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Success of deep convolutional networks

C1: feature maps
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Convolutional Neural Networks (CNNs):
o Capture multi-scale and compositional structure in natural signals
o Provide some invariance
o Model local stationarity

o State-of-the-art in many applications
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Understanding deep convolutional representations

©

Are they stable to deformations?

o How can we achieve invariance to transformation groups?

©

Do they preserve signal information?

©

What are good measures of model complexity?
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A kernel perspective

Kernels?
o Map data x to high-dimensional space, ®(x) € H (H: "RKHS")
o Non-linear f € H takes linear form: f(x) = (f, ®(x))
o Learning with a positive definite kernel K(x, x") = (®(x), ®(x'))
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A kernel perspective

Kernels?
o Map data x to high-dimensional space, ®(x) € H (H: "RKHS")
o Non-linear f € H takes linear form: f(x) = (f, ®(x))
o Learning with a positive definite kernel K(x, x") = (®(x), ®(x'))
o Here, we construct an RKHS following Mairal (2016) and CNNss:

f(x) = Wor10(Who(Wp_1...0(Wao(Wix))...)) = (f, P(x))
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A kernel perspective

Kernels?
o Map data x to high-dimensional space, ®(x) € H (H: "RKHS")
o Non-linear f € H takes linear form: f(x) = (f, ®(x))
o Learning with a positive definite kernel K(x, x") = (®(x), ®(x'))
o Here, we construct an RKHS following Mairal (2016) and CNNss:

f(x) = Wor10(Who(Wp_1...0(Wao(Wix))...)) = (f, P(x))

©

(also related to neural tangent kernels for CNNs (Bietti and Mairal,
2019b))
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A kernel perspective

Why? Separate learning from representation: f(x) = (f, ®(x))
o ®(x): CNN architecture (stability, invariance, signal preservation)

o f: CNN model, learning, generalization through RKHS norm ||f||
F0) = FON) < M- 1900x) = (x|

o ||f|| controls both stability and model complexity!
— discriminating small perturbations requires large ||f]|

— learning stable functions may be “easier”

Alberto Bietti Invariance and Stability of CNNs June 3, 2019 4 /34



A signal processing perspective

o Consider images defined on a continuous domain Q = R?.
o 7:Q — Q: Cl-diffeomorphism.
o Lyx(u) = x(u—7(u)): action operator.

o Much richer group of transformations than translations.

KUY by yygn
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A signal processing perspective

o Consider images defined on a continuous domain Q = R?.
o 7:Q — Q: Cl-diffeomorphism.

©

L;x(u) = x(u — 7(u)): action operator.

o Much richer group of transformations than translations.
Definition of stability

o Representation ®(-) is stable (Mallat, 2012) if:
[P(Lrx) = ()| < (GlIVT]loo + ColTlo0)lIx]l-

0 ||VT|loo = sup, ||[V7T(u)|| controls deformation.
0 ||7]|co = sup, |T(u)| controls translation.

o (5 — 0: translation invariance.
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Outline

(@ Construction of the Convolutional Representation
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A generic deep convolutional representation

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)
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A generic deep convolutional representation

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)

o xi: Q — Hy: feature map at layer k

Piexi—1

» Py: patch extraction operator, extract small patch of feature map
Xk_1 around each point u
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A generic deep convolutional representation

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)

o xi: Q — Hy: feature map at layer k

My Piexi—1

» Py: patch extraction operator, extract small patch of feature map
Xk_1 around each point u

» M. non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function ¢y (-)
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A generic deep convolutional representation

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)

o xi: Q — Hy: feature map at layer k

Xie = Ak My Pixic—1

» Py: patch extraction operator, extract small patch of feature map
Xk_1 around each point u

» M. non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function ¢y (-)

» A (linear, Gaussian) pooling operator at scale oy
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A generic deep convolutional representation

Ty = ApMPrxy 1 : Q — Hy J?/v<’u,‘) = AL M. P,z 1(’[11) € Hy

linear pooling

A[kPk$k*1 Q= Hk ;W'[kpklbk,l (1)) = \,G‘k(PATk,l (1))) S Hk

non-linear mapping

Pray1(v) € Py (patch extraction)

Tp-1(u) € Hia 1 Q= Hi
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Patch extraction operator Py

Pka_l(U) = (V € Sk — xk_l(u + V)) e P = ,Hffl

Pyxy_y(v) € P (patch extraction)

T 1(11) € Hi Th-1 :Q — Hi1
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Patch extraction operator Py

Pka_l(U) = (V € Sk — xk_l(u + V)) e P = /Hffl

o Si: patch shape, e.g. box

o Py is linear, and preserves the L2 norm: ||Pix_1|| = ||xk-1]|
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Non-linear mapping operator M

/\/IkPka_l(u) = gok(kak_l(u)) € Hy

My Py s = Hy My Pyay1(v) = or(Prar-(v) € H

non-linear mapping

Alberto Bietti Invariance and Stability of CNNs June 3, 2019

10 / 34



Non-linear mapping operator M

/\/lkPka_l(u) = gok(kak_l(u)) € Hy

o ¢k : Pk — Hy pointwise non-linearity on patches (kernel map)

o We assume non-expansivity: for z,z' € Py
lex(2) < Nzl and  low(z) = wu(Z)] < [z = 2|
o M then satisfies, for x, x" € L2(Q, Py)

IMix|| < [Ix]l - and [[Mix = Mix'|| < [lx = X'|

Alberto Bietti Invariance and Stability of CNNs June 3, 2019

10 / 34



Non-linear mapping operator M

/\/lkPka_l(u) = gok(kak_l(u)) € Hy

©

Yk Px — Hi pointwise non-linearity on patches

o We assume: for z,Zz/ € Py

ler(2)l < pellzll - and  lpw(2) = wu(Z)I < pucllz = 2]

©

M, then satisfies, for x, x’ € L2(Q, Px)

IMix|| < picllx] - and  [[Mix = MixX'[| < pul|x = X||

©

(at the cost of paying [, pk later)
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i from kernels

o Kernel mapping of homogeneous dot-product kernels:

(z,7))

12[[1l2']

Kulz,2) =l |2/ (20 ) = (ol oul@):

©

k() = Y20 bje with b; > 0, ky(1) =1

o Commonly used for hierarchical kernels
o [le(2)]| = Ki(z,2)"* = | 2|
o |lew(z) = er(Z) < llz = 2] if w3 (1) < 1

© = non-expansive
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i from kernels

o Kernel mapping of homogeneous dot-product kernels:

(z,7))

12[[1l2']

Kulz,2) =l |2/ (20 ) = (ol oul@):

©

k() = Y20 bje with b; > 0, ky(1) =1
Commonly used for hierarchical kernels

©

o [lew(2)ll = Ki(z,2)"? = ||z]|

o |lew(z) = er(Z) < llz = 2] if w3 (1) < 1
© = non-expansive

o Examples:

» Kexp((2,2)) = e<zvz/>_11 (Gaussian kernel on the sphere)
> Finv-poly((2,2')) = 2—(z,z'y

» arc-cosine kernel of degree 1 (random features with RelLU activation)
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i from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):
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i from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):

o Approximate ¢k (z) by projection on span(pi(z1),. .., ¢k(zp))
(Nystrom)

o Leads to tractable, p-dimensional representation 1, (z)

o Norm is preserved, and projection is non-expansive:

1th(2) = ()| = IMepie(2) = Mispue ()]
< llen(2) = e < [z = 2|

o Anchor points zi, ..., z, (= filters) can be learned from data
(K-means or backprop)
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i from kernels: CKNs approximation

li li
tnear poouns ©1(x) Hilbert space H1

1 (x)

_ ection on

kernel trick
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Pooling operator Ay

Xk(u) = AkMkPka_l(u) = /]Rd hgk(u — V)MkPka_l(V)dV € Hy

o= ApM Pewg 1 : Q — Hy zrp(w) = A My Prag 1 (w) € Hy

linear pooling

MyPrxy 1 :Q— Hy,

Tp1 Q= Hiq
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Pooling operator Ay

Xk ( ) AkMkPka 1 / hak MkPka 1( )dV € Hy

o hy,: pooling filter at scale o
o hy(u) := o ?h(ujok) with h(u) Gaussian
o linear, non-expansive operator: ||Ax|| <1
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Recap: Pk, Mk, Ak

T = Ak]Wkkak,l Q- Hk Jfk<’u,‘) = Akﬂ[;ﬁpk:lfk 1(’[1,‘) € Hl‘-,

linear pooling

My Prag—q : Q — Hy My Prxyy (’U) = @k(Pka—l (’U)) € Hy

kernel mapping

Prag-1(v) € Pr (patch extraction)

Tp-1(u) € Hia 10 Q= Hi
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Multilayer construction

Assumption on xg
o xp is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal,
Ao local integrator with scale o (anti-aliasing).
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Multilayer construction

Assumption on xg
o xp is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal,
Ao local integrator with scale o (anti-aliasing).

Multilayer representation

®n(x) = AsMaPrAn_1Mp_1Pp 1 - AAMiP1xy € L2(Q,H,).

o Sy, ok grow exponentially in practice (i.e., fixed with subsampling).
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Multilayer construction

Assumption on xg

o xp is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal,
Ao local integrator with scale o (anti-aliasing).

Multilayer representation

®n(x) = AsMaPrAn_1Mp_1Pp 1 - AAMiP1xy € L2(Q,H,).

o Sy, ok grow exponentially in practice (i.e., fixed with subsampling).
Prediction layer

o e.g., linear f(x) = (w, ®p(x)).
o “linear kernel” K(x, x") = (®n(x), Pn(x)) = [q(xn(u), x}(u))du.
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Discretization and signal preservation

Ips : Qo — Ha Ios(w1) = p1(Po,) € Ha
Kernel trick

P, € Py (patch)
Io : Qo — HO
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o) = si:

)_<k [n] = Ak Mk Pk)_(k—l [nsk]
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o = si:

)_<k [n] = Ak Mk Pk)_(k—l [nsk]

o Claim: We can recover xx_1 from X if subsampling s, < patch size
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o = si:

)_<k [n] = Ak Mk Pk)_(k—l [nsk]

o Claim: We can recover xx_1 from X if subsampling s, < patch size

o How? Kernels! Recover patches with linear functions (contained in
RKHS)

(fw, M Prx(u)) = f(Prx(u)) = (w, Pkx(u))
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Signal recovery: example in 1D

o |

deconvolution

Aprp_1 | |

recovery with linear measurements

| ] |

/ downsampling

AP [ ] ] ] | | |

/
linear pooling /

s [T T ] T T

dot-product kernel

S I S |

Prxy_1(u) € Py
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Stability to deformations: definitions

o 7:Q — Q: Cl-diffeomorphism
o Lyx(u) = x(u—7(u)): action operator

o Much richer group of transformations than translations

FHS Y qhyyyn
555555556¢
7707717777
335580 8C8 &

o Studied for wavelet-based scattering transform (Mallat, 2012; Bruna
and Mallat, 2013)
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Stability to deformations: definitions

©

Representation ®(-) is stable (Mallat, 2012) if:

[8(Lrx) = S| < (G VTlloo + CallTllo) I x]]

©

IVT|lco = sup, ||V7(u)|| controls deformation

©

I7]lcc = sup, |7(u)| controls translation

o (5 — 0: translation invariance
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Warmup: translation invariance
o Representation:

(Dn(X) = AnMnPnAn_lM _1P -1 " A1M1P1X.

o Translation: Lcx(u) = x(u — ¢)
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Warmup: translation invariance

o Representation:
(Dn(X) = AnMnPnAn_lM _1P -1 " A1M1P1X.

o Translation: Lcx(u) = x(u — ¢)

o Equivariance - all operators commute with L.: UL, = L [

[®n(Lex) — Pu(x)|| = [[LcPa(x) — Pa(x)]|
< |[LeAn — Anll - lIx]]
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Warmup: translation invariance

©

Representation:

q)n(X) = AnMnPnAn_lM _1P -1 " A1M1P1X.

()

Translation: Lcx(u) = x(u — ¢)

©

Equivariance - all operators commute with L.: 0L, = L.

[®n(Lex) — Pu(x)|| = [[LcPa(x) — Pa(x)]|
< |[LeAn — Anll - lIx]]

©

Mallat (2012): [|LrAn — An]l < &|I7]s
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Warmup: translation invariance

©

Representation:

(Dn(X) = AnMnPnAn_lM _1P -1 " A1M1P1X.

()

Translation: Lcx(u) = x(u — ¢)

©

Equivariance - all operators commute with L.: OL, = L [

[®n(Lex) — Pu(x)|| = [[LcPa(x) — Pa(x)]|
< |[LeAn — Anll - lIx]]

©

Mallat (2012): ||LcA, — An|| < Sc
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Stability to deformations

o Representation:
®,(x) = AgMuPrAr-1Mp1Ppy - AiM1Pix.

o Patch extraction P and pooling Ax do not commute with L;!
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Stability to deformations

o Representation:
®,(x) = AgMuPrAr-1Mp1Ppy - AiM1Pix.

o Patch extraction P and pooling Ax do not commute with L;!
o ||AkL; — Ly Ak|| < Gi||VT]||x (from Mallat, 2012)
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Stability to deformations

o Representation:
®,(x) = AgMuPrAr-1Mp1Ppy - AiM1Pix.

o Patch extraction P and pooling Ax do not commute with L;!
o ||[Ak, L7]|l < Gi]| VTl (from Mallat, 2012)
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Stability to deformations

©

Representation:

Op(x) 1= AnMpPpAn1Mp1Ppy -+ ALMPix.

©

Patch extraction Py and pooling Ay do not commute with L,!
I[Ak, Lr]|] < Gi]|VT]|so (from Mallat, 2012)
But: [Py, L;] is unstable at high frequencies!

©

©
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Stability to deformations

©

Representation:
bp(x) = AgMuPrAn-1Mp1Ppy -+ A1 M1 P1Aox.

o Patch extraction P and pooling Ax do not commute with L;!
I[Ak, Lr]|] < Gi]|VT]|so (from Mallat, 2012)
But: [Py, L;] is unstable at high frequencies!

©

©

©

Adapt to current layer resolution, patch size controlled by oj_;:

I[PkAk-1, L]l < Gl VT]loo sup |ul < Boka
ueSK
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Stability to deformations

©

Representation:

®p(x) 1= AnMnPpAniMp1Ppy -+ AL My Py Aox.

©

Patch extraction Py and pooling Ay do not commute with L,!
I[Ak, Lr]|] < Gi]|VT]|so (from Mallat, 2012)
But: [Py, L;] is unstable at high frequencies!

©

©

©

Adapt to current layer resolution, patch size controlled by oj_;:

I[PkAk-1, L]l < Gl VT]loo sup |ul < Boka
ueSK

©

C1,3 grows as 9+l — more stable with small patches (e.g., 3x3,
VGG et al.)

Alberto Bietti Invariance and Stability of CNNs June 3, 2019 22 / 34



Stability to deformations: final result

Theorem
If|VT]leo <1/2,

G
[9n(Lex) = @400l < (G (04 1) [Vl + 27l ) ]

o translation invariance: large o,

©

stability: small patch sizes

©

signal preservation: subsampling factor ~ patch size
o = needs several layers
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Stability to deformations: final result

Theorem
If|VT]leo <1/2,

C
9L = 06 < TLpi (Co (n+ D IV7low + el ) I
k

n

©

translation invariance: large o,

©

stability: small patch sizes

©

signal preservation: subsampling factor &~ patch size

o = needs several layers

()

(also valid for generic CNNs with ReLUs: multiply
by TTx pk = I1k || Wkl|, but no direct signal preservation).
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Beyond the translation group

Global invariance to other groups?

o Rotations, reflections, roto-translations, ...
o Group action Lgx(u) = x(g™1u)
o Equivariance in inner layers + (global) pooling in last layer

o Similar construction to Cohen and Welling (2016); Kondor and
Trivedi (2018)
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G-equivariant layer construction

©

Feature maps x(u) defined on u € G (G: locally compact group)
» Input needs special definition when G # Q

o Patch extraction:
Px(u) = (x(uv))ves

Non-linear mapping: equivariant because pointwise!

©

Pooling (. left-invariant Haar measure):

()

Ax(u):/Gx(uv)h(v)d,u(v):/Gx(v)h(u_lv)d,u(v)
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Group invariance and stability

Roto-translation group G = R? x SO(2) (translations + rotations)

o Stability w.r.t. translation group
o Global invariance to rotations (only global pooling at final layer)

» Inner layers: only pool on translation group

» Last layer: global pooling on rotations

» Cohen and Welling (2016): pooling on rotations in inner layers hurts
performance on Rotated MNIST
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Outline

(3 Learning Aspects: Model Complexity of CNNs
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RKHS of patch kernels K

(z,7))

Ki(z,Z) = ||z z’m( ), w(u) = bjit

o RKHS contains homogeneous functions:

frze|zllo((g,2)/llzIl)

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels K

(z,7))

Ki(z,Z) = ||z z’m( ), w(u) = bjit

o RKHS contains homogeneous functions:

frze|zllo((g,2)/llzIl)

o Smooth activations: o(u) = >3, a;/

a2
o Norm: ||f[3, < CZ(llgll?) = X720 7 llgll* < o0

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels K

Examples:
o o(u) = u (linear): C2(\2) = O(\?)
o o(u) = uP (polynomial): C2()\?) = O(\?P)
o o =~ sin, sigmoid, smooth ReLU: C2(\?) = O(e)

f: x| x|o(wx/|x|)

f:xH o(x)
2.0 ReLU 47 — RelU, w=1
sRelU —— sRelU,w=0
154 34 — sRelLU,w=0.5
' sRelU, w =1
— —— sRelU,w =2
X 1.0 X2
0.5 1
0.0 0
-2.0 -15 -1.0 -0.5 0.0 05 1.0 15 2.0 -2.0 -15 -1.0 -0.5 0.0 05 1.0 15 2.0
X X
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Constructing a CNN in the RKHS H¢

©

Consider a CNN with filters W,ij(u), u€ Sk

“Smooth homogeneous” activations o

©

©

The CNN can be constructed hierarchically in Hyx

©

Norm upper bound:

113 < IWasall3 C(IWal3 CUIWaall3 C(---)))
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Constructing a CNN in the RKHS H¢

©

Consider a CNN with filters W,ij(u), u€ Sk

“Smooth homogeneous” activations o

©

©

The CNN can be constructed hierarchically in Hyx

o Norm upper bound (linear layers):
113 < 1Wasall3 - [IWall3 - [ Wa-al3 - [WAL3
o Linear layers: product of spectral norms
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Link with generalization

o Simple bound on Rademacher complexity for linear/kernel methods:

BR
Fg = {f e M. |l <B :>Rd]-'<0(>
B { ICH ||'H } aN( B) \/N
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Link with generalization

o Simple bound on Rademacher complexity for linear/kernel methods:

BR
Fg = {f e M. |l <B :>Rd]-'<0(>
B { ICH ||H } aN( B) \/N

o Leads to margin bound O(||#y|[2R/yv/N) for a learned CNN fy with
margin (confidence) v > 0

o Related to generalization bounds for neural networks based on
product of spectral norms (e.g., Bartlett et al., 2017; Neyshabur
et al., 2018)
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Outline

(@ Regularizing with the RKHS norm
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Regularizing with the RKHS norm in practice

Can we obtain better models with little data?

(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularizing with the RKHS norm in practice

Can we obtain better models with little data?

(%)

Controlling upper bounds: spectral norm penalties/constraints

©

Controlling lower bounds using ||f||3; = supy,,,<1(f, u)

o = consider tractable subsets of the unit ball

|fllg > sup f(x+0)—1f(x) (adversarial perturbations)
x[lo]<1

[ fll > Hsqu<C f(L;x) — f(x) (adversarial deformations)

|l > sup||VFf(x)|l2 (gradient penalty)

©

Best performance by combining upper + lower bound approaches

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Invariance and Stability of CNNs June 3, 2019 32 /34



Regularizing with the RKHS norm in practice

Can we obtain better models with little data?

Table 2. Regularization on 300 or 1000 examples from MNIST,
using deformations from Infinite MNIST. (*) indicates that random
deformations were included as training examples, while || f||2 and

||D+ f]|? use them as part of the regularization penalty.

[ Method [ 300 VGG [ 1k VGG |
Weight decay 89.32 94.08
SN projection 90.69 95.01
grad-0s 93.63 96.67
[| 113 penalty 94.17 96.99
|V £|? penalty 94.08 96.82
Weight decay () 92.41 95.64
grad-{a (*) 95.05 97.48
| D~ f]] penalty 94.18 96.98
[ £]I3 penalty 94.42 97.13
12+ IV FI? 94.75 97.40
I£I1Z + 1113 95.23 97.66
IFIZ+ 17115 95.53 97.56
I£1I2 + 1| £]|2 + SN proj 95.20 97.60
IF1Z +11£115 + SN proj () | 95.40 97.77
(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularizing with the RKHS norm in practice

Can we obtain better models with little data?

Table 3. Regularization on protein homology detection tasks, with
or without data augmentation (DA). Fixed hyperparameters are
selected using the first half of the datasets, and we report the
average auROCS50 score on the second half.

[ Method [ NoDA [ DA |
No weight decay 0.446 | 0.500
Weight decay 0.501 | 0.546
SN proj 0.591 | 0.632
PGD-¢» 0.575 | 0.595
grad-/ 0.540 | 0.552
[HIE 0.600 | 0.608
IV £112 0.585 | 0.611
PGD-¢2 + SN proj | 0.596 | 0.627
grad-f2 + SN proj 0.592 | 0.624
l£II? + SN proj 0.630 | 0.644
IV£I? +SNproj | 0.603 | 0.625
(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularization for robustness

o Robust optimization yields another lower bound (hinge/logistic loss)
L
7 2 sup Uyi, f(x +9)) Zf(yl, (%)) + €l flln
i=1 llll2<e

©

Controlling ||f||3 allows a more global form of robustness

©

Leads to margin bounds for adversarial generalization with ¢
perturbations

» Using ||f||% > ||f||Lip near the margin (Bietti et al., 2019)

©

But, may cause a loss in accuracy in practice

(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularization for robustness

Robust vs standard accuracy trade-offs

L2, Etest =0.1 L2, Etest = 1.0
086 L pops, 05-
a —%— grad-f,
© 084" e ing >4 04-
2 = VA2
[}
O 0.82 - PGD-fo+ &
© SN proj 7 v 0.3-
.% 0.80 - =€ :: proj
pen
& (SVD) 0.2+
g 0.78 -. @ clean
S 4 01-
0.76 -
0.800 0.825 0.850 0.875 0.900 0.925 0.5 0.6 0.7 0.8 0.9
standard accuracy standard accuracy

(Bietti, Mialon, Chen, and Mairal, 2019)
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Regularization for robustness

Upper vs lower bounds

1e3 norm comparison

(Bietti, Mialon, Chen, and Mairal, 2019)
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Deep convolutional representations: conclusions

Study of generic properties
o Deformation stability with small patches, adapted to resolution
o Signal preservation when subsampling < patch size

o Group invariance by changing patch extraction and pooling
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Applies to learned models
o Same quantity ||f|| controls stability and generalization:

» “higher capacity” is needed to discriminate small deformations
» Learning may be “easier” with stable functions

o Better regularization of generic CNNs using RKHS norm
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Deep convolutional representations: conclusions

Study of generic properties
o Deformation stability with small patches, adapted to resolution
o Signal preservation when subsampling < patch size
o Group invariance by changing patch extraction and pooling
Applies to learned models

o Same quantity ||f|| controls stability and generalization:

» “higher capacity” is needed to discriminate small deformations
» Learning may be “easier” with stable functions

o Better regularization of generic CNNs using RKHS norm
Links with optimization (Bietti and Mairal, 2019b)
o Similar kernel (NTK) arises from optimization in a certain regime

o Weaker stability guarantees, but better approximation properties
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