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Convolutional NetworksParadigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

(LeCun et al., 1998)

Exploiting the structure of natural images
Model local information at different scales, hierarchically
Provide some invariance through pooling
Useful inductive biases for learning efficiently on natural signals
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Convolutional Networks

(He et al., 2016)

Exploiting the structure of natural images
Model local information at different scales, hierarchically
Provide some invariance through pooling
Useful inductive biases for learning efficiently on natural signals
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Setup

Nonparametric regression with kernels
Data model: y = f ∗(x) + ε

Kernel ridge regression with kernel K (with RKHS H)

f̂n = arg min
f ∈H

1
n

n∑
i=1

(yi − f (xi ))2 + λ‖f ‖2H

Questions
What are good assumptions on f ∗ for image problems?
How does the kernel/norm/architecture exploit this for sample efficiency?
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Kernels for Convolutional Models

This talk (B. et al., 2021; B., 2022):
Formal study of convolutional kernels and their RKHS
Benefits of (deep) convolutional structure

Invariance
Locality

Long-range interactions
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Why Kernels?

Clean and well-developed theory
Tractable optimization algorithms (convex)
Universal approximation guarantees
Optimal statistical rates for many problems

I e.g., smooth functions (Caponnetto and De Vito, 2007), interaction splines (Wahba, 1990)

We rarely have all three, e.g.:
Approximation benefits of depth: no algorithms

I (Eldan and Shamir, 2016; Mhaskar and Poggio, 2016; Telgarsky, 2016; Cohen and Shashua, 2017;
Schmidt-Hieber, 2020)

Optimization landscape/algorithmic regularization: no universal approximation
I (Soltanolkotabi et al., 2018; Gunasekar et al., 2018; Jagadeesan et al., 2022; Razin et al., 2022)

A starting point to understand CNNs
Understand the features Φ(x) provided by architectures (≈ least squares before Lasso)
Good performance on Cifar10 (Mairal, 2016; Li et al., 2019; Shankar et al., 2020; B., 2022)
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Outline

1 Invariance and Stability (B., Venturi, and Bruna, 2021)

2 Locality and Depth (B., 2022)
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Invariance and Geometric Stability

Q: Does invariance improve statistical efficiency?
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Invariance and Geometric Stability: Definitions

Invariant Function Classes

• These domain transformations are lifted to linear transformations (a.k.a. 
group representations):

$ " ! = "($"#!)
' ∶ Ω → Ω ' ∶ #(Ω) → #(Ω)

Functions f : X ⊂ Rd → R that are “smooth” along known transformations of input x
e.g., translations, rotations, permutations, deformations

We consider: permutations σ ∈ G

(σ · x)i = xσ−1(i)

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

f (σ · x) = f (x), σ ∈ G

Geometric stability: For other sets G (e.g., local shifts, deformations), we want

f (σ · x) ≈ f (x), σ ∈ G
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Interlude: Kernels for Wide Shallow Networks

f (x) = 1√
m

m∑
i=1

viρ(〈wi , x〉)

= 〈v , ϕ(x)〉, with ϕ(x) = 1√
mρ(Wx) ∈ Rm

Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): wi ∼ N (0, I), learn v

KRF (x , x ′) = lim
m→∞

〈ϕ(x), ϕ(x ′)〉

= Ew [ρ(〈w , x〉)ρ(〈w , x ′〉)] = κρ(〈x , x ′〉) when x , x ′ ∈ Sd−1

Related to Neural Tangent Kernel (NTK, Jacot et al., 2018): train both wi and vi near
random initialization
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Group-Invariant Models through Pooling

ϕ(x) = 1√
mρ(Wx)

Convolutional network with pooling (group averaging)

fG(x) = 〈v , 1
|G |

∑
σ∈G

ϕ(σ · x)︸ ︷︷ ︸
Φ(x)

〉

Invariant kernel (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

KG(x , x ′) = 1
|G |

∑
σ∈G

κ(〈σ · x , x ′〉), when x , x ′ ∈ Sd−1

When κ = κρ, this corresponds to Random Features kernel for fG
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Statistical Benefits of Group Invariance

Regression: R(f ) := E(y − f (x))2, x uniform on the sphere Sd−1, and f ∗(x) = E[y |x ].

Kernel ridge regression (KRR) using:

KG(x , x ′) = 1
|G |

∑
σ∈G

κ(〈σ · x , x ′〉) vs. K (x , x ′) = κ(〈x , x ′〉)

Theorem (Benefits of invariance (B., Venturi, and Bruna, 2021))
Assume f ∗ is G-invariant and s-smooth. KRR with kernel KG vs K achieves

ER(f̂KG ,n)− R(f ∗) ≤ Cd

(1 + o(1)
|G |n

) 2s
2s+d−1

vs. ER(f̂K ,n)− R(f ∗) ≤ Cd

(1
n

) 2s
2s+d−1

=⇒ asymptotic gains by a factor |G | in sample complexity.
|G | can be exponential in d for some groups (e.g., the full permutation group)
Rate and dimension-dependence in constant Cd are asymptotically minimax optimal
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Key Technical Ingredient: Counting Invariant Harmonics

Expand in L2(Sd−1) basis of spherical harmonics Yk,j

N(d , k) harmonics of degree k, form a basis of Vd ,k

Pooling projects Vd ,k to N(d , k) invariant harmonics

Example (3/6)

Definition (Spherical harmonics)

A homogeneous polynomial of degree k � 0 in Rd whose Laplacian
vanishes is called a homogeneous harmonic of order k .

A spherical harmonic of order k is a homogeneous harmonic of order
k on the unit sphere Sd�1

The set Yk(d) of spherical harmonics is a vector space of dimension

N(n, k) = dim (Yk(d)) =
(2k + d � 2)(k + d � 3)!

k!(d � 2)!
.

237 / 652

Theorem ((B., Venturi, and Bruna, 2021))
As k →∞, we have

γd (k) := N(d , k)
N(d , k) = 1

|G | + o(1).

Relies on singularity analysis of density of 〈σ · x , x〉 (Saldanha and Tomei, 1996)
Decay rate can be quantified using cycle statistics of σ ∈ G
Uses a characterization of γd (k) due to Mei et al. (2021), who study a different regime:

I They study d →∞ with fixed k (γd (k) = Θd (d−α)), gains at most polynomial in d
I We study k →∞ with fixed d , gain |G | can be exponential in d .
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k on the unit sphere Sd�1

The set Yk(d) of spherical harmonics is a vector space of dimension

N(n, k) = dim (Yk(d)) =
(2k + d � 2)(k + d � 3)!

k!(d � 2)!
.

237 / 652

Theorem ((B., Venturi, and Bruna, 2021))
As k →∞, we have

γd (k) := N(d , k)
N(d , k) = 1

|G | + o(1).

Relies on singularity analysis of density of 〈σ · x , x〉 (Saldanha and Tomei, 1996)
Decay rate can be quantified using cycle statistics of σ ∈ G
Uses a characterization of γd (k) due to Mei et al. (2021), who study a different regime:

I They study d →∞ with fixed k (γd (k) = Θd (d−α)), gains at most polynomial in d
I We study k →∞ with fixed d , gain |G | can be exponential in d .
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Extension to Stability and Discussion

Extension to geometric stability: G is not a group (e.g., local shifts/deformations)
Pooling operation is no longer a projection, but leads to natural assumption
Similar bounds with effective sample size n|G |
|G | is exponential in d for a simple toy model of deformations!

Curse of dimensionality
If the target f ∗ is non-smooth, e.g., only Lipschitz, the rate is cursed! (and unimprovable)

R(f̂n)− f (f ∗) . n−
2

2+d−1

Q: How can we break this curse?
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Outline

1 Invariance and Stability (B., Venturi, and Bruna, 2021)

2 Locality and Depth (B., 2022)
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Locality

Q: Can locality improve statistical efficiency?
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One-Layer Convolutional Kernels on Patches

x

xu

ϕ

1D signal: x [u], u ∈ Ω
Patches: xu = (x [u], . . . , x [u + p − 1]) ∈ Rp, features ϕ(xu) = 1√

mρ(Wxu), m→∞

Convolutional network:

with

f (x) =
∑
u∈Ω
〈vu, ϕ(xu)〉 =: 〈v ,Φ(x)〉

Convolutional kernel (with k(z , z ′) = 〈ϕ(z), ϕ(z ′)〉 the RF patch kernel)

K (x , x ′) =
∑
u∈Ω

k(xu, x ′u)
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One-Layer Convolutional Kernels on Patches

x

xu

ϕ

h

1D signal: x [u], u ∈ Ω
Patches: xu = (x [u], . . . , x [u + p − 1]) ∈ Rp, features ϕ(xu) = 1√

mρ(Wxu), m→∞
Convolutional network: with pooling filter h

fh(x) =
∑
u∈Ω
〈vu,

∑
v

h[u − v ]ϕ(xv )〉

Convolutional kernel (with k(z , z ′) = 〈ϕ(z), ϕ(z ′)〉 the RF patch kernel)

Kh(x , x ′) =
∑
u∈Ω

∑
v ,v ′

h[u − v ]h[u − v ′]k(xv , x ′v ′)
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One-Layer Convolutional Kernels on Patches

x

xu

ϕ

h = 1/|Ω|

1D signal: x [u], u ∈ Ω
Patches: xu = (x [u], . . . , x [u + p − 1]) ∈ Rp, features ϕ(xu) = 1√

mρ(Wxu), m→∞
Convolutional network: with global pooling (h = 1/|Ω|)

fh(x) =
∑
u∈Ω
〈vu, |Ω|−1

∑
v
ϕ(xv )〉

Convolutional kernel (with k(z , z ′) = 〈ϕ(z), ϕ(z ′)〉 the RF patch kernel)

Kh(x , x ′) = |Ω|−1
∑
v ,v ′

k(xv , x ′v ′)

Alberto Bietti Benefits of Convolutional Models BIRS, May 26, 2022 17 / 23



One-Layer Convolutional Kernels on Patches

x

xu

ϕ

h = δ

1D signal: x [u], u ∈ Ω
Patches: xu = (x [u], . . . , x [u + p − 1]) ∈ Rp, features ϕ(xu) = 1√

mρ(Wxu), m→∞
Convolutional network: with no pooling (Dirac h = δ)

fh(x) =
∑
u∈Ω
〈vu, ϕ(xu)〉

Convolutional kernel (with k(z , z ′) = 〈ϕ(z), ϕ(z ′)〉 the RF patch kernel)

Kh(x , x ′) =
∑
u∈Ω

k(xu, x ′u)
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Benefits of Locality and Pooling

Assume additive, invariant target f ∗(x) =
∑

u∈Ω g∗(xu)
Consider the kernels:
(global pool) Kg (x , x ′) =

∑
v ,v ′

k(xv , x ′v ′) vs (no pool) Kδ(x , x ′) =
∑

u
k(xu, x ′u)

Theorem (Statistical rates with one-layer (B., 2022))
Assume g∗ is s-smooth, non-overlapping patches on Sp−1. KRR with Kh yields

ER(f̂g ,n)− R(f ∗) ≤ Cp

(1
n

) 2s
2s+p−1

vs ER(f̂δ,n)− R(f ∗) ≤ Cp

( |Ω|
n

) 2s
2s+p−1

Patch dimension p � d = p|Ω| in the rate (breaks the curse!)
With localized pooling h, we can also learn f ∗(x) =

∑
u∈Ω g∗u (xu) with different g∗u

I The bound above interpolates between 1 and |Ω| via ‖h‖22
For overlapping patches, see (Favero et al., 2021; Misiakiewicz and Mei, 2021)
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Long-Range Interactions

Q: How to capture interactions between multiple patches?

→ “add more layers”! Hierarchical kernels (Cho and Saul, 2009):

K (x , x ′) =
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Long-Range Interactions

Q: How to capture interactions between multiple patches?

→ “add more layers”! Hierarchical kernels (Cho and Saul, 2009):

K (x , x ′) = 〈ϕ2(ϕ1(x)), ϕ2(ϕ1(x ′))〉
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Long-Range Interactions

Q: How to capture interactions between multiple patches?

→ “add more layers”! Hierarchical kernels (Cho and Saul, 2009):

K (x , x ′) = κ2(κ1(〈x , x ′〉))
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RKHS of Two-Layer Convolutional Kernels (B., 2022)

x

xu

ϕ1

h1

Φ1(x)

∈ Hs2
1

ϕ2

h2

Φ2(x)

ϕ2/κ2 captures interactions between patches

Take κ2(u) = u2. RKHS contains

f (x) =
∑
|u−v |≤r

gu,v (xu, xv )

Receptive field r depends on h1 and s2
gu,v ∈ H1 ⊗H1

Effect of RKHS norm:
I Pooling h1: invariance to relative position
I Pooling h2: invariance to global position
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Is it a Good Model for Cifar10? (B., 2022)

Compute 50 000× 50 000 kernel matrix (costly!) and run Kernel Ridge Regression (ok!)

2-layers, patch sizes (3, 5), Gaussian pooling factors (2,5).
κ1 κ2 Test acc.
Exp Exp 88.3%
Exp Poly4 88.3%
Exp Poly3 88.2%
Exp Poly2 87.4%
Exp Linear 80.9%

Polynomial kernels at second layer suffice!
State-of-the-art for kernels on Cifar10 (at a large computational cost...)

I Shankar et al. (2020): 88.2% with 10 layers (90% with data augmentation)
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Statistical Benefits with Two Layers (B., 2022)

Consider invariant f ∗(x) =
∑

u,v∈Ω g∗(xu, xv )
Assume Ex [k(xu, xu′)k(xv , xv ′)] ≤ ε if u 6= u′ or v 6= v ′

Compare different pooling layers (h1, h2 ∈ {global, δ}) and patch sizes (s2):

Excess risk bounds when g∗ ∈ Hk ⊗Hk (slow rates)

h1 h2 s2 R(f̂n)− R(f ∗) (for ε→ 0)
δ δ |Ω| ‖g∗‖|Ω|2.5/

√
n

δ global |Ω| ‖g∗‖|Ω|2/
√

n
global global |Ω| ‖g∗‖|Ω|/

√
n

global global or δ 1 ‖g∗‖/
√

n

Polynomial gains in |Ω| when using the right architecture!1

1Best ≈ deep sets (Zaheer et al., 2017)
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Concluding Remarks

Benefits of deep convolutional models
Pooling improves generalization under invariance and stability
Locality + depth + pooling capture structured interaction models with invariances

Kernels can help us understand structured architectures

What’s missing?
Sparsity/adaptivity

I First layer: adaptive convolutional filters (Gabors)
I Following layers: structured interactions/symmetries

Beyond CNNs
I GNNs, Transformers
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