for a CNN?
o Tentative study through kernel methods:

Some CNNs are contained in our RKHS

RKHS norm of a generic CNN

Impact of activation function

Same norm also controls stability (“stable functions generalize better”)

v

v vYyy
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Outline

(@ Construction of the Convolutional Representation
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A generic deep convolutional representation

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)
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A generic deep convolutional representation

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)

o xi: Q — Hy: feature map at layer k

Piexi—1

» Py: patch extraction operator, extract small patch of feature map
Xk_1 around each point u

Alberto Bietti Deep Convolutional Representations NYU, October 16, 2017 11 /37



A generic deep convolutional representation

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)

o xi: Q — Hy: feature map at layer k

My Piexi—1

» Py: patch extraction operator, extract small patch of feature map
Xk_1 around each point u

» M. non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function ¢y (-)
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A generic deep convolutional representation

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)

o xi: Q — Hy: feature map at layer k

Xie = Ak My Pixic—1

» Py: patch extraction operator, extract small patch of feature map
Xk_1 around each point u

» M. non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function ¢y (-)

» A (linear, Gaussian) pooling operator at scale oy

Alberto Bietti Deep Convolutional Representations NYU, October 16, 2017 11 /37



A generic deep convolutional representation

Ty = ApMPrxy 1 : Q — Hy J?/v<’u,‘) = AL M. P,z 1(’[11) € Hy

linear pooling

A[kPk$k*1 Q= Hk ;W'[kpklbk,l (1)) = \,G‘k(PATk,l (1))) S Hk

non-linear mapping

Pray1(v) € Py (patch extraction)

Tp-1(u) € Hia 1 Q= Hi
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Patch extraction operator Py

Pixi-1(u) == (v = xe1(u + v))ves, € Pk

Pz (v) € Py (patch extraction)

T (u) € Hi 1 — Hi
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Patch extraction operator Py

Pixi-1(u) == (v = xk1(u + v))ves, € P«

o Sk: patch shape, e.g. box

S
o Pk = Hkil
o Py is linear, and preserves the norm: || Pyxi—1|| = ||xk-1]]
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Non-linear mapping operator M

/\/IkPka_l(u) = gok(kak_l(u)) € Hy

My Py s = Hy My Pyay1(v) = or(Prar-(v) € H

non-linear mapping

Praj1(v) € Py
Tp1 Q= Hiq
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Non-linear mapping operator M

/\/lkPka_l(u) = gok(kak_l(u)) € Hy

o ¢k : Pk — Hy pointwise non-linearity on patches (kernel map)

o We assume non-expansivity: for z,z' € Py
lex(2) < Nzl and  low(z) = wu(Z)] < [z = 2|
o M then satisfies, for x, x" € L2(Q, Py)

IMix|| < [Ix]l - and [[Mix = Mix'|| < [lx = X'|
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Non-linear mapping operator M

/\/lkPka_l(u) = gok(kak_l(u)) € Hy

©

Yk Px — Hi pointwise non-linearity on patches

o We assume: for z,Zz/ € Py

ler(2)l < pellzll - and  lpw(2) = wu(Z)I < pucllz = 2]

©

M, then satisfies, for x, x’ € L2(Q, Px)

IMix|| < picllx] - and  [[Mix = MixX'[| < pul|x = X||

©

(can think instead: ¢x(z) = ReLU(Wgz), pi-Lipschitz with
pre = [[Will)
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i from kernels

o Kernel mapping of homogeneous dot-product kernels:
(z,7) :
Ky(z,2)) = |Z||||z’||/{k( with  mi(l) = 1.
zllll']

o Commonly used for hierarchical kernels
lek(2)ll = Ki(z,2)"% = |1z]|

lon(z) — eI < llz = 2] if w) (1) <1
0 = non-expansive

©

©
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i from kernels

o Kernel mapping of homogeneous dot-product kernels:
(z,7) :
Ky(z,2)) = |Z||||z’||/{k( with  mi(l) = 1.
zllll']

o Commonly used for hierarchical kernels
lek(2)ll = Ki(z,2)"% = |1z]|

lon(z) — eI < llz = 2] if w) (1) <1
0 = non-expansive

©

©

©

Examples:
» Kep((2,2)) = e<z’z,>’11 (Gaussian kernel on the sphere)

> Hinv—poly(<zvzl>) = 2—(z,z")
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i from kernels: CKNs approximation
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i from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):

o Approximate ¢k (z) by projection on span(pi(z1), ..., vk(2p))
(Nystrom)

o Leads to tractable, p-dimensional representation 1, (z)
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o Approximate ¢k (z) by projection on span(pi(z1), ..., vk(2p))
(Nystrom)

o Leads to tractable, p-dimensional representation 1, (z)

o Norm is preserved, and projection is non-expansive:

1h(2) = ()| = IMepie(2) = Mispue ()]
< llew(2) = () < [z = 2|
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o Approximate ¢k (z) by projection on span(pi(z1), ..., vk(2p))
(Nystrom)

o Leads to tractable, p-dimensional representation 1, (z)

o Norm is preserved, and projection is non-expansive:

1h(2) = ()| = IMepie(2) = Mispue ()]
< llew(2) = () < [z = 2|

o Non-expansive = robust to additive perturbations! (e.g.,
adversarial examples, Cisse et al., 2017)
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i from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):

o Approximate ¢k (z) by projection on span(pi(z1), ..., vk(2p))
(Nystrom)

Leads to tractable, p-dimensional representation x(z)

©

o Norm is preserved, and projection is non-expansive:

1h(2) = ()| = IMepie(2) = Mispue ()]
< llew(2) = () < [z = 2|

o Non-expansive = robust to additive perturbations! (e.g.,
adversarial examples, Cisse et al., 2017)

©

Anchor points zi, ..., z, (= filters) can be learned from data
(K-means or backprop)
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i from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):

<
F—— - linear poolin .
%5 | & 01(x) Hilbert space H1
P1(x) ;
/ (X
_ ection on Fi
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Pooling operator Ay

Xk(u) = AkMkPka_l(u) = /]Rd hgk(u — V)MkPka_l(V)dV € Hy

o= ApM Pewg 1 : Q — Hy zrp(w) = A My Prag 1 (w) € Hy

linear pooling

MyPrxy 1 :Q— Hy,

Tp1 Q= Hiq
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Pooling operator Ay

Xk ( ) AkMkPka 1 / hak MkPka 1( )dV € Hy

o hy,: pooling filter at scale o
o hy(u) := o h(u/ok) with h(u) Gaussian
o linear, non-expansive operator: ||A4|| <1
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Recap: Pk, Mk, Ak

T = Ak]Wkkak,l Q- Hk Jfk<’u,‘) = Akﬂ[;ﬁpk:lfk 1(’[1,‘) € Hl‘-,

linear pooling

My Prag—q : Q — Hy My Prxyy (’U) = @k(Pka—l (’U)) € Hy

kernel mapping

Prag-1(v) € Pr (patch extraction)

Tp-1(u) € Hia 10 Q= Hi

Alberto Bietti Deep Convolutional Representations NYU, October 16, 2017 18 / 37



Multilayer construction

Xp = AnMnPnAn—lM —1P -1 " AlMlP]-XO S L2(Q,Hn)

o Sy, ok grow exponentially in practice (i.e. fixed with subsampling)
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Multilayer construction

Xp = AnMnPnAn—lM —1P -1 " AlMlP]-XO S L2(Q,Hn)

o Sy, ok grow exponentially in practice (i.e. fixed with subsampling)
o X is typically a discrete signal aquired with physical device

» Natural assumption: xp = Agx, with x the original continuous signal,
Ao local integrator (anti-aliasing)
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Multilayer construction

Xp = AnMnPnAn—lM —1P -1 " AlMlP]-XO S L2(Q,Hn)

o Sy, ok grow exponentially in practice (i.e. fixed with subsampling)
o X is typically a discrete signal aquired with physical device

» Natural assumption: xp = Agx, with x the original continuous signal,
Ao local integrator (anti-aliasing)

o Prediction layer: e.g. linear

> f(XO) = <W5Xn>
> “linear kernel” K(x0,x5) = (X, X;) = [q(xn(u), x;,(u))du
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Outline

@ Invariance, Stability, Signal Preservation
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Stability to deformations: definitions

o 7:Q — Q: Cl-diffeomorphism
o Lyx(u) = x(u—7(u)): action operator

o Much richer group of transformations than translations

FHA Y qhyyyn
559585855 6€¢

770172717777

RIE5E58¢43C8 S
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Stability to deformations: definitions

©

Representation ®(-) is stable (Mallat, 2012) if:

[8(Lrx) = S| < (G VTlloo + CallTllo) I x]]

©

IVT|lco = sup, ||V7(u)|| controls deformation

©

I7]lcc = sup, |7(u)| controls translation

o (5 — 0: translation invariance
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Warmup: translation invariance
o Representation:

(Dn(X) = AnMnPnAn_lM _1P -1 " A1M1P1X.

o Translation: Lcx(u) = x(u — ¢)
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Warmup: translation invariance

o Representation:
q)n(X) = AnMnPnAn_lM _1P -1 " A1M1P1X.

o Translation: Lcx(u) = x(u — ¢)

o Equivariance - all operators commute with L.: UL, = L [

[B(Lex) = @(x)|| = [|Lc®(x) — (x|
< 1LeAn = Anll - [Ix]]
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Warmup: translation invariance

©

Representation:

q)n(X) = AnMnPnAn_lM _1P -1 " A1M1P1X.

()

Translation: Lcx(u) = x(u — ¢)

©

Equivariance - all operators commute with L.: 0L, = L.

[B(Lex) = @(x)|| = [|Lc®(x) — (x|
< 1LeAn = Anll - [Ix]]

©

Mallat (2012): [|LrAn — An]l < &|I7]s
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Warmup: translation invariance

©

Representation:

q)n(X) = AnMnPnAn_lM _1P -1 " A1M1P1X.

()

Translation: Lcx(u) = x(u — ¢)

©

Equivariance - all operators commute with L.: 0L, = L.

[B(Lex) = @(x)|| = [|Lc®(x) — (x|
< 1LeAn = Anll - [Ix]]

©

Mallat (2012): ||LcA, — An|| < Sc
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Stability to deformations

o Representation:
®,(x) = AgMuPrAr-1Mp1Ppy - AiM1Pix.

o Patch extraction P and pooling Ax do not commute with L;!
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o Representation:
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o Patch extraction P and pooling Ax do not commute with L;!
o Mallat (2012): ||AkL; — LAkl < G|V 7|00
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Stability to deformations

o Representation:
®,(x) = AgMuPrAr-1Mp1Ppy - AiM1Pix.

o Patch extraction P and pooling Ax do not commute with L;!
o Mallat (2012): ||[Ak, L]l < G||IVT]|
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Stability to deformations

©

Representation:

Op(x) 1= AnMpPpAn1Mp1Ppy -+ ALMPix.

©

Patch extraction Py and pooling Ay do not commute with L,!
Mallat (2012): |[[Ak, L-]|| < G|V T
But: [Py, L;] is unstable at high frequencies!

©

©
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Stability to deformations

©

Representation:
bp(x) = AgMuPrAn-1Mp1Ppy -+ A1 M1 P1Aox.

o Patch extraction P and pooling Ax do not commute with L;!
Mallat (2012): |[[Ak, L-]|| < G|V T
But: [Py, L;] is unstable at high frequencies!

©

©

©

Adapt to current layer resolution, patch size controlled by oj_;:

[[PrAk—1, L]l < G|V 700 sup |u| < Kok
ueSk
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Stability to deformations

©

Representation:
bp(x) = AgMuPrAn-1Mp1Ppy -+ A1 M1 P1Aox.

Patch extraction Py and pooling Ay do not commute with L,!
Mallat (2012): |[[Ak, L-]|| < G|V T
But: [Py, L;] is unstable at high frequencies!

©

©

©

©

Adapt to current layer resolution, patch size controlled by oj_;:

[[PrAk—1, L]l < G|V 700 sup |u| < Kok
ueSk

C1 grows as k9t = more stable with small patches (e.g., 3x3,
VGG et al.)

©
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Stability to deformations: final result

o Representation:
®p(x) = AgMuPrAr1Mp1Ppy -+ A1 M1 P1Aox.
o Result: if |V7|o <1/2,

C
[9n(Lex) = @000l < (G (14 M) [V + 2 el )

n
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Stability to deformations: final result

o Representation:
®p(x) := AgMuPpAr-1Mp1Ppy -+ A1 M1 P1Aox.

o Result: if |V7|| <1/2,
G
1Pn(Lrx) = @a(ll < [T ok (G A+ 1) [Vl + —=l7lloo ) lIx]
k n

o (for generic CNNs, multiply by TT, pk = TTx || Wkl)
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Controlling stability

How is stability controlled?
o full kernels: ||f||2, (regularizer)
o CKN: [[W/||2, ¢2 norm of last layer (regularizer)
o CNN: ||W/||2 - 1k pk (luck...? SGD magic? Parseval nets?)
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Beyond the translation group

o Global invariance to other groups? (rotations, reflections,
roto-translations, ...)

o Group action Lgx(u) = x(g~u)

©

Equivariance in inner layers + (global) pooling in last layer
Similar construction to (Cohen and Welling, 2016)

©
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G-equivariant layer construction

Feature maps x(u) defined on u € G (G: locally compact group)

©

o Patch extraction:
Px(u) = (x(uv))ves

Non-linear mapping: equivariant because pointwise!

©

©

Pooling (u: left-invariant Haar measure):

Ax(u):/Gx(uv)h(v)d,u(v):/Gx(v)h(u_lv)d,u(v)
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Group invariance and stability

o Stability analysis should work on “compact Lie groups” (similar to
Mallat, 2012), e.g., rotations only
o For more complex groups (e.g., roto-translations):
» Stability only w.r.t. subgroup (translations) is enough?
» Inner layers: only pool on translation group
» Last layer: global pooling on rotations
» Cohen and Welling (2016): rotation pooling in inner layers hurts
performance on Rotated MNIST
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Discretization and signal preservation

Ips : Qo — Ha Ios(w1) = p1(Po,) € Ha
Kernel trick

P, € Py (patch)
Io : Qo — HO

Alberto Bietti Deep Convolutional Representations NYU, October 16, 2017 29 / 37



Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o) = si:

)_<k [n] = Ak Mk Pk)_(k—l [nsk]
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o = si:

)_<k [n] = Ak Mk Pk)_(k—l [nsk]

o Claim: We can recover xx_1 from X if subsampling s, < patch size
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o = si:

)_<k [n] = Ak Mk Pk)_(k—l [nsk]

o Claim: We can recover xx_1 from X if subsampling s, < patch size

o How? Kernels! Recover patches with linear functions (contained in
RKHS)

(fw, M Prx(u)) = f(Prx(u)) = (w, Pkx(u))
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Signal recovery: example in 1D

o |

deconvolution

Aprp_1 | |

recovery with linear measurements

| ] |

/ downsampling

AP [ ] ] ] | | |

linear pooling ,

s [T T ] T T

dot-product kernel

S I S |

Prxy_1(u) € Py
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Outline

(@ Model Complexity and Generalization
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From kernel representation to CNNs?

o Functions in the RKHS H, of patch kernels K,?

o CNNs in the RKHS Hy of the full kernel K(x, x") = (®(x), P(x))?
o RKHS norm ||f||7, for a typical CNN:

» Stability
» Generalization
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RKHS of patch kernels K

(z,7))

Kol 2) = el e (). ) =3 by
j=0

o RKHS contains homogeneous functions:

fize|lzllo((g, 2)/llz[])

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels K

(z,7))

Kol 2) = el e (). ) =3 by
j=0

o RKHS contains homogeneous functions:

fize|lzllo((g, 2)/llz[])

o Smooth activations: o(u) = Y72, aj’
o Norm: [|£]3, < C2(llgll*)

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels K

(z,7))

Kol 2) = el e (). ) =3 by
j=0

o RKHS contains homogeneous functions:

fize|lzllo((g, 2)/llz[])

o Smooth activations: o(u) = Y72, aj’
o Norm: [|£]3, < C2(llgll*)
o Examples:

» o(u) = u (linear): C3(\?) = O(\?)

» o(u) = uP (polynomial): C2()\2) = O()\?P)

» o = sin, sigmoid, smooth ReLU: C2()\?) = 0(e™)
Homogeneous version of (Zhang et al., 2016, 2017)

Alberto Bietti Deep Convolutional Representations NYU, October 16, 2017

34 /37



RKHS of patch kernels K

f:x e |x|o(wx/|Xx|)

f:xH o(x)
200 pau 47 — RelU, w=1
— sRelU —— sRelU,w=0
15 34 — sReLU,w =05
—— sRelU,w=1
% 104 22_—5ReLU,w=2
= =
0.5 14
0.0 0
-2.0 -15 -1.0 —05 00 05 1.0 15 20 —20 -15 -1.0 —05 0.0 05 1.0 15 20
X X
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Constructing a CNN in the RKHS H¢

o Consider a CNN with filters WE(U), u € S

“Homogeneous" activations o

©

o The CNN can be constructed hierarchically in Hy (define one
function f; € H for each feature map)

o Norm:

117 < Iwns1 3G Iwall3 CGUlIwns 12C3( - )))
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Constructing a CNN in the RKHS H¢

o Consider a CNN with filters WE(U), u € S

©

“Homogeneous" activations o

o The CNN can be constructed hierarchically in Hy (define one
function f; € H for each feature map)

o Norm (linear layers):

1% < Iwnsa 2 - Iwal - [lw-a 3 - [lwa 13

©

Linear layers: product of spectral norms
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Link with generalization

o Simple bound on Rademacher complexity for linear/kernel methods:

BR
Fg = {f € Hx,||f|| < B} = Rad,(Fg) <O (ﬁ)

o Leads to margin bound O(||%||R/+/n) for a learned CNN 7,
(margin = 1/]|,]])
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Link with generalization

o Simple bound on Rademacher complexity for linear/kernel methods:

BR
Fp = {f € He,||f|| < B} = Radn(F5) < O (ﬁ)

o Leads to margin bound O(||%||R/+/n) for a learned CNN 7,
(margin = 1/|/7]))

o For linear activations (||f|| < ||wpt1|| - - ||wi]|), similar to Rademacher
complexity lower bound of Bartlett et al. (2017)

o Their bound has additional factors:

L 2/3 8/2
14— a7
( =SV
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Deep convolutional representations: conclusions

Study of generic properties
o Deformation stability with small patches, adapted to resolution
o Signal preservation when subsampling < patch size

o Group invariance by changing patch extraction and pooling
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Deep convolutional representations: conclusions

Study of generic properties
o Deformation stability with small patches, adapted to resolution
o Signal preservation when subsampling < patch size
o Group invariance by changing patch extraction and pooling
Applies to learned models
o RKHS norm as a measure of model complexity

o Useful generalization bounds for CNNs
o Same quantity controls stability and generalization:

» “higher capacity” (small margin) is needed to discriminate small
deformations

» Learning is “easier” on deformation manifold? (“manifold assumption")

» Open: how do SGD and friends control capacity in generic CNNs?
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Simple stability experiment: scaling

7(u) = eu (1 + € = zoom), full kernel, 2 layers, single CIFAR image

0.008 T r T T

0007

0.006 |

0005

0.004

RKHS distance

0.003

0002

0001

0.000
095

nom
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Stability to deformations: proof idea

o Generic bound with commutators [A, B] = AB — BA:

[®n(Lrx) = Pa(x)]

=< (Z 1PkAk—1; L]l + [[An, Lol + 1L An — An|> [Ix1I-

k=1

o Use small patch assumption to bound:

IPkAk-1, L[l < sup [[LeAk—1, Lr]ll < G VTlloo
ceSy
o From (Mallat, 2012):

G
LA — Agll < ;HT”oo'
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Stability to deformations: takeaways

©

Small patches adapted to resolution are important for stability
Translation invariance comes from

©

» Last pooling layer
» Exact equivariance in inner layers (“commute with translations™)

©

Intermediate pooling is for antialiasing/stable downsampling (strided
convolutions enough in practice?)

©

Why not just skip intermediate layers..? Loss of signal information!
(See discretization below...)

©

How is stability controlled?

» full kernels: ||f]|3 (regularizer)
» CKN: ||W]|l2, €2 norm of last layer (regularizer)
» CNN: ||W|l2 - TI, px (luck...? SGD magic? Parseval nets?)

Alberto Bietti Deep Convolutional Representations NYU, October 16, 2017 42 /37



Signal recovery with kernels

Idea:

o “Invert” kernel mapping with linear functions to reconstruct patches
(non-overlapping)

o Recover full higher resolution (pooled) signal before downsampling

o Deconvolve to recover signal before pooling
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Signal recovery with kernels

Idea:

o “Invert” kernel mapping with linear functions to reconstruct patches
(non-overlapping)

o Recover full higher resolution (pooled) signal before downsampling
o Deconvolve to recover signal before pooling
Linear functions?
o fy € Hy s.t. fu(z2) = (fw, ¢k(2))n, = (w, z)p, for a patch z
o Consider w in a basis of H—; for each patch location to recover signal

o Contained in RKHS of most dot-product kernels considered!
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Signal recovery: takeaways

o Kernels allow recovery of the signal (up to pooling deconvolutions),
when subsampling < patch size

o ®(x) contains all signal information, f(x) = (f, ®(x)) may focus on
what's relevant to the task

o Harder to obtain for CNNs or kernel approximations, but can do well
when data-dependent?

o High frequencies are hard to recover if we want translation invariance

(vs. full “horizontal” multi-resolution approach like scattering):
An.. . Aox = Apx
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RKHS of patch kernels K

Ki(z,7) = |1z]|12 ”’“(m>

©

Expansion r(u) = 32 bju
If

> o(u) =Y 2y aj (activation)

> C(llwli?) =30 (a7 /b)llw|¥ < +o0
o Then

©

frze||zllo((g,2)/lz1])
is in H with HfH%{k < C([|wl?).

o Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels K

Ki(z,7) = |1z]|12 ”’“(m>

©

Expansion r(u) = 32 bju
If

> o(u) =Y 2y aj (activation)

> C(llwli?) =30 (a7 /b)llw|¥ < +o0
o Then

©

frze||zllo((g,2)/lz1])
is in H with HfH%{k < C([|wl?).

o Homogeneous version of (Zhang et al., 2016, 2017)

©

Linear functions contained when b; > 0
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RKHS of full kernel

Theorem (e.g., Saitoh, 1997)
o Ifd: X = H(eg, X = L2(Q,H°), H = [2(Q,Hn))
o The RKHS of K(x,x) = (®(x), d(x'))y is

Hic:={fw: we H} st. fy:z— (w, ®2))n,
B = inf (W3 st o= fur}< [wly

Goal: construct a w € L?(Q,H,) hierarchically to obtain a CNN
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Constructing a CNN in the RKHS

CNN:
o Filters W e 12(S,R)
o Feature maps z = Akzk € L’(LR) (20 = x0):

#(u) = a((w;’;, Pka—l(U)>)
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Constructing a CNN in the RKHS

CNN:
o Filters W,ij € L%(S5;,R)
o Feature maps zj = Ac2l € L2(Q,R) (20 = xo):

#(u) = a((w;’;, Pka—l(U)>)

RKHS construction:
o fjin Hy and gf in Py

Pi-1 -
Z w) f,f 1 Where wi(v) = (W (V))j=1,...pes

fe(2) = HZHJ(<gk>Z>/”ZH) for z € Py.
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Constructing a CNN in the RKHS

CNN:
o Filters W,ij € L%(S5;,R)
o Feature maps zj = Ac2l € L2(Q,R) (20 = xo):

#4(u) = ni(u)o (i, Pzica (1)) /mi(u))

RKHS construction:
o fjin Hy and gf in Py

Pi-1 -
Z w) f,f 1 Where wi(v) = (W (V))j=1,...pes

fe(2) = HZHJ(<gk>Z>/”ZH) for z € Py.
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Constructing a CNN in the RKHS

CNN:
o Linear prediction layer: /., € [*(Q,R)

o fy(x0) = (Wnt1,2n)
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Constructing a CNN in the RKHS

CNN:
o Linear prediction layer: w/ ., € [?(Q,R)
o fo(x0) = (Wnt1, Zn)

RKHS construction:
° g, € L%(Q,H,)

Z (v u)fl  forallueQ,
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Constructing a CNN in the RKHS

CNN:
o Linear prediction layer: w/ ., € [?(Q,R)

o fy(x0) = (Wnt1,2n)
RKHS construction:

o gO' 6 L2(QaHn)

Z (v u)fl  forallueQ,

We have: (g, ®(x)) = fo(x0) = f, € Hx
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Norm of the CNN

Simple recursive bound

Pn
112 < pn Y IWayal2Bas,

i=1
with
2 i2

Biri = Cy(llwll2)
Pk-1 B

Bii= C2 | -1 Y 1w 3Bk | -
j=1
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Norm of the CNN

Spectral norm bound
1 11? < a3 CE(NIwall3 C2 (W1 [3CE( - ))),s

where ||wy |3 = Js, |wi(u)||3du and ||wy(u)||2 is the spectral norm of the
matrix (W;(J(U))U
o With 1x1 patches (fully-connected) and no activations (linear),
C2(\) = A, we get product of spectral norms

» Similar form to Rademacher complexity lower bound of (Bartlett et al.,
2017)

» In contrast, their bound has L! norm factors
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