On the Sample Complexity of Learning under Invariance and Geometric Stability

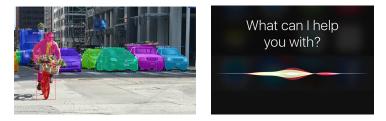
Alberto Bietti

NYU Center for Data Science

Mathematics of Information Seminar, University of Cambridge. Feb. 9, 2022.

Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)



	ENGLIS	SH - DETECTED	ENGLISH	CHI	~ ÷	FRENC	H CHINESE (TRADITIO	DNAL)	\sim	
where is the train station?			×	où est	où est la gare? ଡ		☆			
	Ļ	•)	2	27/5000	1	•			:	

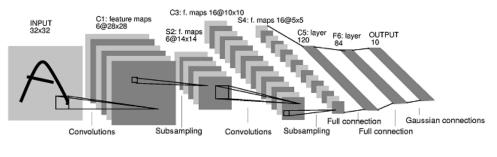
Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

$$f(x) = W_n \sigma(W_{n-1} \cdots \sigma(W_1 x) \cdots)$$

Recipe: huge models + lots of data + compute + simple algorithms

Exploiting data structure through architectures

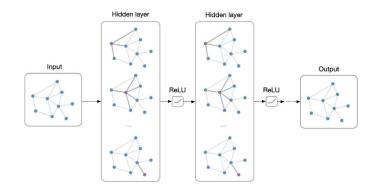


(LeCun et al., 1998)

Modern architectures (CNNs, GNNs, ...)

- Provide some invariance through pooling
- Model (local) interactions at different scales, hierarchically
- Useful inductive biases for learning efficiently on structured data

Exploiting data structure through architectures



Modern architectures (CNNs, GNNs, ...)

- Provide some invariance through pooling
- Model (local) interactions at different scales, hierarchically
- Useful inductive biases for learning efficiently on structured data

Exploiting data structure through architectures



Modern architectures (CNNs, GNNs, ...)

- Provide some invariance through pooling
- Model (local) interactions at different scales, hierarchically
- Useful inductive biases for learning efficiently on structured data

Understanding deep learning

The challenge of deep learning theory

- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize with (stochastic) gradient descent!

Understanding deep learning

The challenge of deep learning theory

- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint

- View deep networks as functions in some functional space
- Non-parametric models, natural measures of complexity (e.g., norms)
- Optimization performs implicit regularization towards

$$\min_{f} \Omega(f) \quad \text{s.t.} \quad y_i = f(x_i), \quad i = 1, \dots, n$$

Understanding deep learning

The challenge of deep learning theory

- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize with (stochastic) gradient descent!

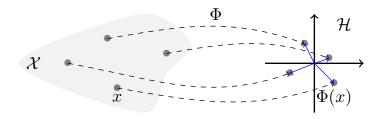
A functional space viewpoint

- View deep networks as functions in some functional space
- Non-parametric models, natural measures of complexity (e.g., norms)
- Optimization performs implicit regularization towards

$$\min_{f} \Omega(f) \quad \text{s.t.} \quad y_i = f(x_i), \quad i = 1, \dots, n$$

What is an appropriate functional space / norm Ω ?

Kernels to the rescue



Kernels?

- Map data x to high-dimensional space, $\Phi(x) \in \mathcal{H}$ (\mathcal{H} : "RKHS")
- Functions $f \in \mathcal{H}$ are linear in features: $f(x) = \langle f, \Phi(x) \rangle$ (f can be non-linear in x!)
- Learning with a positive definite kernel $\mathcal{K}(x,x')=\langle \Phi(x),\Phi(x')
 angle$
 - ▶ *H* can be infinite-dimensional! (*kernel trick*)
 - ▶ Need to compute kernel matrix $K = [K(x_i, x_j)]_{ij} \in \mathbb{R}^{N \times N}$, or approximations

Why kernels?

Clean and well-developed theory

- Tractable methods (convex optimization)
- Statistical and approximation properties well understood for many kernels
 - ► e.g., smooth functions (Caponnetto and De Vito, 2007), interaction splines (Wahba, 1990)

Why kernels?

Clean and well-developed theory

- Tractable methods (convex optimization)
- Statistical and approximation properties well understood for many kernels
 - ► e.g., smooth functions (Caponnetto and De Vito, 2007), interaction splines (Wahba, 1990)

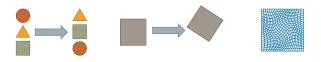
This talk:

- Formal study of convolutional kernels and their RKHS
- Benefits of (deep) convolutional structure

1 Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)

2 Locality and depth (B., 2021)

Geometric priors

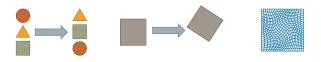


Functions $f : \mathcal{X} \to \mathbb{R}$ that are "smooth" along known transformations of input x

- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)[u] = x[\sigma^{-1}(u)]$$

Geometric priors



Functions $f : \mathcal{X} \to \mathbb{R}$ that are "smooth" along known transformations of input x

- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)[u] = x[\sigma^{-1}(u)]$$

Group invariance: If G is a group (*e.g.*, cyclic shifts, all permutations), we want

$$f(\sigma \cdot x) = f(x), \quad \sigma \in G$$

Geometric priors

Functions $f : \mathcal{X} \to \mathbb{R}$ that are "smooth" along known transformations of input x

- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)[u] = x[\sigma^{-1}(u)]$$

Group invariance: If G is a group (*e.g.*, cyclic shifts, all permutations), we want

$$f(\sigma \cdot x) = f(x), \quad \sigma \in G$$

Geometric stability: For other sets G (e.g., local shifts, deformations), we want

$$f(\sigma \cdot x) \approx f(x), \quad \sigma \in G$$

$$f(x) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \rho(\langle w_i, x \rangle)$$

$$\begin{split} f(x) &= \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \rho(\langle w_i, x \rangle) \\ &= \langle v, \varphi(x) \rangle, \qquad \text{with } \varphi(x) = \frac{1}{\sqrt{m}} \rho(Wx) \in \mathbb{R}^m \end{split}$$

$$\begin{split} f(x) &= \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \rho(\langle w_i, x \rangle) \\ &= \langle v, \varphi(x) \rangle, \qquad \text{with } \varphi(x) = \frac{1}{\sqrt{m}} \rho(Wx) \in \mathbb{R}^m \end{split}$$

• **Random Features** (RF, Neal, 1996; Rahimi and Recht, 2007): $w_i \sim \mathcal{N}(0, I)$, learn v

$$\begin{split} \mathcal{K}_{RF}(x,x') &= \lim_{m \to \infty} \langle \varphi(x), \varphi(x') \rangle \\ &= \mathbb{E}_{w}[\rho(\langle w, x \rangle) \rho(\langle w, x' \rangle)] = \kappa_{\rho}(\langle x, x' \rangle) \quad \text{when } x, x' \in \mathbb{S}^{d-1} \end{split}$$

$$\begin{split} f(x) &= \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \rho(\langle w_i, x \rangle) \\ &= \langle v, \varphi(x) \rangle, \qquad \text{with } \varphi(x) = \frac{1}{\sqrt{m}} \rho(Wx) \in \mathbb{R}^m \end{split}$$

• Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): $w_i \sim \mathcal{N}(0, I)$, learn v

$$\begin{split} \mathcal{K}_{RF}(x,x') &= \lim_{m \to \infty} \langle \varphi(x), \varphi(x') \rangle \\ &= \mathbb{E}_w[\rho(\langle w, x \rangle) \rho(\langle w, x' \rangle)] = \kappa_\rho(\langle x, x' \rangle) \quad \text{when } x, x' \in \mathbb{S}^{d-1} \end{split}$$

A related kernel: Neural Tangent Kernel (NTK, Jacot et al., 2018): train both w_i and v_i near random initialization

Group-Invariant Models through Pooling

Pooling operator

$$S_G f(x) := \frac{1}{|G|} \sum_{\sigma \in G} f(\sigma \cdot x)$$

Convolutional network with pooling (group averaging)

$$f_G(x) = \langle v, \underbrace{\frac{1}{|G|} \sum_{\sigma \in G} \varphi(\sigma \cdot x)}_{\Phi(x)} \rangle, \quad \text{with } \varphi(x) = \frac{1}{\sqrt{m}} \rho(Wx)$$

Group-Invariant Models through Pooling **Pooling operator**

$$S_G f(x) := \frac{1}{|G|} \sum_{\sigma \in G} f(\sigma \cdot x)$$

Convolutional network with pooling (group averaging)

$$f_{G}(x) = \langle v, \underbrace{\frac{1}{|G|} \sum_{\sigma \in G} \varphi(\sigma \cdot x)}_{\Phi(x)} \rangle, \quad \text{with } \varphi(x) = \frac{1}{\sqrt{m}} \rho(Wx)$$

Invariant kernel (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

$$\mathcal{K}_{\mathcal{G}}(x,x') = rac{1}{|\mathcal{G}|} \sum_{\sigma \in \mathcal{G}} \kappa(\langle \sigma \cdot x, x'
angle), \quad ext{when } x, x' \in \mathbb{S}^{d-1}$$

• When $\kappa = \kappa_{\rho}$, this corresponds to Random Features kernel for f_{G}

Harmonic analysis on the sphere

- τ : uniform distribution on the sphere \mathbb{S}^{d-1}
- $L^2(\tau)$ basis of spherical harmonics $Y_{k,j}$
- N(d, k) harmonics of degree k, form a basis of $V_{d,k}$

Harmonic analysis on the sphere

- τ : uniform distribution on the sphere \mathbb{S}^{d-1}
- $L^2(\tau)$ basis of spherical harmonics $Y_{k,j}$
- N(d, k) harmonics of degree k, form a basis of $V_{d,k}$

Dot-product kernels and their RKHS $K(x, x') = \kappa(\langle x, x' \rangle)$

$$\mathcal{H} = \left\{ f = \sum_{k=0}^{\infty} \sum_{j=1}^{N(d,k)} a_{k,j} Y_{k,j}(\cdot) \text{ s.t. } \|f\|_{\mathcal{H}}^2 := \sum_{k,j} \frac{a_{k,j}^2}{\mu_k} < \infty \right\}$$

• integral operator: $T_{\mathcal{K}}f(x) = \int \kappa(\langle x, y \rangle)f(y)d\tau(y)$

μ_k = c_d ∫¹₋₁ κ(t)P_{d,k}(t)(1-t²)^{d-3}/₂ dt: eigenvalues of T_K, with multiplicity N(d, k)
 P_{d,k}: Legendre/Gegenbauer polynomial

Harmonic analysis on the sphere

- τ : uniform distribution on the sphere \mathbb{S}^{d-1}
- $L^2(\tau)$ basis of spherical harmonics $Y_{k,j}$
- N(d, k) harmonics of degree k, form a basis of $V_{d,k}$

Dot-product kernels and their RKHS $K(x, x') = \kappa(\langle x, x' \rangle)$

$$\mathcal{H} = \left\{ f = \sum_{k=0}^{\infty} \sum_{j=1}^{N(d,k)} a_{k,j} Y_{k,j}(\cdot) \quad \text{s.t.} \quad \|f\|_{\mathcal{H}}^2 := \sum_{k,j} \frac{a_{k,j}^2}{\mu_k} < \infty \right\}$$

• integral operator: $T_{\mathcal{K}}f(x) = \int \kappa(\langle x, y \rangle)f(y)d\tau(y)$

μ_k = c_d ∫¹₋₁ κ(t)P_{d,k}(t)(1-t²)^{d-3}/2 dt: eigenvalues of T_K, with multiplicity N(d, k)
 P_{d,k}: Legendre/Gegenbauer polynomial

• decay \leftrightarrow regularity: $\mu_k \asymp k^{-2\beta} \leftrightarrow \|f\|_{\mathcal{H}} = \|T_K^{-1/2}f\|_{L^2(\tau)} \approx \|\Delta_{\mathbb{S}^{d-1}}^{\beta/2}f\|_{L^2(\tau)}$

Key properties of S_G **for group-invariant case** (Mei, Misiakiewicz, and Montanari, 2021) • S_G acts as projection from $V_{d,k}$ (dim N(d,k)) to $\overline{V}_{d,k}$ (dim $\overline{N}(d,k)$)

Key properties of S_G for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)

- S_G acts as projection from $V_{d,k}$ (dim N(d,k)) to $\overline{V}_{d,k}$ (dim $\overline{N}(d,k)$)
- The number of invariant spherical harmonics \overline{N} can be estimated using:

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x[P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

• We have $T_{K_G} = S_G T_K$

Key properties of S_G for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)

- S_G acts as projection from $V_{d,k}$ (dim N(d,k)) to $\overline{V}_{d,k}$ (dim $\overline{N}(d,k)$)
- The number of invariant spherical harmonics \overline{N} can be estimated using:

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x[P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

• We have $T_{K_G} = S_G T_K$

Previous work (Mei et al., 2021)

- High-dimensional regime $d \to \infty$ with $n \asymp d^s$
- $\gamma_d(k) = \Theta_d(d^{-lpha}) \implies$ sample complexity gain by factor d^{lpha}
- Studied for translations: gains by a factor \boldsymbol{d}

Key properties of S_G for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)

- S_G acts as projection from $V_{d,k}$ (dim N(d,k)) to $\overline{V}_{d,k}$ (dim $\overline{N}(d,k)$)
- The number of invariant spherical harmonics \overline{N} can be estimated using:

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x[P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

• We have $T_{K_G} = S_G T_K$

Previous work (Mei et al., 2021)

- High-dimensional regime $d \to \infty$ with $n \asymp d^s$
- $\gamma_d(k) = \Theta_d(d^{-lpha}) \implies$ sample complexity gain by factor d^{lpha}
- Studied for translations: gains by a factor *d*
- Beyond translations? What about groups/sets G exponential in d?

Key properties of S_G for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)

- S_G acts as projection from $V_{d,k}$ (dim N(d,k)) to $\overline{V}_{d,k}$ (dim $\overline{N}(d,k)$)
- The number of invariant spherical harmonics \overline{N} can be estimated using:

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x[P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

• We have $T_{K_G} = S_G T_K$

Previous work (Mei et al., 2021)

- High-dimensional regime $d \to \infty$ with $n \asymp d^s$
- $\gamma_d(k) = \Theta_d(d^{-lpha}) \implies$ sample complexity gain by factor d^{lpha}
- Studied for translations: gains by a factor d
- Beyond translations? What about groups/sets G exponential in d?
- tl;dr: we consider d fixed, $n \to \infty$, show (asymptotic) gains by a factor |G|

Counting invariant harmonics

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x[P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

Proposition ((B., Venturi, and Bruna, 2021))

As $k \to \infty$, we have

$$\gamma_d(k) = \frac{1}{|G|} + O(k^{-d+\chi}),$$

where χ is the maximal number of cycles of any permutation $\sigma \in G \setminus \{Id\}$.

Counting invariant harmonics

$$\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_x[P_{d,k}(\langle \sigma \cdot x, x \rangle)].$$

Proposition ((B., Venturi, and Bruna, 2021)) As $k \to \infty$, we have

$$\gamma_d(k) = \frac{1}{|G|} + O(k^{-d+\chi}),$$

where χ is the maximal number of cycles of any permutation $\sigma \in G \setminus \{Id\}$.

- Relies on singularity analysis of density of $\langle \sigma \cdot x, x \rangle$ (Saldanha and Tomei, 1996)
 - $\blacktriangleright \text{ Decay} \leftrightarrow \text{nature of singularities} \leftrightarrow \text{eigenvalue multiplicities} \leftrightarrow \text{cycle statistics}$
- χ can be large (= d 1) for some groups (e.g., $\sigma = (1 \ 2))$
- Can use upper bounds with faster decays but larger constants

Counting invariant harmonics: examples

Translations (cyclic group)

$$\gamma_d(k) = d^{-1} + O(k^{-d/2+6})$$

Only linear gain in d, but with a fast rate

Counting invariant harmonics: examples Translations (cyclic group)

$$\gamma_d(k) = d^{-1} + O(k^{-d/2+6})$$

Only linear gain in d, but with a fast rate

Block translations: $d = s \cdot r$, with *r* cycles of length *s*

$$\gamma_d(k) = \frac{1}{s^r} + O(k^{-s/2+1})$$

For s = 2, exponential gains $(|G| = 2^{d/2})$ but slow rate

Counting invariant harmonics: examples Translations (cyclic group)

$$\gamma_d(k) = d^{-1} + O(k^{-d/2+6})$$

Only linear gain in d, but with a fast rate

Block translations: $d = s \cdot r$, with *r* cycles of length *s*

$$\gamma_d(k) = \frac{1}{s^r} + O(k^{-s/2+1})$$

For s = 2, exponential gains $(|G| = 2^{d/2})$ but slow rate

Full permutation group: For any s,

$$\gamma_d(k) \leq rac{2}{(s+1)!} + O(k^{-d/2 + \max(s/2,6)})$$

For s = d/2, exponential gains with fast rate

Sample complexity of invariant kernel: assumptions

Kernel Ridge Regression

$$\hat{f}_{\lambda} := rg\min_{f \in \mathcal{H}_G} rac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}_G}^2$$

Problem assumptions

• (data)
$$x \sim au$$
, $\mathbb{E}[y|x] = f^*(x)$, $\mathsf{Var}(y|x) \leq \sigma^2$

• (*G*-invariance) f^* is *G*-invariant

Sample complexity of invariant kernel: assumptions

Kernel Ridge Regression

$$\hat{f}_{\lambda} := rg\min_{f \in \mathcal{H}_G} rac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}_G}^2$$

Problem assumptions

• (data)
$$x \sim \tau$$
, $\mathbb{E}[y|x] = f^*(x)$, $Var(y|x) \leq \sigma^2$

- (*G*-invariance) f^* is *G*-invariant
- (capacity) $\lambda_m(T_K) \leq C_K m^{-\alpha}$

• e.g.,
$$\alpha = \frac{2s}{d-1}$$
 for Sobolev space of order s with $s > \frac{d-1}{2}$

Sample complexity of invariant kernel: assumptions

Kernel Ridge Regression

$$\hat{f}_{\lambda} := rg\min_{f \in \mathcal{H}_G} rac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}_G}^2$$

Problem assumptions

• (data)
$$x \sim \tau$$
, $\mathbb{E}[y|x] = f^*(x)$, $Var(y|x) \leq \sigma^2$

- (G-invariance) f^* is G-invariant
- (capacity) $\lambda_m(T_K) \leq C_K m^{-\alpha}$
 - ▶ e.g., $\alpha = \frac{2s}{d-1}$ for Sobolev space of order s with $s > \frac{d-1}{2}$
- (source) $||T_{K}^{-r}f^{*}||_{L^{2}} \leq C_{f^{*}}$
 - e.g., if $2\alpha r = \frac{2s}{d-1}$, f^* belongs to Sobolev space of order s

Theorem ((B., Venturi, and Bruna, 2021)) Let $\ell_n := \sup\{\ell : \sum_{k \leq \ell} \overline{N}(d,k) \lesssim \nu_d(\ell)^{\frac{2\alpha r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}}\}, \text{ where } \nu_d(\ell) := \sup_{k \geq \ell} \gamma_d(k).$ $\mathbb{E} \|\hat{f} - f^*\|_{L^2(d\tau)}^2 \leq C \left(\frac{\nu_d(\ell_n)}{n}\right)^{\frac{2\alpha r}{2\alpha r+1}}$

Theorem ((B., Venturi, and Bruna, 2021)) Let $\ell_n := \sup\{\ell : \sum_{k \leq \ell} \overline{N}(d,k) \lesssim \nu_d(\ell)^{\frac{2\alpha r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}}\}, \text{ where } \nu_d(\ell) := \sup_{k \geq \ell} \gamma_d(k).$ $\mathbb{E} \|\hat{f} - f^*\|_{L^2(d\tau)}^2 \leq C \left(\frac{\nu_d(\ell_n)}{n}\right)^{\frac{2\alpha r}{2\alpha r+1}}$

Replace $\nu_d(\ell_n)$ by 1 for non-invariant kernel.

Theorem ((B., Venturi, and Bruna, 2021)) Let $\ell_n := \sup\{\ell : \sum_{k \leq \ell} \overline{N}(d, k) \lesssim \nu_d(\ell)^{\frac{2\alpha r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}}\}, \text{ where } \nu_d(\ell) := \sup_{k \geq \ell} \gamma_d(k).$ $\mathbb{E} \|\hat{f} - f^*\|_{L^2(d\tau)}^2 \leq C \left(\frac{\nu_d(\ell_n)}{n}\right)^{\frac{2\alpha r}{2\alpha r+1}}$

Replace $\nu_d(\ell_n)$ by 1 for non-invariant kernel.

• We have
$$\nu_d(\ell_n) = \frac{1}{|G|} + O\left(n^{\frac{-\beta}{(d-1)(2\alpha r+1)+2\beta\alpha r}}\right)$$
 when $\gamma_d(k) = 1/|G| + O(k^{-\beta})$

• \implies Improvement in sample complexity by a factor |G|!

Theorem ((B., Venturi, and Bruna, 2021)) Let $\ell_n := \sup\{\ell : \sum_{k \leq \ell} \overline{N}(d,k) \lesssim \nu_d(\ell)^{\frac{2\alpha r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}}\}, \text{ where } \nu_d(\ell) := \sup_{k \geq \ell} \gamma_d(k).$ $\mathbb{E} \|\hat{f} - f^*\|_{L^2(d\tau)}^2 \leq C \left(\frac{\nu_d(\ell_n)}{n}\right)^{\frac{2\alpha r}{2\alpha r+1}}$

Replace $\nu_d(\ell_n)$ by 1 for non-invariant kernel.

• We have
$$\nu_d(\ell_n) = \frac{1}{|G|} + O\left(n^{\frac{-\beta}{(d-1)(2\alpha r+1)+2\beta\alpha r}}\right)$$
 when $\gamma_d(k) = 1/|G| + O(k^{-\beta})$

- \implies Improvement in sample complexity by a factor |G|!
- C may depend on d, but is **optimal** in a minimax sense over non-invariant f^*

Theorem ((B., Venturi, and Bruna, 2021)) Let $\ell_n := \sup\{\ell : \sum_{k \leq \ell} \overline{N}(d,k) \lesssim \nu_d(\ell)^{\frac{2\alpha r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}}\}, \text{ where } \nu_d(\ell) := \sup_{k \geq \ell} \gamma_d(k).$ $\mathbb{E} \|\hat{f} - f^*\|_{L^2(d\tau)}^2 \leq C \left(\frac{\nu_d(\ell_n)}{n}\right)^{\frac{2\alpha r}{2\alpha r+1}}$

Replace $\nu_d(\ell_n)$ by 1 for non-invariant kernel.

• We have
$$\nu_d(\ell_n) = \frac{1}{|G|} + O\left(n^{\frac{-\beta}{(d-1)(2\alpha r+1)+2\beta\alpha r}}\right)$$
 when $\gamma_d(k) = 1/|G| + O(k^{-\beta})$

- \implies Improvement in sample complexity by a factor |G|!
- C may depend on d, but is **optimal** in a minimax sense over non-invariant f^*
- Main ideas:
 - Approximation error: same as non-invariant kernel
 - ► Estimation error: pick ℓ_n such that $\mathcal{N}_{\mathcal{K}_G}(\lambda_n) \leq \nu_d(\ell_n)\mathcal{N}_{\mathcal{K}}(\lambda_n)$ ($\mathcal{N}(\lambda_n)$: degrees of freedom)

Synthetic experiments

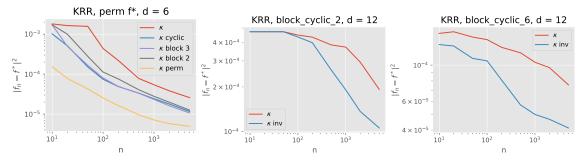
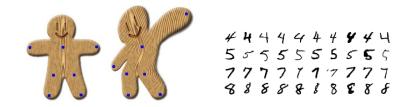


Figure: Comparison of KRR with invariant and non-invariant kernels.

Geometric stability to deformations

Deformations

- $\phi: \Omega \to \Omega$: C^1 -diffeomorphism (e.g., $\Omega = \mathbb{R}^2$)
- $\phi \cdot x(u) = x(\phi^{-1}(u))$: action operator
- Much richer group of transformations than translations



• Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)

Geometric stability to deformations

Deformations

- $\phi: \Omega \to \Omega$: C^1 -diffeomorphism (e.g., $\Omega = \mathbb{R}^2$)
- $\phi \cdot x(u) = x(\phi^{-1}(u))$: action operator
- Much richer group of transformations than translations

Geometric stability

• A function $f(\cdot)$ is **stable** (Mallat, 2012) if:

$$f(\phi \cdot x) \approx f(x)$$
 when $\|\nabla \phi - I\|_{\infty} \leq \epsilon$

• In particular, near-invariance to translations ($abla \phi = I$)

Geometric stability to deformations

Deformations

- $\phi: \Omega \to \Omega$: C^1 -diffeomorphism (*e.g.*, $\Omega = \mathbb{R}^2$)
- $\phi \cdot x(u) = x(\phi^{-1}(u))$: action operator
- Much richer group of transformations than translations

Toy model for deformations ("small $\|\nabla \sigma - Id\|$ ")

$$\mathcal{G}_{\epsilon} := \{ \sigma \in \mathcal{S}_d : |\sigma(u) - \sigma(u') - (u - u')| \le \varepsilon |u - u'| \}$$

• For $\epsilon = 2$, we have $\gamma_d(k) \leq \tau^d + O(k^{-\Theta(d)})$, with $\tau < 1$

▶ gains by a factor **exponential** in *d* with a fast rate

Stability

• S_G is no longer a projection, but its eigenvalues $\lambda_{k,j}$ on $V_{d,k}$ satisfy

$$\gamma_d(k) := \frac{\sum_{j=1}^{N(d,k)} \lambda_{k,j}}{N(d,k)} = \frac{1}{|G|} \sum_{\sigma \in G} \mathbb{E}_{\mathsf{x}}[P_{d,k}(\langle \sigma \cdot \mathsf{x}, \mathsf{x} \rangle)]$$

• Source condition adapted to S_G : $f^* = S_G^r T_K^r g^*$ with $\|g^*\|_{L^2} \leq C_{f^*}$

Theorem ((B., Venturi, and Bruna, 2021)) Let $\ell_n := \sup\{\ell : \sum_{k \leq \ell} N(d,k) \leq \nu_d(\ell)^{\frac{2r}{2\alpha r+1}} n^{\frac{1}{2\alpha r+1}}\}, \text{ where } \nu_d(\ell) := \sup_{k \geq \ell} \gamma_d(k).$ $\mathbb{E} \|\hat{f} - f^*\|_{L^2(\tau)}^2 \leq C \left(\frac{\nu_d(\ell_n)^{1/\alpha}}{n}\right)^{\frac{2\alpha r}{2\alpha r+1}}$

Discussion

Curse of dimensionality

- For Lipschitz targets, cursed rate $n^{-\frac{2\alpha r}{2\alpha r+1}} = n^{-\frac{2}{2+d-1}}$ (unimprovable)
- Improving this rate requires more structural assumptions, which may be exploited with adaptivity (Bach, 2017), or better architectures (up next!)
- Gains are asymptotic, can we get non-asymptotic?
- For large groups, pooling is computationally costly
 - ► More structure may help, *e.g.*, stability through depth (B. and Mairal, 2019; Bruna and Mallat, 2013; Mallat, 2012)

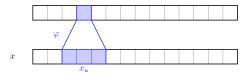
1 Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)

2 Locality and depth (B., 2021)

Locality

Locality

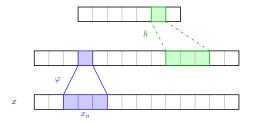
Q: Can locality improve statistical efficiency?



One-layer local convolutional kernel: localized patches $x_u = (x[u], \dots, x[u+s])$ (1D)

$$K(x,x') = \sum_{u \in \Omega} k(x_u,x'_u)$$

- RKHS \mathcal{H}_K contains functions $f(x) = \sum_{u \in \Omega} g_u(x_u)$ with $g_u \in \mathcal{H}_k$
- No curse: smoothness requirement on g_u scales with s instead of d



One-layer local convolutional kernel: localized patches $x_u = (x[u], \dots, x[u+s])$ (1D)

$$\mathcal{K}(x,x') = \sum_{u \in \Omega} \sum_{v,v' \in \Omega} h[u-v]h[u-v']k(x_v,x'_{v'})$$

- RKHS \mathcal{H}_K contains functions $f(x) = \sum_{u \in \Omega} g_u(x_u)$ with $g_u \in \mathcal{H}_k$
- No curse: smoothness requirement on g_u scales with s instead of d
- **Pooling**: same functions, RKHS norm encourages similarities between the g_u

Generalization bound

• Slow rate for non-parametric regression, $f^* \in \mathcal{H}_K$

$$\mathbb{E} R(\hat{f}_n) - R(f^*) \lesssim \|f^*\|_{\mathcal{H}_{\mathcal{K}}} \sqrt{\frac{\mathbb{E}_{\mathsf{x}} \mathcal{K}(\mathsf{x},\mathsf{x})}{n}}$$

- For invariant targets $f^* = \sum_{u \in \Omega} g^*(x_u)$: $||f^*||_{\mathcal{H}_{\mathcal{K}}}$ independent of pooling • If $\mathbb{E}_x k(x_u, x_v) \ll 1$ for $u \neq v$:
 - No pooling: $\mathbb{E}_{x} K(x, x) = |\Omega|$
 - Global pooling: $\mathbb{E}_{x} K(x, x) \approx 1 \implies$ gain by factor $|\Omega|$

Generalization bound

• Slow rate for non-parametric regression, $f^* \in \mathcal{H}_K$

$$\mathbb{E} R(\hat{f}_n) - R(f^*) \lesssim \|f^*\|_{\mathcal{H}_{\mathcal{K}}} \sqrt{\frac{\mathbb{E}_{\mathsf{x}} \mathcal{K}(\mathsf{x},\mathsf{x})}{n}}$$

- For invariant targets f^{*} = ∑_{u∈Ω} g^{*}(x_u): ||f^{*}||_{H_K} independent of pooling
 If E_x k(x_u, x_v) ≪ 1 for u ≠ v:
 - No pooling: $\mathbb{E}_{x} K(x, x) = |\Omega|$
 - Global pooling: $\mathbb{E}_{x} K(x, x) \approx 1 \implies$ gain by factor $|\Omega|$
 - General pooling filter $||h||_1 = 1$: $\mathbb{E}_x K(x, x) \approx ||h||_2^2 |\Omega|$

Generalization bound

• Slow rate for non-parametric regression, $f^* \in \mathcal{H}_K$

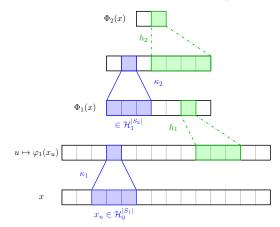
$$\mathbb{E} R(\hat{f}_n) - R(f^*) \lesssim \|f^*\|_{\mathcal{H}_{\mathcal{K}}} \sqrt{\frac{\mathbb{E}_{\mathsf{x}} \mathcal{K}(\mathsf{x},\mathsf{x})}{n}}$$

- For invariant targets $f^* = \sum_{u \in \Omega} g^*(x_u)$: $\|f^*\|_{\mathcal{H}_K}$ independent of pooling
- If $\mathbb{E}_x k(x_u, x_v) \ll 1$ for $u \neq v$:
 - No pooling: $\mathbb{E}_{x} K(x, x) = |\Omega|$
 - Global pooling: $\mathbb{E}_{x} K(x, x) \approx 1 \implies$ gain by factor $|\Omega|$
 - General pooling filter $||h||_1 = 1$: $\mathbb{E}_x K(x, x) \approx ||h||_2^2 |\Omega|$

• Fast rates possible (with no overlap, or see (Favero et al., 2021) for the hypercube)

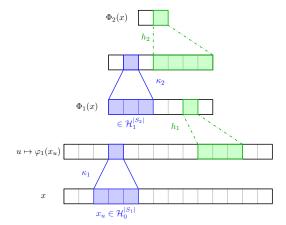
Multi-layer convolutional kernels

Convolutional Kernel Networks (Mairal, 2016) $K_2(x, x') = \langle \Phi_2(x), \Phi_2(x') \rangle$



Multi-layer convolutional kernels

Convolutional Kernel Networks (Mairal, 2016) $K_2(x, x') = \langle \Phi_2(x), \Phi_2(x') \rangle$



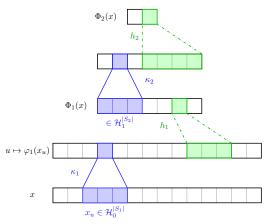
• Consider $\kappa_2(u) = u^2$

• Associated feature map (for $|S_2| = 2$):

$$\varphi_2 \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} z_1 \otimes z_1 & z_1 \otimes z_2 \\ z_2 \otimes z_1 & z_2 \otimes z_2 \end{pmatrix} \in (\mathcal{H}_1 \otimes \mathcal{H}_1)^{|S_2|^2}$$

Multi-layer convolutional kernels

Convolutional Kernel Networks (Mairal, 2016) $K_2(x, x') = \langle \Phi_2(x), \Phi_2(x') \rangle$



- Consider $\kappa_2(u) = u^2$
- Associated feature map (for $|S_2| = 2$):

$$\varphi_2 \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} z_1 \otimes z_1 & z_1 \otimes z_2 \\ z_2 \otimes z_1 & z_2 \otimes z_2 \end{pmatrix} \in (\mathcal{H}_1 \otimes \mathcal{H}_1)^{|\mathcal{S}_2|^2}$$

- Captures **interactions** between different patches (Wahba, 1990)
- Pooling *h*₁: extends range of interactions
- Pooling *h*₂: builds invariance

Some experiments on Cifar10

2-layers, 3x3 patches, pooling/downsampling sizes (2,5). Patch kernels κ_1 , κ_2 .

κ_1	κ_2	Test acc.	
Exp	Exp	87.9%	
Exp	Poly3	3 87.7%	
Exp	Poly2	ly2 86.9%	
Poly2	Exp	85.1%	
Poly2	Poly2	82.2%	
Exp	- (Lin)	80.9%	

Some experiments on Cifar10

2-layers, 3x3 patches, pooling/downsampling sizes (2,5). Patch kernels κ_1 , κ_2 .

κ_1	κ_2	Test acc.	
Exp	Exp	87.9%	
Exp	Poly3	87.7%	
Exp	Poly2	86.9%	
Poly2	Exp	85.1%	
Poly2	Poly2	82.2%	
Exp	- (Lin)	80.9%	

Best performance: 88.3% (2-layers, larger patches at 2nd layer). Shankar et al. (2020): 88.2% with more layers.

Structured interaction models via depth and pooling

RKHS with quadratic κ_2 : Contains functions

$$f(x) = \sum_{p,q\in S_2} \sum_{u,v\in\Omega} g_{u,v}^{pq}(x_u,x_v),$$

with $g_{u,v}^{pq} = 0$ if $|u - v - (p - q)| > \operatorname{diam}(\operatorname{supp}(h_1))$.

Structured interaction models via depth and pooling

RKHS with quadratic κ_2 : Contains functions

$$f(x) = \sum_{p,q\in S_2} \sum_{u,v\in\Omega} g_{u,v}^{pq}(x_u,x_v),$$

with $g_{u,v}^{pq} = 0$ if $|u - v - (p - q)| > \text{diam}(\text{supp}(h_1))$.

- Additive and interaction model with $g_{u,v}^{pq} \in \mathcal{H}_k \otimes \mathcal{H}_k$ (still no curse if $s \ll d$)
- Pooling layers encourage similarities between different $g_{u,v}^{pq}$

Structured interaction models via depth and pooling

RKHS with quadratic κ_2 : Contains functions

$$f(x) = \sum_{p,q\in S_2} \sum_{u,v\in\Omega} g_{u,v}^{pq}(x_u,x_v),$$

with $g_{u,v}^{pq} = 0$ if $|u - v - (p - q)| > \text{diam}(\text{supp}(h_1))$.

• Additive and interaction model with $g_{u,v}^{pq} \in \mathcal{H}_k \otimes \mathcal{H}_k$ (still no curse if $s \ll d$)

• Pooling layers encourage similarities between different $g_{u,v}^{pq}$

- ► *h*₁ captures "2D" invariance
- *h*₂ captures invariance along diagonals

Improvements in generalization

$$\mathbb{E} R(\hat{f}_n) - R(f^*) \lesssim \|f^*\|_{\mathcal{H}_{\mathcal{K}}} \sqrt{\frac{\mathbb{E}_x \mathcal{K}(x, x)}{n}}$$

• Consider
$$f^*(x) = \sum_{u,v \in \Omega} g^*(x_u, x_v)$$
 with $g^* \in \mathcal{H}_k \otimes \mathcal{H}_k$

• Assume $\mathbb{E}_{x}[k(x_{u}, x_{u'})k(x_{v}, x_{v'})] \leq \epsilon$ if $u \neq u'$ or $v \neq v'$

Improvements in generalization

$$\mathbb{E} R(\hat{f}_n) - R(f^*) \lesssim \|f^*\|_{\mathcal{H}_{\mathcal{K}}} \sqrt{\frac{\mathbb{E}_{\mathsf{x}} \mathcal{K}(\mathsf{x},\mathsf{x})}{n}}$$

• Consider
$$f^*(x) = \sum_{u,v \in \Omega} g^*(x_u,x_v)$$
 with $g^* \in \mathcal{H}_k \otimes \mathcal{H}_k$

- Assume $\mathbb{E}_x[k(x_u, x_{u'})k(x_v, x_{v'})] \leq \epsilon$ if $u \neq u'$ or $v \neq v'$
- Obtained bound for different pooling layers (h_1, h_2) and patch sizes $(|S_2|)$:

h_1	h ₂	$ S_2 $	$\ f^*\ _K$	$\mathbb{E}_{x} K(x,x)$	Bound ($\epsilon = 0$)
δ	δ	$ \Omega $	$ \Omega \ g\ $	$ \Omega ^3 + \epsilon \Omega ^3$	$\ g\ \Omega ^{2.5}/\sqrt{n}$
δ	1	$ \Omega $	$ \Omega \ g\ $	$ \Omega ^2 + \epsilon \Omega ^3$	$\ g\ \Omega ^2/\sqrt{n}$
1	1	$ \Omega $	$\sqrt{ \Omega } \ g\ $	$ \Omega + \epsilon \Omega ^3$	$\ g\ \Omega /\sqrt{n}$
1	δ or ${f 1}$	1	$\sqrt{ \Omega } \ g\ $	$ \Omega ^{-1} + \epsilon \Omega $	$\ g\ /\sqrt{n}$

Note: larger polynomial improvements in $|\Omega|$ possible with higher-order interactions.

Conclusion and perspectives

Summary

- Improved sample complexity for invariance and stability through pooling
- Locality breaks the curse of dimensionality
- Depth and pooling in convolutional models captures rich interaction models with invariances

Future directions

- Empirical benefits for kernels beyond two-layers?
- Invariance groups need to be built-in, can we adapt to them?
- Adaptivity to structures in multi-layer models:
 - Low-dimensional structures (Gabor) at first layer?
 - More structured interactions at second layer?
 - Can optimization achieve these?

Conclusion and perspectives

Summary

- Improved sample complexity for invariance and stability through pooling
- Locality breaks the curse of dimensionality
- Depth and pooling in convolutional models captures rich interaction models with invariances

Future directions

- Empirical benefits for kernels beyond two-layers?
- Invariance groups need to be built-in, can we adapt to them?
- Adaptivity to structures in multi-layer models:
 - Low-dimensional structures (Gabor) at first layer?
 - More structured interactions at second layer?
 - Can optimization achieve these?

Thank you!

References I

- A. B. Approximation and learning with deep convolutional models: a kernel perspective. arXiv preprint arXiv:2102.10032, 2021.
- A. B. and J. Mairal. Group invariance, stability to deformations, and complexity of deep convolutional representations. *Journal of Machine Learning Research (JMLR)*, 20(25):1–49, 2019.
- A. B., L. Venturi, and J. Bruna. On the sample complexity of learning with geometric stability. *arXiv* preprint arXiv:2106.07148, 2021.
- F. Bach. Breaking the curse of dimensionality with convex neural networks. *Journal of Machine Learning Research (JMLR)*, 18(19):1–53, 2017.
- J. Bruna and S. Mallat. Invariant scattering convolution networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, 35(8):1872–1886, 2013.
- A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm. *Foundations of Computational Mathematics*, 7(3):331–368, 2007.
- A. Favero, F. Cagnetta, and M. Wyart. Locality defeats the curse of dimensionality in convolutional teacher-student scenarios. *arXiv preprint arXiv:2106.08619*, 2021.
- B. Haasdonk and H. Burkhardt. Invariant kernel functions for pattern analysis and machine learning. *Machine learning*, 68(1):35–61, 2007.

References II

- A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2018.
- Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
- J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks. In Advances in Neural Information Processing Systems (NIPS), 2016.
- S. Mallat. Group invariant scattering. *Communications on Pure and Applied Mathematics*, 65(10): 1331–1398, 2012.
- S. Mei, T. Misiakiewicz, and A. Montanari. Learning with invariances in random features and kernel models. In *Conference on Learning Theory (COLT)*, 2021.
- Y. Mroueh, S. Voinea, and T. A. Poggio. Learning with group invariant features: A kernel perspective. In Advances in Neural Information Processing Systems (NIPS), 2015.
- R. M. Neal. Bayesian learning for neural networks. Springer, 1996.
- A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural Information Processing Systems (NIPS), 2007.
- N. C. Saldanha and C. Tomei. The accumulated distribution of quadratic forms on the sphere. *Linear algebra and its applications*, 245:335–351, 1996.

- V. Shankar, A. Fang, W. Guo, S. Fridovich-Keil, L. Schmidt, J. Ragan-Kelley, and B. Recht. Neural kernels without tangents. *arXiv preprint arXiv:2003.02237*, 2020.
- G. Wahba. Spline models for observational data, volume 59. Siam, 1990.