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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

What can | help
you with?
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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

F(x) = Wy (Wiy - o(Wix) - --)

Recipe: huge models + lots of data + compute + simple algorithms
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Exploiting data structure through architectures

C3t 1, maps 16@E10:10
INEUT %Efgaxge maps S4: 1. maps 16@5x5

G2w32 S2:1. maps C5: layer . QUTPUT
o G S

Bt = 'R

! | Full connectian Gaussian connectians
Canvolutions Subsampling Convelutions  Subsampling Full connection

(LeCun et al., 1998)

Modern architectures (CNNs, GNNs, ...)
o Provide some invariance through pooling
o Model (local) interactions at different scales, hierarchically

o Useful inductive biases for learning efficiently on structured data
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Exploiting data structure through architectures

Hidden layer Hidden layer

Modern architectures (CNNs, GNNs, ...)
o Provide some invariance through pooling
o Model (local) interactions at different scales, hierarchically

o Useful inductive biases for learning efficiently on structured data
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Exploiting data structure through architectures
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Modern architectures (CNNs, GNNs, ...)
o Provide some invariance through pooling
o Model (local) interactions at different scales, hierarchically

o Useful inductive biases for learning efficiently on structured data
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Understanding deep learning

The challenge of deep learning theory
o Over-parameterized (millions of parameters)
Expressive (can approximate any function)
o Complex architectures for exploiting problem structure
Yet, easy to optimize with (stochastic) gradient descent!

©

©
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Understanding deep learning

The challenge of deep learning theory
o Over-parameterized (millions of parameters)
Expressive (can approximate any function)
o Complex architectures for exploiting problem structure
Yet, easy to optimize with (stochastic) gradient descent!

©

©

A functional space viewpoint
o View deep networks as functions in some functional space
o Non-parametric models, natural measures of complexity (e.g., norms)

o Optimization performs implicit regularization towards

mfinQ(f) st yi=1f(x), i=1...,n
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Understanding deep learning

The challenge of deep learning theory
o Over-parameterized (millions of parameters)

Expressive (can approximate any function)

©

o Complex architectures for exploiting problem structure

Yet, easy to optimize with (stochastic) gradient descent!

©

A functional space viewpoint
o View deep networks as functions in some functional space
o Non-parametric models, natural measures of complexity (e.g., norms)

o Optimization performs implicit regularization towards

mfinQ(f) st yi=1f(x), i=1...,n

What is an appropriate functional space / norm Q7
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Kernels to the rescue
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Kernels?
o Map data x to high-dimensional space, ®(x) € H (H: “RKHS")
o Functions f € H are linear in features: f(x) = (f, ®(x)) (f can be non-linear in x!)
o Learning with a positive definite kernel K(x,x") = (®(x), ®(x’))

» H can be infinite-dimensional! (kernel trick)
» Need to compute kernel matrix K = [K(x;, x;)];; € RV*", or approximations
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Why kernels?

Clean and well-developed theory

o Tractable methods (convex optimization)
o Statistical and approximation properties well understood for many kernels
» e.g., smooth functions (Caponnetto and De Vito, 2007), interaction splines (Wahba, 1990)
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Why kernels?

Clean and well-developed theory

o Tractable methods (convex optimization)
o Statistical and approximation properties well understood for many kernels
» e.g., smooth functions (Caponnetto and De Vito, 2007), interaction splines (Wahba, 1990)

This talk:
o Formal study of convolutional kernels and their RKHS

o Benefits of (deep) convolutional structure
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Outline

@ Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)
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Geometric priors

Functions f : X — R that are “smooth” along known transformations of input x
o e.g., translations, rotations, permutations, deformations
o We consider: permutations ¢ € G

(0 -x)[u] = x[o ™} (u)]
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Geometric priors

Functions f : X — R that are “smooth” along known transformations of input x
o e.g., translations, rotations, permutations, deformations
o We consider: permutations ¢ € G

(0 - x)[u] = x[o™(u)]

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

flo-x)=1f(x), c€G
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Geometric priors

@ A
A == N
] ®

Functions f : X — R that are “smooth” along known transformations of input x
o e.g., translations, rotations, permutations, deformations
o We consider: permutations ¢ € G

(0 - x)[u] = x[o™(u)]

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

flo-x)=Ff(x), c€G

Geometric stability: For other sets G (e.g., local shifts, deformations), we want
flo-x)=f(x), c€G
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Interlude: Kernels for Wide Shallow Networks
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Interlude: Kernels for Wide Shallow Networks
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Interlude: Kernels for Wide Shallow Networks

= (v, p(x)), with ¢(x) = \}EP(WX) cR™

o Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): w; ~ A(0, /), learn v

Kre(x,x) = lim (o(x), 9(x)
— Eu[o((w, x))p((w, x))] = ko((x,')) when x,x" € 591
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Interlude: Kernels for Wide Shallow Networks

= (v, p(x)), with p(x) = —=p(Wx) € R™

o Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): w; ~ A(0, /), learn v

Kre(x,x) = lim_(p(x), (x))
— B [p((w, x))p((w, X))] = rp({x,x')) when x,x' € 891

o A related kernel: Neural Tangent Kernel (NTK, Jacot et al., 2018): train both w;
and v; near random initialization
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Group-Invariant Models through Pooling

Pooling operator 6 ﬂ

Sef(x) = — Z f(o-x)
UEG
Convolutional network W|th pooling (group averaging)

fo( o X) with
G UEZG()O ( ) \/*

d(x)

p(Wx)
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Group-Invariant Models through Pooling

Pooling operator @ ﬂ
‘\\ 7/—

Sef(x) = ’G’(;f(a X) @J/

Convolutional network with pooling (group averaging)

fo(x Z (o - x) with p(x) = —=p(Wx)
O’EG \/7
®(x)
Invariant kernel (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)
Ke(x, x Z (o x,x") when x,x’ € S971

O’EG

o When k = k), this corresponds to Random Features kernel for f¢
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Harmonic analysis on the sphere

o 7: uniform distribution on the sphere S9-1
o L2(7) basis of spherical harmonics Y ;

o N(d, k) harmonics of degree k, form a basis of Vj
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Harmonic analysis on the sphere

o 7: uniform distribution on the sphere S9! ‘:‘
o L2(7) basis of spherical harmonics Y ; NESTN
o N(d, k) harmonics of degree k, form a basis of Vj WHEOEN®

Dot-product kernels and their RKHS  K(x,x') = k({x, x'))

0o N(d,k) 2
S A st = X <o

k=0 j=1 k,j

o integral operator: Tk f(x )—f ((x y)f(y)dr(y)
o k= cq 1 K(t)Pas(t)(1 —t2) 2 dt: eigenvalues of Tk, with multiplicity N(d, k)
o Py x: Legendre/Gegenbauer polynomial
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Harmonic analysis on the sphere

o 7: uniform distribution on the sphere S9! ‘:‘
o L2(7) basis of spherical harmonics Y ; NESTN
o N(d, k) harmonics of degree k, form a basis of Vj WHEOEN®

Dot-product kernels and their RKHS  K(x,x') = k({x, x'))

0o N(d,k) 2,

==X Z 2 Vi) st [[f5 =" ¥ <o
k=0 j=1 Ky Mk

integral operator: Tk f(x )—f ((x y)f(y)dr(y)

i = ca 1y K(8)Pas(t)(1 —t2) 2 dt: eigenvalues of Tk, with multiplicity N(d, k)

P4 : Legendre/Gegenbauer polynomial

©

()

©

o decay > regularity: jix =< k=2% & ||l = | T *Fll 2y = 18522 Fll 2y
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Invariant harmonics

Key properties of S; for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)
o Sg acts as projection from Vy 4 (dim N(d, k)) to V4« (dim N(d, k))
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Invariant harmonics

Key properties of S; for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)
o Sg acts as projection from Vy 4 (dim N(d, k)) to V4« (dim N(d, k))
o The number of invariant spherical harmonics N can be estimated using:
_ N(d,k) 1

al) 1= g 1y = 6] 2 BlPaale - x 2]

o We have Tk, = STk
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Invariant harmonics

Key properties of S; for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)
o Sg acts as projection from Vy 4 (dim N(d, k)) to V4« (dim N(d, k))
o The number of invariant spherical harmonics N can be estimated using:
_ N(d,k) 1

al) 1= g 1y = 6] 2 BlPaale - x 2]

o We have Tk, = STk

Previous work (Mei et al., 2021)
o High-dimensional regime d — oo with n < d*®
0 Ya(k) = ©4(d™*) = sample complexity gain by factor d“
o Studied for translations: gains by a factor d
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Invariant harmonics

Key properties of S; for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)

o Sg acts as projection from Vy 4 (dim N(d, k)) to V4« (dim N(d, k))

o The number of invariant spherical harmonics N can be estimated using:

_ N(d,k) 1

Z Ex[Pak({c - x,x))].

ceG

o We have Tk, = STk

Previous work (Mei et al., 2021)
o High-dimensional regime d — oo with n < d*®
0 Ya(k) = ©4(d™*) = sample complexity gain by factor d“
o Studied for translations: gains by a factor d
o Beyond translations? What about groups/sets G exponential in d?
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Invariant harmonics

Key properties of S; for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)
o Sg acts as projection from Vy 4 (dim N(d, k)) to V4« (dim N(d, k))
o The number of invariant spherical harmonics N can be estimated using:
_ N(d,k) 1

al) 1= g 1y = 6] 2 BlPaale - x 2]

o We have Tk, = STk

Previous work (Mei et al., 2021)

o High-dimensional regime d — oo with n < d*®

©

vd(k) = ©4(d™®) = sample complexity gain by factor d*

o Studied for translations: gains by a factor d

©

Beyond translations? What about groups/sets G exponential in d?

©

tl;dr: we consider d fixed, n — oo, show (asymptotic) gains by a factor |G|
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Counting invariant harmonics

CN(d.k) 1

)= g gy = Tor 2o, ElPar(lo X))

Proposition ((B., Venturi, and Bruna, 2021))
As k — oo, we have )

Vd(k) = gt O(k~I+x),

where x is the maximal number of cycles of any permutation o € G\ {Ild}.
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Counting invariant harmonics

CN(d.k) 1

)= g gy = Tor 2o, ElPar(lo X))

Proposition ((B., Venturi, and Bruna, 2021))
As k — oo, we have )

Vd(k) = gt O(k~I+x),

where x is the maximal number of cycles of any permutation o € G\ {Ild}.

o Relies on singularity analysis of density of (o - x, x) (Saldanha and Tomei, 1996)
» Decay < nature of singularities «+ eigenvalue multiplicities ++ cycle statistics

o x can be large (= d — 1) for some groups (e.g., 0 = (1 2))

o Can use upper bounds with faster decays but larger constants
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Counting invariant harmonics: examples

Translations (cyclic group)
Ta(k) = d71 + O(k~/219)

Only linear gain in d, but with a fast rate
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Counting invariant harmonics: examples

Translations (cyclic group)
Ta(k) = d71 + O(k~/219)
Only linear gain in d, but with a fast rate

Block translations: d = s - r, with r cycles of length s

1
Ta(k) = = + O(k~*/2+)

For s = 2, exponential gains (|G| = 29/2) but slow rate

Alberto Bietti Sample complexity under invariance Cambridge, Feb 9, 2022

14 /29



Counting invariant harmonics: examples
Translations (cyclic group)
Ya(k) = d 1+ O(Kk~9/2+9)

Only linear gain in d, but with a fast rate

Block translations: d = s - r, with r cycles of length s

1
Ta(k) = = + O(k~*/2+)

For s = 2, exponential gains (|G| = 29/2) but slow rate
Full permutation group: For any s,

'Yd(k) < m + O(k—d/2+max(s/2,6))

For s = d/2, exponential gains with fast rate
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Sample complexity of invariant kernel: assumptions

Kernel Ridge Regression
n

s 1 2 2
f = arg [min ;(yl F(xi))” + Allf 5.

Problem assumptions
o (data) x ~ 7, E[y|x] = f*(x), Var(y|x) < o2

o (G-invariance) f* is G-invariant

Alberto Bietti Sample complexity under invariance Cambridge, Feb 9, 2022

15 /29



Sample complexity of invariant kernel: assumptions

Kernel Ridge Regression

n

s 1 2 2
f = arg [min ;(yl F(xi))” + Allf 5.

Problem assumptions
o (data) x ~ 7, E[y|x] = f*(x), Var(y|x) < o2
o (G-invariance) f* is G-invariant
o (capacity) A\m(Tk) < Ckm™©

2s
d—1

> eg,a= for Sobolev space of order s with s > %
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Sample complexity of invariant kernel: assumptions

Kernel Ridge Regression

n

s 1 2 2
f = arg [min ;(yl F(xi))” + Allf 5.

Problem assumptions
o (data) x ~ 7, E[y|x] = f*(x), Var(y|x) < o2
o (G-invariance) f* is G-invariant

(capacity) Am(Tk) < Ckm™®

2s
d—1

(source) || T, "f*|| 2 < Cp-

> eg., if 2ar = 2,

©

> eg,a= for Sobolev space of order s with s > %

©

f* belongs to Sobolev space of order s
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Sample complexity of invariant kernel: generalization

Theorem ((B., Venturi, and Bruna, 2021))
Let n :=sup{l: Y <, N(d, k) < yd(é)% nﬁ} where v4(l) = supy>vd(k).

2ar
~ - yd En 2ar+1
EIF - Fln < € (222
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Sample complexity of invariant kernel: generalization
Theorem ((B., Venturi, and Bruna, 2021))
Let n :=sup{l: Y <, N(d, k) < yd(é)% nﬁ} where v4(l) = supy>vd(k).

2ar
A . vg(lp) 2+t
EIF - Fln < € (222

n

Replace v4(¢,) by 1 for non-invariant kernel.
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Sample complexity of invariant kernel: generalization
Theorem ((B., Venturi, and Bruna, 2021))
Let n :=sup{l: Y <, N(d, k) < yd(é)% nﬁ} where v4(l) = supy>vd(k).

2ar
s * Vd(fn) Zartl
EIF - < € (2220)

n

Replace v4(¢,) by 1 for non-invariant kernel.

.y p
o We have v4(¢,) = ﬁ +0 (n(d—l)(M'HHW> when v4(k) = 1/|G| + O(k~")

o = Improvement in sample complexity by a factor |G|!
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Sample complexity of invariant kernel: generalization
Theorem ((B., Venturi, and Bruna, 2021))
Let £, := sup{(: Ekgﬁ(d, k) < Vd(é)% nﬁ} where vg({) := supys;vd4(k)

2ar
s * Vd(fn) Zartl
EIF - < € (2220)

n

Replace v4(¢,) by 1 for non-invariant kernel.

o We have v4(¢,) = IGI —|—O< W) when v4(k) = 1/|G| + O(k~?)

o = Improvement in sample complexity by a factor |G|!

o C may depend on d, but is optimal in a minimax sense over non-invariant *
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Sample complexity of invariant kernel: generalization
Theorem ((B., Venturi, and Bruna, 2021))

Let n :=sup{l: Y <, N(d, k) < yd(é)z@i% nzaiﬂ}, where v4(l) = supy>vd(k).

2ar
s * Vd(fn) Zartl
E|lf — f*|l324r < € (n>

Replace v4(¢,) by 1 for non-invariant kernel.

5 )
o We have v4(¢p) = |G| +0 ( @ D)ar+ 2ar+1)+23ar> when ~g(k) = 1/|G| + O(k—*)
o = Improvement in sample complexity by a factor |G|!

o C may depend on d, but is optimal in a minimax sense over non-invariant *
o Main ideas:

» Approximation error: same as non-invariant kernel
» Estimation error: pick £, such that Nk (\n) S va(€n)Nk(An) (N(Ag): degrees of freedom)
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Synthetic experiments

KRR, perm f*,d = 6

KRR, block_cyclic_2,d = 12 KRR, block_cyclic_6, d = 12
— K
-3
10 —— K cyclic 4% 104 K_
—— khblock 3 Kinv
o~ —— K block 2 3x 104 .
" B K perm = = 10
[ 107 L “
o s 2x107 .
6x1075
1075 I
— Kinv
I Emm——— 107 -0 e e 41075
10t 102 103 10! 102 103 10! 102 10°
n n n

Figure: Comparison of KRR with invariant and non-invariant kernels.
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Geometric stability to deformations

Deformations
o ¢:Q — Q: Cl-diffeomorphism (e.g., Q = R?)
o ¢-x(u) = x(¢~(u)): action operator
o Much richer group of transformations than translations

EUS Y qhyyyn
555555556¢
77717717777
2355¢43¢C8 &

o Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Geometric stability to deformations

Deformations
o ¢:Q — Q: Cl-diffeomorphism (e.g., Q = R?)
o ¢ x(u) = x(¢~(u)): action operator
o Much richer group of transformations than translations

Geometric stability
o A function f(-) is stable (Mallat, 2012) if:

f(¢-x) = f(x) when [[Vé -l <e

o In particular, near-invariance to translations (V¢ = /)
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Geometric stability to deformations

Deformations
o ¢:Q — Q: Cl-diffeomorphism (e.g., Q = R?)
o ¢ x(u) = x(¢~(u)): action operator
o Much richer group of transformations than translations

Toy model for deformations (“small | Vo — Id|

")

G.i={o €Sy ¢ lo(u) = o(u) = (u— )| < elu—u}

o For e =2, we have v4(k) < 79 4 O(k=®(9), with 7 < 1
» gains by a factor exponential in d with a fast rate
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Stability

o S is no longer a projection, but its eigenvalues Ay j on Vj  satisfy

ZN(d ,k) )‘k,j

Ya(k) == Nk |G| ZE [Pak({o - x,x))]

o Source condition adapted to Sg: f* = S;Tjg* with ||g*]| 2 < Ce-

Theorem ((B., Venturi, and Bruna, 2021))
Let £ :=sup{l: > <, N(d, k) Vd(E)MQﬁ nﬁ} where v4({) := supk>, vd(k).

_2ar
. . Vd(gn)l/()é 2ar+1
E|f—f Hi2(r) <C (n
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Discussion

Curse of dimensionality

2ar

_72 .
o For Lipschitz targets, cursed rate n~ 2ari1 = n~ 2+d-1 (unimprovable)

o Improving this rate requires more structural assumptions, which may be exploited with
adaptivity (Bach, 2017), or better architectures (up next!)

o Gains are asymptotic, can we get non-asymptotic?
o For large groups, pooling is computationally costly

» More structure may help, e.g., stability through depth (B. and Mairal, 2019; Bruna and
Mallat, 2013; Mallat, 2012)
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QOutline

1) Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)

@ Locality and depth (B., 2021)



Locality
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Locality

Q: Can locality improve statistical efficiency?
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Breaking the curse of dimensionality with locality

One-layer local convolutional kernel: localized patches x, = (x[u], ..., x[u + s]) (1D)
K(x,x") = Z k(xu, x,)
ueQ

o RKHS M contains functions f(x) = > ,co 8u(Xxu) with g, € Hy
o No curse: smoothness requirement on g, scales with s instead of d
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Breaking the curse of dimensionality with locality

One-layer local convolutional kernel: localized patches x, = (x[u], ..., x[u + s]) (1D)
K(x,x") Z Z hlu — v]h[u — V']k(xy, x.)
ueQ v,v' eQ

o RKHS H contains functions f(x) = > ,cq 8u(Xxu) With g, € H
o No curse: smoothness requirement on g, scales with s instead of d

o Pooling: same functions, RKHS norm encourages similarities between the g,
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Breaking the curse of dimensionality with locality

Generalization bound
o Slow rate for non-parametric regression, f* € Hg

" N N Ex K(x,x
ER(E) = R(F) < | | 2K 00)

o For invariant targets f* =3, cq 8" (xu): ||f*||7, independent of pooling
o If Ex k(xy,x,) < 1 for u## v:

» No pooling: E, K(x, x) = |9

» Global pooling: E, K(x,x) ~1 = gain by factor ||
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Breaking the curse of dimensionality with locality

Generalization bound

o Slow rate for non-parametric regression, f* € Hg
A N . Ex K(x,x
ER(E) — R(F) S 17| o)

o For invariant targets f* =3, cq 8" (xu): ||f*||7, independent of pooling
o If Ex k(xy,x,) < 1 for u## v:

» No pooling: E, K(x, x) = |9

» Global pooling: E, K(x,x) ~1 = gain by factor ||

» General pooling filter ||h||; = 1: E, K(x,x) = ||h||3|Q|
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Breaking the curse of dimensionality with locality

Generalization bound

o Slow rate for non-parametric regression, f* € Hg
A N . Ex K(x,x
ER(E) — R(F) S 17| o)

o For invariant targets f* =3, cq 8" (xu): ||f*||7, independent of pooling
o If Ex k(xy,x,) < 1 for u## v:

» No pooling: E, K(x, x) = |9

» Global pooling: E, K(x,x) ~1 = gain by factor ||

» General pooling filter ||h||; = 1: E, K(x,x) = ||h||3|Q|

o Fast rates possible (with no overlap, or see (Favero et al., 2021) for the hypercube)
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Multi-layer convolutional kernels

Convolutional Kernel Networks (Mairal, 2016)
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Ka(x, x") = (®2(x), ®2(x"))
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Multi-layer convolutional kernels

Convolutional Kernel Networks (Mairal, 2016) Ka(x, x) = (®2(x), P2(x"))

o [ ] o Consider ka(u) = u?
ha! o Associated feature map (for |Sy| = 2):

HEN |
. - <21> _ (Zl ®XRz1 21 ®22> c (/H1®/H1)|S2‘2

b) 22 QR2Z1 2R 2o

Alberto Bietti Sample complexity under invariance Cambridge, Feb 9, 2022 25/29



Multi-layer convolutional kernels

Convolutional Kernel Networks (Mairal, 2016)

w0 [T .

ha | o

@ [T T ]]
EH;SZ‘ h N
R o
N [TTTT]
K1 o
= PP |
wUEH(‘]S]‘ o)
Alberto Bietti

Sample complexity under invariance

Ka(x, x') = (®2(x), ®2(x"))
Consider rp(u) = u?

Associated feature map (for | S| = 2):

21\ _ 7210271
72 z3 R 71

Captures interactions between different
patches (Wahba, 1990)

Pooling hy: extends range of
interactions

71 ® 2

|52/
2R Zz) € (heth)

Pooling hy: builds invariance
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Some experiments on Cifarl0

2-layers, 3x3 patches, pooling/downsampling sizes (2,5). Patch kernels k1, k.

K1 Ko Test acc.
Exp Exp 87.9%
Exp | Poly3 | 87.7%
Exp | Poly2 | 86.9%
Poly2 | Exp 85.1%
Poly2 | Poly2 | 82.2%
Exp |- (Lin) | 80.9%
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Some experiments on Cifarl0

2-layers, 3x3 patches, pooling/downsampling sizes (2,5). Patch kernels k1, k.

Best performance: 88.3% (2-layers, larger patches at 2nd layer).

K1 Ko Test acc.
Exp Exp 87.9%
Exp | Poly3 | 87.7%
Exp | Poly2 | 86.9%
Poly2 | Exp 85.1%
Poly2 | Poly2 | 82.2%
Exp |- (Lin) | 80.9%

Shankar et al. (2020): 88.2% with more layers.
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Structured interaction models via depth and pooling

RKHS with quadratic x5: Contains functions

f(X Z Z g Xm Xv

P,gES> u,vEN

with ghil = 0if [u — v — (p — q)| > diam(supp(h1)).
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Structured interaction models via depth and pooling

RKHS with quadratic x5: Contains functions

f(X Z Z g Xm Xv

P,gES> u,vEN

with gfy =0 if |[u — v — (p — q)| > diam(supp(h1)).

o Additive and interaction model with g% € Hx ® H (still no curse if s < d)
o Pooling layers encourage similarities between different gfj7

Alberto Bietti Sample complexity under invariance Cambridge, Feb 9, 2022

27 /29



Structured interaction models via depth and pooling

RKHS with quadratic x5: Contains functions

f(X Z Z g Xm Xv

P,gES> u,vEN
with ghil = 0if [u — v — (p — q)| > diam(supp(h1)).

o Additive and interaction model with g% € Hx ® H (still no curse if s < d)
o Pooling layers encourage similarities between different gfj7

» h; captures “2D" invariance

» hy captures invariance along
diagonals
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Improvements in generalization

o . . E, K(x,x
ER(E) = R(F) < || g | 2K 00)

o Consider f*(x) =32, ,cq &" (xu, xv) with g* € Hi @ Hy
o Assume E,[k(xy, xy ) k(xy,x,/)] <€eif uu orv#V
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Improvements in generalization

A . y Ex K(x,x
ER(E) — R(F) 17| )

o Consider f*(x) =32, ,cq &" (xu, xv) with g* € Hi @ Hy
o Assume E,[k(xy, xy ) k(xy,x,/)] <€eif uu orv#V
o Obtained bound for different pooling layers (h1, ho) and patch sizes (|S2]):

h1 h2 |52| Hf*HK EX K(X,X) Bound (6 — 0)
o o L1l [Qllel |I1QF+eQP | llellQf*/vn
o | 1Ll (Qllell | 1P+ | llgllQl?/vn
L1 | ViQllel | 12 +dQP | lellel/vn
1]oor1| 1 | VQlgl | 19" +€Q l&ll/v/n

Note: larger polynomial improvements in || possible with higher-order interactions.
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Conclusion and perspectives

Summary
o Improved sample complexity for invariance and stability through pooling
o Locality breaks the curse of dimensionality

o Depth and pooling in convolutional models captures rich interaction models with
invariances

Future directions
o Empirical benefits for kernels beyond two-layers?
o Invariance groups need to be built-in, can we adapt to them?

o Adaptivity to structures in multi-layer models:

» Low-dimensional structures (Gabor) at first layer?
» More structured interactions at second layer?
» Can optimization achieve these?
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Conclusion and perspectives

Summary
o Improved sample complexity for invariance and stability through pooling
o Locality breaks the curse of dimensionality

o Depth and pooling in convolutional models captures rich interaction models with
invariances

Future directions
o Empirical benefits for kernels beyond two-layers?
o Invariance groups need to be built-in, can we adapt to them?

o Adaptivity to structures in multi-layer models:

» Low-dimensional structures (Gabor) at first layer?
» More structured interactions at second layer?
» Can optimization achieve these?

Thank youl!
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