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What are Transformer LLMs doing?

Reasoning over context
Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
Many results on expressivity (e.g., circuits, formal languages, graph connectivity)

▶ e.g., (Merrill et al., 2022; Liu et al., 2023; Sanford et al., 2023)

Knowledge storage
Memorization, factual recall, parameter scaling

▶ e.g., (Geva et al., 2020; Allen-Zhu and Li, 2024)
Allows higher-level reasoning

in Nanda & Lieberum (2022). Mean-ablations remove the information that varies in the reference
distribution (e.g. the value of the name outputted by a head) but will preserve constant information
(e.g. the fact that a head is outputting a name).

In this work, all knockouts are performed in a modified pIOI distribution called pABC. It relies on the
same generation procedure, but instead of using two names (IO and S) it used three unrelated random
names (A, B and C). In pABC, sentences no longer have a single plausible IO, but the grammatical
structures from the pIOI templates are preserved.

We chose this distribution for mean-ablating because using pIOI would not remove enough informa-
tion helpful for the task. For instance, some information constant in pIOI (e.g. the fact that a name
is duplicated) is removed when computing the mean on pABC.

When knocking out a single node, a (head, token position) pair in our circuit, we want to preserve
the grammatical information unrelated to IOI contained in its activations. However, the grammatical
role (subject, verb, conjunction etc.) of a particular token position varies across templates. To ensure
that grammatical information is constant when averaging, we compute the mean of a node across
samples of the same template.

3 DISCOVERING THE CIRCUIT

We seek to explain how GPT-2 small implements the IOI task (Section 2). Recall the example
sentence “When Mary and John went to the store, John gave a drink to”. The following human-
interpretable algorithm suffices to perform this task:

1. Identify all previous names in the sentence (Mary, John, John).
2. Remove all names that are duplicated (in the example above: John).
3. Output the remaining name.

Below we present a circuit that we claim implements this functionality. Our circuit contains three
major classes of heads, corresponding to the three steps of the algorithm above:

• Duplicate Token Heads identify tokens that have already appeared in the sentence. They are active
at the S2 token, attend primarily to the S1 token, and signal that token duplication has occurred
by writing the position of the duplicate token.

• S-Inhibition Heads remove duplicate tokens from Name Mover Heads’ attention. They are active
at the END token, attend to the S2 token, and write in the query of the Name Mover Heads,
inhibiting their attention to S1 and S2 tokens.

• Name Mover Heads output the remaining name. They are active at END, attend to previous names
in the sentence, and copy the names they attend to. Due to the S-Inhibition Heads, they attend to
the IO token over the S1 and S2 tokens.

IO
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went
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to

S1+1 Previous Token Heads
2.2   4.11
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Figure 2: We discover a circuit in GPT-2 small that implements IOI. The input tokens on the left are
passed into the residual stream. Attention heads move information between residual streams: the
query and output arrows show which residual streams they write to, and the key/value arrows show
which residual streams they read from.
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(a) bioS(N) data — 1000 exposures — peak R(F ) → 2 (b) bioS(N) data — 100 exposures — peak R(F ) → 1

Figure 1: Scaling laws for GPT2 pretrained on bioS(N) data using fp16 (mixed-precision) for 1000/100 exposures.

Conclusion. The peak capacity ratios consistently exceed R(F ) → 2 (resp. → 1) for 1000 exposures (resp.
100 exposures) of pretraining on each knowledge piece, regardless of model depth/size.

Remarks. Each dot ω-h represents GPT2 with ω layers, h heads, and 64d dimensions. The learned
knowledge is calculated by the bit-complexity lower bound Theorem 3.2. The appendix also includes:
Figure 11 showing similar results for bioSsimple(N) and bioR(N) data, Figure 14 demonstrating that the
same holds for quantization using int8, Figure 10 confirming full extractability of all learned knowledge.13

Larger models? Training GPT2-20-16 on bioS(10M) for 1000 exposures costs 8.5 days with 64 A100s,
while GPT2-12-32 on bioS(20M) for 100 exposures took 2.4 days. In our synthetic setting, we see no need
to scale up further. Instead, we prefer to allocate GPUs to explore other aspects covered in this paper.

Remark 4.2. One must have R(F ) → Rmax(F ), and equality is obtained if the model is perfect. For
a fixed dataset, further increases in model size do not yield additional knowledge, thus Rmax(F )
approaches zero as the model size P increases. On the other hand, Theorem 3.2 implies, ignoring
lower-order terms, that if the model parameters are 8-bit (such as int8), then R(F ) → 8.

For our bioS(N) data, we define a slightly reduced capacity ratio by omitting the diversity term.11

Definition 4.3. Given a model F with P parameters trained over the bioS(N) dataset Z, suppose
it gives p1 = lossname(Z) and p2 = lossvalue(Z), its capacity ratio12

R(F )
def
=

N log2
N0
ep1 + N log2

S0
ep2

P
and Rmax(F )

def
=

N log2
N0
N + N log2 S0

P

for N0 = 400 ↑ 400 ↑ 1000 and S0 = 2 ↑ (12 · 28 · 200) ↑ 200 ↑ 300 ↑ 100 ↑ 263 (c.f. Footnote 9).

Remark 4.4. Ignoring names, each person contains log2(S0) ↓ 47.6 bits of knowledge.

5 Base Scaling Laws

11A version of Theorem 3.2 can be proven for this dataset with a simpler proof, as it excludes the diversity set. This
could also mean the model has full prior knowledge of the diversity set (e.g., assuming a fixed set of 300 university
names) without counting this knowledge towards its learned bits.

12Here, one can let K = {birth date, birth city, university, major, employer, gender} and accordingly define

lossvalue(Z)
def
= En→N

∑
a→K ↑ log PrR

[
F↑(W (Z), n, a, R) = vω(n, a)

]
.

13A distinction exists between memorizable knowledge (e.g., text memorized during pretraining) and knowledge
flexibly extractable via instruction fine-tuning [3]; our results in this paper apply to both.
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What are Transformer LLMs doing?

Reasoning over context
Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
Many results on expressivity (e.g., circuits, formal languages, graph connectivity)

▶ e.g., (Merrill et al., 2022; Liu et al., 2023; Sanford et al., 2023)

Knowledge storage
Memorization, factual recall, parameter scaling

▶ e.g., (Geva et al., 2020; Allen-Zhu and Li, 2024)
Allows higher-level reasoning

Goal: tractable model for both + training dynamics?
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Transformer language models
Input: sequence of discrete tokens (z1, . . . , zT ) ∈ [N]T

Embeddings
input ez , positional pt , output uy , in Rd

this talk: fixed to random init N (0, 1/d)

Residual streams (Elhage et al., 2021)
embed each token zt ∈ [N] as xt := ezt + pt

(causal) self-attention xt := xt + MHSA(xt , x1:t)
feed-forward xt := xt + MLP(xt)
residual stream xt is a sum of embeddings/“features”
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(causal) self-attention xt := xt + MHSA(xt , x1:t)

feed-forward xt := xt + MLP(xt)
residual stream xt is a sum of embeddings/“features”

MHSA(xt , x1:t) =
H∑

h=1

t∑
s=1

βh
s W h⊤

O W h
V xs , with βh

s =
exp(xs

⊤W h⊤
K W h

Qxt)∑t
s=1 exp(xs⊤W h⊤

K W h
Qxt)

where WK , WQ, WV , WO ∈ Rdh×d (key/query/value/output matrices)
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Transformer language models
Input: sequence of discrete tokens (z1, . . . , zT ) ∈ [N]T

Embeddings
input ez , positional pt , output uy , in Rd

this talk: fixed to random init N (0, 1/d)

Residual streams (Elhage et al., 2021)
embed each token zt ∈ [N] as xt := ezt + pt

(causal) self-attention xt := xt + MHSA(xt , x1:t)
feed-forward xt := xt + MLP(xt)

residual stream xt is a sum of embeddings/“features”

MLP(xt) = V ⊤σ(Uxt)

where U, V ∈ Rm×d , often m = 4d
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Transformer language models
Input: sequence of discrete tokens (z1, . . . , zT ) ∈ [N]T

Embeddings
input ez , positional pt , output uy , in Rd

this talk: fixed to random init N (0, 1/d)

Residual streams (Elhage et al., 2021)
embed each token zt ∈ [N] as xt := ezt + pt

(causal) self-attention xt := xt + MHSA(xt , x1:t)
feed-forward xt := xt + MLP(xt)
residual stream xt is a sum of embeddings/“features”

Next-token prediction
cross-entropy loss ∑

t<T
ℓ(zt+1; (uj

⊤xt)j)
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Outline

1 Associative memories

2 Application to Transformers I: factual recall (Nichani et al., 2024)

3 Application to Transformers II: reasoning / retrieval (B. et al., 2023; Vural et al., 2025+)
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Associative memories: background
Hopfield nets (Hopfield, 1982)

Store N patterns ξi ∈ {±1}d using Hebb’s rule:

W =
N∑

i=1
ξiξ

⊤
i ∈ Rd×d

Recover pattern from corrupted version by iterating: x ′ = sign(Wx)

Iterates descend on a quadratic energy landscape E (x) = −x⊤Wx
Can store N = Θ̃(d) patterns (Amit et al., 1985; McEliece et al., 1988)

Modern Hopfield nets (a.k.a dense associative memories)
Improve capacity through higher-order energy function

▶ (Krotov and Hopfield, 2016; Demircigil et al., 2017; Lucibello and Mézard, 2024)
e.g., capacity dk−1 when using energy E (x) = −

∑N
i=1(ξ⊤

i x)k

Attention as associative memory
Softmax attention as one step retrieval in dense associative memory over context

▶ Ramsauer et al. (2020); Smart, B., and Sengupta (2025): emerges from in-context denoising
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Transformer weights as associative memories
Consider sets of nearly orthonormal embeddings {ez}z∈Z and {uy }y∈Y :

∥ez∥ ≈ 1 and ez
⊤ez ′ ≈ 0

∥uy ∥ ≈ 1 and uy
⊤uy ′ ≈ 0

Consider pairwise associations (z , y) ∈ M with weights αzy and define:

W =
∑

(z,y)∈M
αzy uy ez

⊤ =⇒ uy
⊤W ez ≈ αzy

Examples in Transformers
ez , uy are input/output/positional embeddings, or intermediate representations
Logits in attention heads: x⊤

k WKQxq

Logits in next-token prediction: u⊤
y Uσ(Vxt) or u⊤

y WOV xk
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Gradient associative memories
Lemma (Gradients as memories, B. et al., 2023)
Let p be a data distribution over (z , y) ∈ [N]2, and consider the loss

L(W ) = E(z,y)∼p[ℓ(y , FW (z))], FW (z)k = uk
⊤W ez ,

with ℓ the cross-entropy loss and ez , uk input/output embeddings.

Then,

∇L(W ) =
K∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))ukez

⊤]

Example: z ∼ Unif([N]), y = f∗(z)
▶ After one gradient step on the population loss, assuming near-orthonormal embeddings

W1 = η

N
∑
z,k

(
1{f∗(z) = k} − 1

N

)
ukez

⊤ =⇒ uk
⊤W1ez ≈ η

N

(
1{f∗(z) = k} − 1

N

)
▶ Corollary: f̂ (z) = arg maxk uk

⊤W1ez has near-perfect accuracy
More generally, replace uk by “backward” vector

Note: related to (Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Yang and Hu, 2021)
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▶ After one gradient step on the population loss, assuming near-orthonormal embeddings

W1 = η

N
∑
z,k

(
1{f∗(z) = k} − 1

N

)
ukez

⊤ =⇒ uk
⊤W1ez ≈ η

N

(
1{f∗(z) = k} − 1

N

)
▶ Corollary: f̂ (z) = arg maxk uk

⊤W1ez has near-perfect accuracy

More generally, replace uk by “backward” vector
Note: related to (Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Yang and Hu, 2021)
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Capacity: Intuition
Random embeddings ez , uy ∼ N (0, 1

d I)

For some f ∗ : [N] → [M], consider “one gradient step” solution

W =
N∑

z=1
uf ∗(z)ez

⊤ ∈ Rd×d

When can we recover arg maxy γz,y = f ∗(z) for all z?

γz,y := uy
⊤W ez =

∑
z ′

u⊤
y uf ∗(z ′)e⊤

z ez ′

E[γz,y ] =
{

1, if y = f ∗(z)
0, otherwise.

Var[γz,y ] ≲ |{f ∗(z ′) = y}|
d + |{f ∗(z ′) ̸= y}|

d2

?
≲ 1

Examples: (Cabannes, Dohmatob, and B., 2024a; Nichani, Lee, and B., 2024)
▶ f ∗ injective: can store up to N ≈ d2 associations (much better than one hot!)
▶ f ∗(z) ∈ {0, 1}: can store up to N ≈ d associations
▶ Scaling laws: store the most frequent tokens with under-parameterized model
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Capacity ≈ number of parameters
Low-rank

W = W ⊤
1 W2, with W1, W2 ∈ Rm×d (e.g., key-query or output-value matrices)

can store N ≈ md associations when m ≤ d
construction: random W1, one step on W2

Non-linear MLP
f̂ (z) = arg maxy uy

⊤W1σ(W ⊤
2 ez), W1, W2 ∈ Rd×m

can store N ≈ md associations for any width m
construction: using Hermite polynomials of degree ≈ log N/ log d in kernel regime

Multi-input
f̂ (z1, z2) = arg maxy uy

⊤W1σ(W ⊤
2 (ez1 + ẽz2))

also N ≈ md capacity

Note: matches information-theoretic lower bounds

(Nichani, Lee, and B., 2024), related to Krotov and Hopfield (2016); Demircigil et al. (2017)
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Outline

1 Associative memories

2 Application to Transformers I: factual recall (Nichani et al., 2024)

3 Application to Transformers II: reasoning / retrieval (B. et al., 2023; Vural et al., 2025+)
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Toy model of factual recall

EOS⋯ ⋯ ⋯ →s r a*z1 zi−1 zi+1 zj−1 zj+1 zT−1

The capital of France is Paris

s ∈ S: subject token
r ∈ R: relation token
a∗(s, r) ∈ Ar : attribute/fact to be stored
zi ∈ N : noise tokens

Q: How many parameters do Transformers need to solve this?
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How many parameters do we need?

One-layer Transformer, with or without MLP, random embeddings
Embedding dimension d , head dimension dh, MLP width m, H heads

Theorem (Nichani et al., 2024, informal)
Attention + MLP: Hdh ≳ S + R and md ≳ SR succeeds
Attention-only: d ≳ R + Amax and Hdh ≳ S succeeds (Amax := maxr |Ar |)
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Attention + MLP: Hdh ≳ S + R and md ≳ SR succeeds
Attention-only: d ≳ R + Amax and Hdh ≳ S succeeds (Amax := maxr |Ar |)

Total parameters scale with number of facts SR (up to Amax)
Constructions are based on associative memories
Attention-only needs large enough d
Noise is negligible (log factors)
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Figure 3: Both the Attention-only and Attention+MLP constructions for the factual recall task.

subject/relation z. Letting Ph be a projection onto a random dh-dimensional subspace of Rd, we
set

W
(h)
O

→
W

(h)
V →

∑

z↑S(h)

∑

a↑Az

ω(a)ω(z)→Ph. (12)

In Lemma 2, we show that this construction stores at most dh tokens per head (i.e
∣∣S(h)

∣∣ ↭ dh),
and requires the dimension to scale with the number of elements in superposition (i.e |Az| ↭ d).
Since |Az| ↑ R+D, and the S(h) partition S↓R, it suffices to take d ↫ R+D and Hdh ↫ S +R.

For the MLP construction, we instead associate the subset S(h) with ↔d/dh↗ attention heads. This is
equivalent to having a single full-rank attention head per subset. We set the aggregate output-value
matrix to the identity, so that the output of the self-attention layer is FMHSA(X;ε) = ω(s)+ω(r).
Finally, the MLP layer acts as an MLP associative memory, mapping ω(s) + ω(r) to ω(a↓(s, r))
for each (s, r) pair. Via a similar computation to Theorem 2, it suffices to make the total number of
parameters md be md = !̃(SR). Since the S(h) partition S ↓ R, it suffices to take Hdh ↫ S + R
as well. See Figure 3 for a diagram describing both constructions.

4.4 Empirical Validation
We next empirically validate the claims of Theorems 3 and 4 that 100% accuracy can be obtained
as long as either the total number of self-attention or MLP parameters scales with SR. We further
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Figure 3: (Left) The number of facts stored scales linearly with the total number of parameters, for
a wide range of model sizes. (Right) For a fixed dataset, the model can trade off MLP parameters
for attention parameters to obtain 100% accuracy.

specific dataset with S = 32, R = 32, D = 8, and plot the accuracy of a wide range of models. We
observe that the model can trade off MLP parameters for attention parameters, will still maintaining
an accuracy of near 1. However, we do still require the total number of attention parameters to be
large enough; this corresponds to the Hdh = !̃(S + R) constraint in Theorems 3 and 4.

5 OPTIMIZATION DYNAMICS

We next analyze the optimization dynamics of a single-layer attention-only transformer trained on
the task from Section 4. As analyzing the GD dynamics of softmax attention poses a significant
challenge, we instead study the training dynamics of a linear transformer with orthogonal embed-
dings. That is, we let the embedding dimension be d = |V|, and assume that the embedding vectors
ω(z) for each token z → V satisfy ↑ω(z),ω(z→)↓ = 1(z = z→). Such linear attention and orthogo-
nal embeddings assumptions are common in prior works studying the gradient descent dynamics of
transformers. [EN: TODO cite papers also using linear attention]

The linear attention head is given by

Flin(X;ε) := W↑
O WV X↑XW↑

K WQxT .

Setting dh = d, and defining the combined matrices WOV = W↑
O WV , WKQ = W↑

K WQ, we
observe that the model can be rewritten as

ω(a)↑Flin(X;ε) = ω(a)↑WOV X↑XWKQxT

=
T∑

t=1

ω(a)↑WOV ω(zt) · ω(zt)
↑WKQω(EOS)

Let us define WOV (a, z) := ω(a)↑WOV ω(z).WKQ(z) := ω(z)↑WKQω(EOS). We can then
write

ω(a)↑Flin(X;ε) =

T∑

t=1

WOV (a, zt)WKQ(zt)

Due to the orthogonality assumption on the embeddings, the parameters for each token z de-
couple. That is, running gradient descent on WOV , WKQ is equivalent to running GD on the
WOV (a, z), WKQ(z). Thus letting the parameter vector be ε := {WOV (a, z)}a↓A,z↓V ↔
{WKQ}z↓V we get that the cross entropy loss is

L(ε) := Ez1:T+1

[
↗↑ω(zT+1), Flin(X;ε)↓+ log

(∑

a↓A
exp (↑ω(a), Flin(X;ε)↓)

)]
(7)

6
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Training dynamics
One-layer Transformer with linear attention and one-hot embeddings
Gradient flow with initialization WOV (a, z), wKQ(z) ≈ α > 0

Theorem (Nichani et al., 2024, informal)
We have global convergence to zero loss
There is an intermediate phase where the model predicts with p(a|r) instead of p(a|s, r)

Intermediate phase corresponds to hallucination (over Ar , ignoring s)

Figure 5: (Left) Loss of the linear attention model with orthogonal embeddings. There is an
intermediate hallucination stage where the loss plateaus and the model predicts based on only the
relation. (Right) Loss of the softmax attention model with random embeddings. We again observe
an intermediate hallucination stage, where the relation-only loss is zero but the total loss is still
large.

Remarks. Theorem 6 tells us that at some intermediate time, the prediction of the model p̂(· |
z1:T ) is approximately equal to p→(· | r), the conditional distribution of the answer given the
relation r. At this stage, the model ignores all other tokens in the sequence z1:T – including the
useful subject token s – and predicts based only on the relation r. For example, if S is the set of
all countries and r is the relation “capital,” then on the prompt “What is the capital of France?”
the model will output a random countries’ capital. We view this as an instance of hallucination:
the model is outputting a plausible, yet ultimately incorrect, answer to the prompt. We remark
that without the assumption that S → R, it is possible for this intermediate hallucination stage to
exhibit different behavior.

Empirical Validation. We next empirically verify Theorems 5 and 6. We first train the linear
attention model with orthogonal embeddings (15) with S = 16, R = 4 and D = 8, and plot the loss
over time. In the left pane of Figure 5, we observe three distinct stages. At the start of training, the
prediction is close to uniform over all possible answers, and the model obtains a loss of log |A|.
Next, the loss plateaus at log D, and the model outputs the conditional distribution of a given
the relation r. Finally, as training continues, the model escapes the plateau and converges to zero
loss. We include the “relation-only loss” in the plot, defined as Ez1:T+1

[
↑ log

(∑
a↑Ar

p(a | z1:T )
)]

,
where any probability mass assigned to an answer which is valid for the relation r is considered to
be correct; the subject-only loss is defined analogously.

In the right pane of Figure 5, we plot the loss of a single softmax attention head with random
embeddings trained on the same factual recall task. We observe similar phenomenology as for
linear attention, and identify an intermediate “hallucination” stage where the relation-only loss
drops to zero, but the subject-only loss is still far from zero.
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Outline

1 Associative memories

2 Application to Transformers I: factual recall (Nichani et al., 2024)

3 Application to Transformers II: reasoning / retrieval (B. et al., 2023; Vural et al., 2025+)
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The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr White went … then Mr ___

trigger output 

Fix trigger tokens: q1, . . . , qK
Sample each sequence z1:T ∈ [N]T as follows

Output tokens: ok ∼ πo(·|qk) (random)
Sequence-specific Markov model: z1 ∼ π1, zt |zt−1 ∼ p(·|zt−1) with

p(j |i) =
{
1{j = ok}, if i = qk , k = 1, . . . , K
πb(j |i), o/w.

πb: global bigrams model (estimated from Karpathy’s character-level Shakespeare)
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Transformers on the bigram task

The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr White went … then Mr ___

trigger output 

1-layer transformer fails: ∼ 55% accuracy on in-context output predictions
2-layer transformer succeeds: ∼ 99% accuracy

See (Sanford, Hsu, and Telgarsky, 2023, 2024) for representational lower bounds
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(1-hop) Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

     …            {t+1, Mr, White}    …     {T, Mr} 

…      {t, Mr}          {t+1, White}        …      {T, Mr}   

     …          {t+1, Mr, White}    …   {T, Mr, White} 

1st layer: previous-token head
▶ attends to previous token and copies it to residual stream

2nd layer: induction head
▶ attends to output of previous token head, copies attended token

Matches observed attention scores:

               r s a b t s L a b t s L , a b
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Random embeddings in high dimension
We consider random embeddings ui with i.i.d. N (0, 1/d) entries and d large

∥ui∥ ≈ 1 and u⊤
i uj = O(1/

√
d)

Remapping: multiply by random matrix W with N (0, 1/d) entries:

∥Wui∥ ≈ 1 and u⊤
i Wui = O(1/

√
d)

Value/Output matrices help with token remapping: Mr 7→ Mr, White 7→ White

     …            {t+1, Mr, White}    …     {T, Mr} 

…      {t, Mr}          {t+1, White}        …      {T, Mr}   

     …          {t+1, Mr, White}    …   {T, Mr, White} 
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Induction head with associative memories

Layer 0

Sequence

Layer 1

Layer 2

pt−1 wE(a) pt wE(b) pT−1 wE(a)

a b a b[· · · ]

∗ wE(a) w1(a) wE(b) ∗ wE(a)

∗ ∗ ∗ ∗ wU (b) wE(a)

Attn1:
∑

s ps−1p
⊤
s

W 1
OW

1
V Residual

Attn2:
∑

k w1(k)wE(k)
⊤ W 2

OW 2
V :

∑
k wU (k)wE(k)

⊤

Prediction

W 1
KQ =

T∑
t=2

ptp⊤
t−1, W 2

KQ =
∑
k∈Q

ek ẽ⊤
k , W 2

OV =
N∑

k=1
uke⊤

k ,

Random embeddings ek , uk , random matrix W 1
OV (frozen at init)

Remapped previous tokens: ẽk := W 1
OV ek

Q: Does this match practice?

Alberto Bietti Transformers and Associative Memories Cargèse 2025 19 / 25



Induction head with associative memories

Layer 0

Sequence

Layer 1

Layer 2

pt−1 wE(a) pt wE(b) pT−1 wE(a)

a b a b[· · · ]

∗ wE(a) w1(a) wE(b) ∗ wE(a)

∗ ∗ ∗ ∗ wU (b) wE(a)

Attn1:
∑

s ps−1p
⊤
s

W 1
OW

1
V Residual

Attn2:
∑

k w1(k)wE(k)
⊤ W 2

OW 2
V :

∑
k wU (k)wE(k)

⊤

Prediction

W 1
KQ =

T∑
t=2

ptp⊤
t−1, W 2

KQ =
∑
k∈Q

ek ẽ⊤
k , W 2

OV =
N∑

k=1
uke⊤

k ,

Random embeddings ek , uk , random matrix W 1
OV (frozen at init)

Remapped previous tokens: ẽk := W 1
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Empirically probing the dynamics
Train only W 1

KQ, W 2
KQ, W 2

OV , loss on deterministic output tokens only

Figure 3: Learning the induction head alone: in-context accuracy (top) and recall probes
(bottom) with some layers frozen until iteration 300. The output matrix W 2

O can and must be learned
before the key-query matrices, but does not suffice for good accuracy. It is easier to learn W 2

K
before W 1

K , and W 1
K stores initial context positions (t < 64) much faster than late positions.

The question remains of how the model could trade-off predictions from the induction head and from229

the feed-forward layer, which are added together due to residual connections. With fixed triggers Q,230

we may simply remove all i 2 Q from the summation in (8), so that the model exclusively relies231

on the attention head for all triggers (indeed, the output of W 2
O is in the span of output embeddings,232

which are nearly orthogonal to the row space of WF ). When the triggers can vary across different233

sequences, choosing between the induction head and the feed-forward layer is more ambiguous as234

it depends on context, and WF may try to learn more complex mappings that also use the outputs235

of W 2
O. In practice, we observe that the model often prefers the induction head, unless its output236

agrees with one of the top predictions from the global bigram, in which case it tends to prefer those.237

5 Empirical Study238

In this section, we present our empirical analysis of learning dynamics on the bigram data defined in239

Section 3, for the simplified architecture defined in Section 4.2. See Appendix D for additional results.240

Experimental setup. We train our models using mini-batch SGD with momentum, where each241

batch consists of 512 fresh sequences of length T = 256 sampled from our synthetic model. We use242

a fixed learning rate and weight decay. Hyperparameters are given in Appendix D. Unless otherwise243

noted, we use d = 128, random triggers with ⇡q = ⇡u and uniform output tokens. The reported244

accuracies and losses are computed over each fresh batch before it is used for optimization, and245

are averaged over relevant tokens: “in-context accuracy/loss” numbers only consider predictions246

of output tokens on triggers starting at the second occurrence (the first is non-deterministic), while247

“global loss” refers to average loss on non-trigger tokens.248

Memory recall probes. In addition to loss and accuracy, we consider metrics to check whether249

individual matrices have learned the desired associative memories: for a desired target memory W⇤ =250 P
(i,j)2M vju

>
i , the corresponding recall metric is computed from the empirical estimate Ŵ as251

R(Ŵ , W⇤) =
1

|M|
X

(i,j)2M
{arg max

j0
v>j0Ŵui = j}. (9)

We use this for each matrix in (7) as target, and additionally test the previous token matrix W 1
K on252

smaller time windows. For the final feed-forward layer, we measure the average KL divergence253

between the predicted softmax distribution using only WF and the global bigram distribution ⇡b:254

dKL(WF , ⇡b) :=
1

N

NX

k=1

dKL(�(WUWF wE(k)), ⇡b(·|k)). (10)

255
Emergence of the induction head via top-down learning. We begin our study by only training256

to minimize the loss on trigger-output token predictions after their first occurrence. This should257

7

“Memory recall probes”: for target memory W∗ =
∑M

i=1 uie⊤
i , compute

R(Ŵ , W∗) = 1
M

M∑
i=1

1{i = arg max
j

u⊤
j Ŵ ei}

Natural learning “order”: W 2
OV first, W 2

KQ next, W 1
KQ last

Joint learning is faster
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agrees with one of the top predictions from the global bigram, in which case it tends to prefer those.237

5 Empirical Study238

In this section, we present our empirical analysis of learning dynamics on the bigram data defined in239

Section 3, for the simplified architecture defined in Section 4.2. See Appendix D for additional results.240

Experimental setup. We train our models using mini-batch SGD with momentum, where each241

batch consists of 512 fresh sequences of length T = 256 sampled from our synthetic model. We use242

a fixed learning rate and weight decay. Hyperparameters are given in Appendix D. Unless otherwise243

noted, we use d = 128, random triggers with ⇡q = ⇡u and uniform output tokens. The reported244

accuracies and losses are computed over each fresh batch before it is used for optimization, and245

are averaged over relevant tokens: “in-context accuracy/loss” numbers only consider predictions246

of output tokens on triggers starting at the second occurrence (the first is non-deterministic), while247

“global loss” refers to average loss on non-trigger tokens.248

Memory recall probes. In addition to loss and accuracy, we consider metrics to check whether249

individual matrices have learned the desired associative memories: for a desired target memory W⇤ =250 P
(i,j)2M vju

>
i , the corresponding recall metric is computed from the empirical estimate Ŵ as251

R(Ŵ , W⇤) =
1

|M|
X

(i,j)2M
{arg max

j0
v>j0Ŵui = j}. (9)

We use this for each matrix in (7) as target, and additionally test the previous token matrix W 1
K on252

smaller time windows. For the final feed-forward layer, we measure the average KL divergence253

between the predicted softmax distribution using only WF and the global bigram distribution ⇡b:254

dKL(WF , ⇡b) :=
1

N

NX

k=1

dKL(�(WUWF wE(k)), ⇡b(·|k)). (10)

255
Emergence of the induction head via top-down learning. We begin our study by only training256

to minimize the loss on trigger-output token predictions after their first occurrence. This should257

7

“Memory recall probes”: for target memory W∗ =
∑M

i=1 uie⊤
i , compute

R(Ŵ , W∗) = 1
M

M∑
i=1

1{i = arg max
j

u⊤
j Ŵ ei}

Natural learning “order”: W 2
OV first, W 2

KQ next, W 1
KQ last

Joint learning is faster
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Gradient steps for the bigram task
Setting: transformer on the bigram task

Focus on predicting second output token
All distributions are uniform
Some simplifications to architecture
Infinite width, infinite data, N ≫ T

Theorem (B. et al., 2023, informal)
In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss: first on W 2

OV , then W 2
KQ, then W 1

KQ.

Key ideas
Attention is uniform at initialization =⇒ inputs are sums of embeddings
W 2

OV : correct output appears w.p. 1, while other tokens are noisy and cond. indep. of zT

W 1/2
KQ : correct associations lead to more focused attention

See also Eshaan’s talk for k-hop with finite samples
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Key idea: gradient associative memories with noisy inputs
Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs, B. et al., 2023)
Let p be a data distribution over (x , y) ∈ Rd × [N], and consider the loss

L(W ) = E(x ,y)∼p[ℓ(y , FW (x))], FW (z)k = uk
⊤W x .

Denoting µk := E[x |y = k] and µ̂k := Ex [ p̂W (k|x)
p(y=k) x ], we have

∇W L(W ) =
N∑

k=1
p(y = k)uk(µ̂k − µk)⊤.

Example: y ∼ Unif([N]), t ∼ Unif([T ]), x = ey + pt . One gradient step:

u⊤
k W1(ey + pt) ≈ η

N 1{y = k} + O
( 1

N2

)

Similar arguments for attention matrices

Alberto Bietti Transformers and Associative Memories Cargèse 2025 22 / 25



Key idea: gradient associative memories with noisy inputs
Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs, B. et al., 2023)
Let p be a data distribution over (x , y) ∈ Rd × [N], and consider the loss

L(W ) = E(x ,y)∼p[ℓ(y , FW (x))], FW (z)k = uk
⊤W x .

Denoting µk := E[x |y = k] and µ̂k := Ex [ p̂W (k|x)
p(y=k) x ], we have

∇W L(W ) =
N∑

k=1
p(y = k)uk(µ̂k − µk)⊤.

Example: y ∼ Unif([N]), t ∼ Unif([T ]), x = ey + pt . One gradient step:

u⊤
k W1(ey + pt) ≈ η

N 1{y = k} + O
( 1

N2

)

Similar arguments for attention matrices

Alberto Bietti Transformers and Associative Memories Cargèse 2025 22 / 25



Key idea: gradient associative memories with noisy inputs
Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs, B. et al., 2023)
Let p be a data distribution over (x , y) ∈ Rd × [N], and consider the loss

L(W ) = E(x ,y)∼p[ℓ(y , FW (x))], FW (z)k = uk
⊤W x .

Denoting µk := E[x |y = k] and µ̂k := Ex [ p̂W (k|x)
p(y=k) x ], we have

∇W L(W ) =
N∑

k=1
p(y = k)uk(µ̂k − µk)⊤.

Example: y ∼ Unif([N]), t ∼ Unif([T ]), x = ey + pt .

One gradient step:

u⊤
k W1(ey + pt) ≈ η

N 1{y = k} + O
( 1

N2

)

Similar arguments for attention matrices

Alberto Bietti Transformers and Associative Memories Cargèse 2025 22 / 25



Key idea: gradient associative memories with noisy inputs
Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs, B. et al., 2023)
Let p be a data distribution over (x , y) ∈ Rd × [N], and consider the loss

L(W ) = E(x ,y)∼p[ℓ(y , FW (x))], FW (z)k = uk
⊤W x .

Denoting µk := E[x |y = k] and µ̂k := Ex [ p̂W (k|x)
p(y=k) x ], we have

∇W L(W ) =
N∑

k=1
p(y = k)uk(µ̂k − µk)⊤.

Example: y ∼ Unif([N]), t ∼ Unif([T ]), x = ey + pt . One gradient step:

u⊤
k W1(ey + pt) ≈ η

N 1{y = k} + O
( 1

N2

)

Similar arguments for attention matrices

Alberto Bietti Transformers and Associative Memories Cargèse 2025 22 / 25



Key idea: gradient associative memories with noisy inputs
Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs, B. et al., 2023)
Let p be a data distribution over (x , y) ∈ Rd × [N], and consider the loss

L(W ) = E(x ,y)∼p[ℓ(y , FW (x))], FW (z)k = uk
⊤W x .

Denoting µk := E[x |y = k] and µ̂k := Ex [ p̂W (k|x)
p(y=k) x ], we have

∇W L(W ) =
N∑

k=1
p(y = k)uk(µ̂k − µk)⊤.

Example: y ∼ Unif([N]), t ∼ Unif([T ]), x = ey + pt . One gradient step:

u⊤
k W1(ey + pt) ≈ η

N 1{y = k} + O
( 1

N2

)

Similar arguments for attention matrices
Alberto Bietti Transformers and Associative Memories Cargèse 2025 22 / 25



Finite width and finite samples (Vural et al., 2025+)

Data model: y = f ∗(zt∗), with one planted relevant token zt∗ in a context of length T

Assume first layer is already learned (trigger appears along with relevant token)
Three steps: first WOV , then WKQ, then WOV again (see also Oymak et al., 2023)
d : embed dimension, N: vocab size, T : context length, n: sample size

Theorem (Learnability of induction head, Vural, Wu, and B., 2025+, informal)
Assume d ≫

√
N ≫ 1 and n ≫ N. The Transformer learns the desired mapping iff

d ≫ T 2

N min

1,

(
N2

Tn

)2/3


If T = Θ(1), d ≫
√

N is enough
If T ≫ 1, need d ≫

√
N is not enough unless n is very large
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Concluding remarks

Transformer weights as associative memories
Storage capacity and gradient-based learning
Toy models of reasoning and factual recall

Future directions
Analysis for more general tasks
Fine-grained optimization
Learning embeddings

Thank you!
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Global vs in-context associations

Figure 4: Global vs in-context learning and data-distributional effects. (left) Loss on global
(dashed) vs in-context (solid) tokens throughout training, for fixed or random trigger tokens qk. The
red curves fixes the trigger q1 to the most frequent token, while the fixed triggers in blue curves
are less common. (center) In-context accuracy with different training and test distributions ωo for
output tokens. Uniform leads to better generalization than global bigrams ωb. (right) Probe metrics
throughout training: W 2

O and WF eventually compete and deviate from our natural estimates.

when using out-of-distribution output tokens, while training on uniform outputs performs well on
both distributions. This highlights that using a more diverse training distribution can lead to models
with better generalization accuracy, with little additional training cost.

Additional experiments. In Appendix E, we provide additional experimental results for varying
dimensionality, more complex architectures and training methods, as well as more fine-grained
visualizations of the memory associations.

6 Theoretical Insights on Learning Dynamics

In this section, we provide theoretical insights on how gradients near initialization may allow the
emergence of induction heads, and how this behavior is affected by data-distributional properties.

Finding signal in noisy inputs. In Lemma 1, we showed how gradient dynamics on a simple
classification task with fixed embeddings of the inputs and outputs lead to associative memories.
We now show that when inputs consist of superpositions of multiple embeddings, as is the case in
the transformer residual streams, gradients may learn associative memories that filter out irrelevant
components of these superpositions, focusing on useful signal instead.
Lemma 2 (Gradient associative memory with noisy inputs). Let p be a data distribution on (x, y) →
Rd ↑ [N ], and consider the following classification problem, with fixed output embeddings WU :

L(W ) = E(x,y)→p[ε(y, WUWx)].

The gradients take the following form: denoting µk := E[x|y = k] and µ̂k := Ex[ p̂W (k|x)
p(y=k) x],

↓W L(W ) =

N∑

k=1

p(y = k)wU (k)(µ̂k ↔ µk)↑.

The key takeaway from this lemma is that with enough data (here infinite data), the associative
memory arising from gradients can learn to filter out noise from inputs, since it only depends on
its expectations or conditional expectations. In particular, µk can isolate relevant parts of x that are
predictive of a label k, and thus can lead to the right associations.

An illustrative example. To gain more intuition about this result, consider the following example:
we would like to predict y from x = wE(y) + pt, where pt is a positional embedding at a random
position t → [T ], which we would like to ignore. Further assume that y is uniformly distributed
with p(y = k) = 1/N , and consider the matrix obtained after one population gradient step with
step-size ϑ starting from an initialization W0 = 0 (so that p̂W0

(k|x) = 1/N ):

W1 =
ϑ

N

N∑

k=1

wU (k)(µk ↔ µ̄)↑,

9
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We now show that when inputs consist of superpositions of multiple embeddings, as is the case in
the transformer residual streams, gradients may learn associative memories that filter out irrelevant
components of these superpositions, focusing on useful signal instead.
Lemma 2 (Gradient associative memory with noisy inputs). Let p be a data distribution on (x, y) →
Rd ↑ [N ], and consider the following classification problem, with fixed output embeddings WU :

L(W ) = E(x,y)→p[ε(y, WUWx)].

The gradients take the following form: denoting µk := E[x|y = k] and µ̂k := Ex[ p̂W (k|x)
p(y=k) x],

↓W L(W ) =

N∑

k=1

p(y = k)wU (k)(µ̂k ↔ µk)↑.

The key takeaway from this lemma is that with enough data (here infinite data), the associative
memory arising from gradients can learn to filter out noise from inputs, since it only depends on
its expectations or conditional expectations. In particular, µk can isolate relevant parts of x that are
predictive of a label k, and thus can lead to the right associations.

An illustrative example. To gain more intuition about this result, consider the following example:
we would like to predict y from x = wE(y) + pt, where pt is a positional embedding at a random
position t → [T ], which we would like to ignore. Further assume that y is uniformly distributed
with p(y = k) = 1/N , and consider the matrix obtained after one population gradient step with
step-size ϑ starting from an initialization W0 = 0 (so that p̂W0

(k|x) = 1/N ):

W1 =
ϑ

N

N∑

k=1

wU (k)(µk ↔ µ̄)↑,
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Figure 2: Left: average probability of tokens [IO], [S] and “the” in IOI task in the prediction by
Pythia-1B along training. Right: average probability of tokens “Spain” and “the” in a factual task
predicted by Pythia-1B along training, with input as “Madrid is located in”. In both tasks, the full
model learns to predict “the” with high probability starting from →10 steps, and then learns to solve
the tasks. LASER boosts the probability of correct answers against “the” in both tasks: the average
probability ratio of correct answers against “the” improves from 2.3↑ to 12.3↑ (in IOI) and from
0.16↑ to 11.3↑ (in factual) at 14K steps.

learned later. Conceptually, if LLMs are able to write natural text or have been trained sufficiently
with natural texts, it is not surprising for the model to predict “the” with high probability after seeing
“to”. This is verified in Appendix B.1.

Implications from experiments. We summarize our main experimental observations of this section.
Observation 1. Global associations may “distract” LLMs away from in-context predictions, hurting
performance on reasoning tasks.
Observation 2. LASER on MLP weights in LLMs helps inhibit predictions of global associations,
thus improving in-context predictions.
Observation 3. During pre-training, global associations are learned earlier than complex reasoning.

These observations raise the following questions, which we investigate in the next sections.

Q1: Why are global associations learned before than complex reasoning?

Q2: Are feed-forward layers responsible of learning global associations?

3 TWO-LAYER TRANSFORMER ON NOISY IN-CONTEXT RECALL

In this section, we consider two-layer transformers on an in-context recall task with added global
noise, which allows us to study some key properties observed in Section 2 in a controlled setting. We
empirically show how transformers solve this task by storing the noise in feed-forward layers, while
attention implements the in-context mechanism. We then provide theory showing why feed-forward
layers are more likely to store the global noise association, by studying gradients at initialization.

Data and task. The data model we consider is similar to Bietti et al. (2023), with additional noise.
Consider a vocabulary V = {1, 2, . . . , N, N + 1}. The token N + 1 is the noise token. We fix a
trigger token q ↓ [N ], which governs in-context recall, and a context length T . Each sequence of
tokens z1:T = [z1, z2, . . . , zT ] is generated as follows:

i. Sample a correct output token ȳ uniformly in [N ].
ii. Sample z1:T→1 according to the following Markov process (ωu, ωb are distributions on [N ]

defined later): z1 → ωu(·), and

zt+1|zt →
{
ωb(·|zt), if zt ↔= q,

pω,ȳ(·), otherwise,
pω,ȳ(x) =





1 ↗ ε, if x = ȳ,

ε, if x = N + 1,

0, otherwise.

5

Global bigrams are learned much faster than induction head, tend to be stored in MLPs

Trade-offs between global and in-context predictions (Chen, Bruna, and B., 2024)

Trade-offs also appear in LLMs
▶ “Madrid is located in” → {the, Spain} on Pythia-1B
▶ Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context

Theorem (Chen et al., 2024, informal)
In toy setting, feed-forward layer learns global bigram after O(1) samples, attention
after O(N) samples due to noise.
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Global vs in-context associations

Figure 4: Global vs in-context learning and data-distributional effects. (left) Loss on global
(dashed) vs in-context (solid) tokens throughout training, for fixed or random trigger tokens qk. The
red curves fixes the trigger q1 to the most frequent token, while the fixed triggers in blue curves
are less common. (center) In-context accuracy with different training and test distributions ωo for
output tokens. Uniform leads to better generalization than global bigrams ωb. (right) Probe metrics
throughout training: W 2

O and WF eventually compete and deviate from our natural estimates.

when using out-of-distribution output tokens, while training on uniform outputs performs well on
both distributions. This highlights that using a more diverse training distribution can lead to models
with better generalization accuracy, with little additional training cost.

Additional experiments. In Appendix E, we provide additional experimental results for varying
dimensionality, more complex architectures and training methods, as well as more fine-grained
visualizations of the memory associations.

6 Theoretical Insights on Learning Dynamics

In this section, we provide theoretical insights on how gradients near initialization may allow the
emergence of induction heads, and how this behavior is affected by data-distributional properties.

Finding signal in noisy inputs. In Lemma 1, we showed how gradient dynamics on a simple
classification task with fixed embeddings of the inputs and outputs lead to associative memories.
We now show that when inputs consist of superpositions of multiple embeddings, as is the case in
the transformer residual streams, gradients may learn associative memories that filter out irrelevant
components of these superpositions, focusing on useful signal instead.
Lemma 2 (Gradient associative memory with noisy inputs). Let p be a data distribution on (x, y) →
Rd ↑ [N ], and consider the following classification problem, with fixed output embeddings WU :

L(W ) = E(x,y)→p[ε(y, WUWx)].

The gradients take the following form: denoting µk := E[x|y = k] and µ̂k := Ex[ p̂W (k|x)
p(y=k) x],

↓W L(W ) =

N∑

k=1

p(y = k)wU (k)(µ̂k ↔ µk)↑.

The key takeaway from this lemma is that with enough data (here infinite data), the associative
memory arising from gradients can learn to filter out noise from inputs, since it only depends on
its expectations or conditional expectations. In particular, µk can isolate relevant parts of x that are
predictive of a label k, and thus can lead to the right associations.

An illustrative example. To gain more intuition about this result, consider the following example:
we would like to predict y from x = wE(y) + pt, where pt is a positional embedding at a random
position t → [T ], which we would like to ignore. Further assume that y is uniformly distributed
with p(y = k) = 1/N , and consider the matrix obtained after one population gradient step with
step-size ϑ starting from an initialization W0 = 0 (so that p̂W0

(k|x) = 1/N ):
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ϑ
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Figure 2: Left: average probability of tokens [IO], [S] and “the” in IOI task in the prediction by
Pythia-1B along training. Right: average probability of tokens “Spain” and “the” in a factual task
predicted by Pythia-1B along training, with input as “Madrid is located in”. In both tasks, the full
model learns to predict “the” with high probability starting from →10 steps, and then learns to solve
the tasks. LASER boosts the probability of correct answers against “the” in both tasks: the average
probability ratio of correct answers against “the” improves from 2.3↑ to 12.3↑ (in IOI) and from
0.16↑ to 11.3↑ (in factual) at 14K steps.

learned later. Conceptually, if LLMs are able to write natural text or have been trained sufficiently
with natural texts, it is not surprising for the model to predict “the” with high probability after seeing
“to”. This is verified in Appendix B.1.

Implications from experiments. We summarize our main experimental observations of this section.
Observation 1. Global associations may “distract” LLMs away from in-context predictions, hurting
performance on reasoning tasks.
Observation 2. LASER on MLP weights in LLMs helps inhibit predictions of global associations,
thus improving in-context predictions.
Observation 3. During pre-training, global associations are learned earlier than complex reasoning.

These observations raise the following questions, which we investigate in the next sections.

Q1: Why are global associations learned before than complex reasoning?

Q2: Are feed-forward layers responsible of learning global associations?

3 TWO-LAYER TRANSFORMER ON NOISY IN-CONTEXT RECALL

In this section, we consider two-layer transformers on an in-context recall task with added global
noise, which allows us to study some key properties observed in Section 2 in a controlled setting. We
empirically show how transformers solve this task by storing the noise in feed-forward layers, while
attention implements the in-context mechanism. We then provide theory showing why feed-forward
layers are more likely to store the global noise association, by studying gradients at initialization.

Data and task. The data model we consider is similar to Bietti et al. (2023), with additional noise.
Consider a vocabulary V = {1, 2, . . . , N, N + 1}. The token N + 1 is the noise token. We fix a
trigger token q ↓ [N ], which governs in-context recall, and a context length T . Each sequence of
tokens z1:T = [z1, z2, . . . , zT ] is generated as follows:

i. Sample a correct output token ȳ uniformly in [N ].
ii. Sample z1:T→1 according to the following Markov process (ωu, ωb are distributions on [N ]

defined later): z1 → ωu(·), and

zt+1|zt →
{
ωb(·|zt), if zt ↔= q,

pω,ȳ(·), otherwise,
pω,ȳ(x) =





1 ↗ ε, if x = ȳ,

ε, if x = N + 1,

0, otherwise.

5

Global bigrams are learned much faster than induction head, tend to be stored in MLPs

Trade-offs between global and in-context predictions (Chen, Bruna, and B., 2024)
Trade-offs also appear in LLMs

▶ “Madrid is located in” → {the, Spain} on Pythia-1B
▶ Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context

Theorem (Chen et al., 2024, informal)
In toy setting, feed-forward layer learns global bigram after O(1) samples, attention
after O(N) samples due to noise.
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when using out-of-distribution output tokens, while training on uniform outputs performs well on
both distributions. This highlights that using a more diverse training distribution can lead to models
with better generalization accuracy, with little additional training cost.

Additional experiments. In Appendix E, we provide additional experimental results for varying
dimensionality, more complex architectures and training methods, as well as more fine-grained
visualizations of the memory associations.
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classification task with fixed embeddings of the inputs and outputs lead to associative memories.
We now show that when inputs consist of superpositions of multiple embeddings, as is the case in
the transformer residual streams, gradients may learn associative memories that filter out irrelevant
components of these superpositions, focusing on useful signal instead.
Lemma 2 (Gradient associative memory with noisy inputs). Let p be a data distribution on (x, y) →
Rd ↑ [N ], and consider the following classification problem, with fixed output embeddings WU :

L(W ) = E(x,y)→p[ε(y, WUWx)].

The gradients take the following form: denoting µk := E[x|y = k] and µ̂k := Ex[ p̂W (k|x)
p(y=k) x],

↓W L(W ) =

N∑

k=1

p(y = k)wU (k)(µ̂k ↔ µk)↑.

The key takeaway from this lemma is that with enough data (here infinite data), the associative
memory arising from gradients can learn to filter out noise from inputs, since it only depends on
its expectations or conditional expectations. In particular, µk can isolate relevant parts of x that are
predictive of a label k, and thus can lead to the right associations.

An illustrative example. To gain more intuition about this result, consider the following example:
we would like to predict y from x = wE(y) + pt, where pt is a positional embedding at a random
position t → [T ], which we would like to ignore. Further assume that y is uniformly distributed
with p(y = k) = 1/N , and consider the matrix obtained after one population gradient step with
step-size ϑ starting from an initialization W0 = 0 (so that p̂W0
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Figure 2: Left: average probability of tokens [IO], [S] and “the” in IOI task in the prediction by
Pythia-1B along training. Right: average probability of tokens “Spain” and “the” in a factual task
predicted by Pythia-1B along training, with input as “Madrid is located in”. In both tasks, the full
model learns to predict “the” with high probability starting from →10 steps, and then learns to solve
the tasks. LASER boosts the probability of correct answers against “the” in both tasks: the average
probability ratio of correct answers against “the” improves from 2.3↑ to 12.3↑ (in IOI) and from
0.16↑ to 11.3↑ (in factual) at 14K steps.

learned later. Conceptually, if LLMs are able to write natural text or have been trained sufficiently
with natural texts, it is not surprising for the model to predict “the” with high probability after seeing
“to”. This is verified in Appendix B.1.

Implications from experiments. We summarize our main experimental observations of this section.
Observation 1. Global associations may “distract” LLMs away from in-context predictions, hurting
performance on reasoning tasks.
Observation 2. LASER on MLP weights in LLMs helps inhibit predictions of global associations,
thus improving in-context predictions.
Observation 3. During pre-training, global associations are learned earlier than complex reasoning.

These observations raise the following questions, which we investigate in the next sections.

Q1: Why are global associations learned before than complex reasoning?

Q2: Are feed-forward layers responsible of learning global associations?

3 TWO-LAYER TRANSFORMER ON NOISY IN-CONTEXT RECALL

In this section, we consider two-layer transformers on an in-context recall task with added global
noise, which allows us to study some key properties observed in Section 2 in a controlled setting. We
empirically show how transformers solve this task by storing the noise in feed-forward layers, while
attention implements the in-context mechanism. We then provide theory showing why feed-forward
layers are more likely to store the global noise association, by studying gradients at initialization.

Data and task. The data model we consider is similar to Bietti et al. (2023), with additional noise.
Consider a vocabulary V = {1, 2, . . . , N, N + 1}. The token N + 1 is the noise token. We fix a
trigger token q ↓ [N ], which governs in-context recall, and a context length T . Each sequence of
tokens z1:T = [z1, z2, . . . , zT ] is generated as follows:

i. Sample a correct output token ȳ uniformly in [N ].
ii. Sample z1:T→1 according to the following Markov process (ωu, ωb are distributions on [N ]

defined later): z1 → ωu(·), and

zt+1|zt →
{
ωb(·|zt), if zt ↔= q,

pω,ȳ(·), otherwise,
pω,ȳ(x) =





1 ↗ ε, if x = ȳ,

ε, if x = N + 1,

0, otherwise.

5

Global bigrams are learned much faster than induction head, tend to be stored in MLPs

Trade-offs between global and in-context predictions (Chen, Bruna, and B., 2024)
Trade-offs also appear in LLMs

▶ “Madrid is located in” → {the, Spain} on Pythia-1B
▶ Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context

Theorem (Chen et al., 2024, informal)
In toy setting, feed-forward layer learns global bigram after O(1) samples, attention
after O(N) samples due to noise.
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Setup with heavy-tailed data

Setting
zi ∼ p(z), yi = f ∗(zi), n samples: Sn = {z1, . . . , zn}, 0/1 loss:

L(f̂n) = P(y ̸= f̂n(z))

Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

p(z) ∝ z−α

Hutter (2021): with infinite memory, we have

L(f̂n) ≲ n− α−1
α

Q: What about finite capacity?
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Scaling laws with finite capacity
Random embeddings ez , uy ∈ Rd with N (0, 1/d) entries
Estimator: f̂n,d(x) = arg maxy uy

⊤Wn,dez , with

Wn,d =
N∑

z=1
q(z)uf ∗(z)ez

⊤

Single population gradient step on cross-entropy loss: q(z) ≈ p(z)

Theorem (Cabannes, Dohmatob, and B., 2024a, informal)
1 For q(z) =

∑
i 1{z = zi}: L(f̂n,d) ≲ n− α−1

α + d− α−1
2α

2 For q(z) = 1{z ∈ Sn}, and d ≫ N: L(f̂n,d) ≲ n− α−1
α + d−k for any k

3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) ≲ n− α−1
α + d−α+1

n− α−1
α is the same as (Hutter, 2021)

q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)
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q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)
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Scaling laws with optimization algorithms

L(W ) = Ez∼p[ℓ(f ∗(z), UW ez)] → Wn,d ≈
N∑

z=1
q(z)uf ∗(z)ez

⊤

Different algorithms lead to different memory schemes q(z):

One step of SGD with large batch: q(z) ≈ p(z)
SGD with batch size one + large step-size, d ≫ N: q(z) ≈ 1
For d ≤ N, smaller step-sizes can help later in training
Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)
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Optimization with imbalance and small capacity

L(W ) = Ez∼p[ℓ(f ∗(z), UW ez)], ℓ: cross-entropy loss

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)
Orthogonal embeddings =⇒ logarithmic growth of margins for any step-size

Correlated embeddings + imbalance =⇒ oscillatory regimes
Large step-sizes help reach perfect accuracy faster despite oscillations (empirically)
Over-optimization can hurt in under-parameterized settings (empirically)

�10 0 10

↵ = �0.5, p1 = 0.75

�10 0 10

↵ = 0.95, p1 = 0.75

Figure 1: Level lines of L(W ) for N = d = 2 as a function
of �i(W ) := (u2 � u1)

>Wfi where (fi) is a basis of R2.
Token embeddings have correlation ↵ (16). We equally plot
the value of L01(W ), dark blue meaning perfect accuracy,
and white meaning null accuracy.

Hence, the margins only increase during training, and the
larger the learning rate, the faster the evolution. Indeed,
one gradient step is enough to learn all the associations
x ! f⇤(x), i.e. fW1

(x) = f⇤(x) for any initialization.
Continuing the training will continue to increase the mar-
gins, ultimately ensuring the convergence of Wt to the max-
margin solution of the classification problem, as character-
ized by Theorem 3, making the final classifier robust to
embedding displacements (Cortes & Vapnik, 1995).

To conclude, when the embeddings are orthogonal, the mem-
ories do not interfere much, and one can learn all the associ-
ations with one giant gradient step. This case still presents
several behaviors of interest. First of all, Equation (15)
shows that the association x ! y is learned faster when x is
frequent, i.e. p(x) is large. Indeed, early in training, one can
envision W 'Px p(x)uy ⌦ ex. However, later in training,
the training dynamics will start saturating in the direction
uy ⌦ ex for the frequent tokens, allowing the less frequent
ones to catch up. The catch-up is facilitated by large learn-
ing rates. Ultimately, as shown by Equation (3), the final
W does not depend on the token frequencies (see Byrd &
Lipton, 2019 for related observations). In other terms, if the
model has enough capacity to learn all the data (in our case,
orthogonality implies d � N ), then at the end of the train-
ing, it allocates equal capacity to every token even though
some tokens are much rarer. Nonetheless, curating data to
make them less redundant can make learning more efficient.

4.2. Particles Interfering

Let us now consider the case where N  d, but where
memories interfere between them. We first notice that in the
case when the input embeddings are orthogonal, correlated
output embeddings introduce limited competition, and this
case can largely be understood as a simplified version of the
interaction between input embeddings.

Let us analyze the simple but instructive case N = 2 of two
input tokens with f⇤(x) = x, and

↵ij = hei, eji = 1i=j + ↵1i 6=j , ↵ 2 [�1, 1]. (16)

In other terms, the input embeddings are normalized and are

0 5

�10

0

10
↵ = 0.95, p1 = 0.75

� = 10 � = 1

0 20

0.0

0.5

1.0

t ! L(Wt)

L(Wt)

L01(Wt)

Figure 2: Loss spikes. Trajectories of Wt in the setting of
Figure 1 for two learning rates ⌘, ⌘ = 10 in green, ⌘ = 1
in red, and their traces in term of losses as a function of the
number of epochs, here t 2 [35].

↵-correlated. Two margins are at play:

mi = wii � wij = (ui � uj)
>Wei, {i, j} = {1, 2}.

The interacting system (12) becomes,

�mi = c⌘t

✓
pi

1 + exp(mi)
� ↵pj

1 + exp(mj)

◆
, (17)

where c = ku1 � u2k2 and we denote pi = p(i) for read-
ability. In the gradient dynamics, x = 1 pushes W in the
direction (u1 � u2) ⌦ e1, which, when ↵  0, is positively
correlated with the direction (u2 � u1) ⌦ e2 promoted by
x = 2. As can be seen in Equation (17), when ↵  0, both
margins increase during training, there is no competition
between the memories, and a single gradient step is enough
to reach perfect accuracy. To solve Equation (17), let us
introduce the orthogonal family

f1 = e1 + e2, f2 = e1 � e2,

and project the dynamics on those directions with

�i =
1

2
(u1 � u2)

>Wfi. (18)

The evolution of the �i is governed by

d�1

dct
=

(1 + ↵)p1

1 + exp (�2 + �1)
� (1 + ↵)p2

1 + exp (�2 � �1)

d�2

dct
=

(1 � ↵)p1

1 + exp (�2 + �1)
+

(1 � ↵)p2

1 + exp (�2 � �1)
, (19)

From the second differential equation, we see that �2 always
increases during the dynamics. The growth of �2 will slow
down the growth of �1. These together imply that W grows
logarithmically in one direction (f2, which turns out to be
the max-margin direction) and stays bounded in the orthog-
onal direction, which we prove in Appendix C.1 and is the
object of the following theorem.
Theorem 4 (Two particles interacting). Let N = 2 with
f⇤(x) = x. Assume without restriction that p1 � p2. When
Equation (16) holds, if W is initialized at zero, i.e. W0 = 0,
for gradient flow,

�2(t) = log(ctt + 1) + O

✓
log(c2t + 1)

c2t + 1

◆
,

�1(t) =
1

2
log
�
p1/p2

�
+ O(1/t),

5
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Figure 4: Forgetting. Similar plots as in Figures 1 and 2, yet in the limited capacity case d < N . In those situations, competition
between the memories can lead to sub-optimal minimizer of L, which we illustrate with SGD on the bottom plots. The sub-optimality
is reflected in the excess of risk E = L01(arg minW L(W )) � minW L01(W ).
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�10 0 10

Losses
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Figure 5: Sharpness profile. Gradient descent trajectories in the setting of Figures 2 and 4 with learning rates ⌘ = 10 (green) and
⌘ = 1 (red). We plot the level lines of the sharpness, i.e. the operator norm of r2L(W ), as well as the trace of the trajectories in
terms of sharpness. The left plots are in the overparameterized regime, the right ones in the underparameterized one.

tories of Wt for two different learning rates, and the trace
of these trajectories in the training loss and accuracy plots
which are usually monitored by practitioners training neural
networks.

5. Numerical Analysis
This section complements previous derivations with numeri-
cal analysis. It discusses underparameterized regimes, large
versions of model (1), as well as more complicated ones.

5.1. Limited capacity

Let us start the numerical analysis with the case where
N > d. In those cases, one can not necessarily store all
associations in memory, and the model has to favor some of
them. It was shown in Cabannes et al. (2024) that the ideal
W can usually store about d memories similarly to Hopfield
network scalings. However, this ideal W is not always the
one minimizing the cross-entropy loss.

We plot our problem in the case M = d = 2 thanks to
the statistics �i of (21). Figure 4 reveals a striking fact:
the cross-entropy loss is not calibrated for our model, i.e.,
minimizing L(W ) does not always minimize L01(W ). In-
deed, even in the case N = 3, one can find examples where
competition between the memories leads the minimizer of
L to “forget” the most frequent association. When N be-
comes large in front of d, these cases become the norm. On
these landscapes, one can come up with examples of catas-
trophic forgetting, where the dynamics is first dominated by
frequent tokens that are well memorized until rare classes
come into play, perturbing the minimizer of L, ultimately

leading to convergence to a sub-optimal place. We illustrate
it on the right of Figure 4.

To further illustrate the differences between the dynamics
in over- and under-parameterized regimes, Figure 5 illus-
trates the sharpness, as defined by the operator norm of
the Hessian of L(W ) along two descent trajectories. We
compute the Hessian in closed-form to show its level lines,
illustrating that the sharpness of the logistic loss is mainly
high for small values of the norm of W . We observe three
types of behaviors. In the separable case, e.g. when d � N ,
the transitory regime goes through relatively sharp regions,
before the stationary regime where the sharpness decreases
until reaching zero at infinity. In the non-separable case,
with is typical when d < N , either the learning rate is small
enough and we converge to the minimum of L presenting a
sharpness H⇤ greater than 2/⌘, or the learning rate is greater
than 2/H⇤ and we oscillate around the minimizer of L.

5.2. Larger dimension

When the dimension d is larger, although we can not plot
the weight-space, we can plot the evolution of certain statis-
tics, such as the margin, along descent trajectories. In Fig-
ure 6, we consider a setup with N = M = 5, f⇤(x) = x,
and p(x) / 1/x, in different dimensions (with random
embeddings). We show the evolution of the margins

mt(x) = huf⇤(x), Wexi � max
j 6=x

huj , Wexi. (22)

Perfect accuracy is achieved when mt(x) > 0 for all x.
We see the faster increase of margins for more frequent
tokens, faster convergence with large step-size ⌘, at the
cost of oscillations, and benefits of larger d. The latter are

7
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to reach perfect accuracy. To solve Equation (17), let us
introduce the orthogonal family

f1 = e1 + e2, f2 = e1 � e2,

and project the dynamics on those directions with

�i =
1

2
(u1 � u2)

>Wfi. (18)

The evolution of the �i is governed by
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From the second differential equation, we see that �2 always
increases during the dynamics. The growth of �2 will slow
down the growth of �1. These together imply that W grows
logarithmically in one direction (f2, which turns out to be
the max-margin direction) and stays bounded in the orthog-
onal direction, which we prove in Appendix C.1 and is the
object of the following theorem.
Theorem 4 (Two particles interacting). Let N = 2 with
f⇤(x) = x. Assume without restriction that p1 � p2. When
Equation (16) holds, if W is initialized at zero, i.e. W0 = 0,
for gradient flow,

�2(t) = log(ctt + 1) + O

✓
log(c2t + 1)

c2t + 1

◆
,

�1(t) =
1

2
log
�
p1/p2

�
+ O(1/t),
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Figure 5: Sharpness profile. Gradient descent trajectories in the setting of Figures 2 and 4 with learning rates ⌘ = 10 (green) and
⌘ = 1 (red). We plot the level lines of the sharpness, i.e. the operator norm of r2L(W ), as well as the trace of the trajectories in
terms of sharpness. The left plots are in the overparameterized regime, the right ones in the underparameterized one.

tories of Wt for two different learning rates, and the trace
of these trajectories in the training loss and accuracy plots
which are usually monitored by practitioners training neural
networks.

5. Numerical Analysis
This section complements previous derivations with numeri-
cal analysis. It discusses underparameterized regimes, large
versions of model (1), as well as more complicated ones.

5.1. Limited capacity

Let us start the numerical analysis with the case where
N > d. In those cases, one can not necessarily store all
associations in memory, and the model has to favor some of
them. It was shown in Cabannes et al. (2024) that the ideal
W can usually store about d memories similarly to Hopfield
network scalings. However, this ideal W is not always the
one minimizing the cross-entropy loss.

We plot our problem in the case M = d = 2 thanks to
the statistics �i of (21). Figure 4 reveals a striking fact:
the cross-entropy loss is not calibrated for our model, i.e.,
minimizing L(W ) does not always minimize L01(W ). In-
deed, even in the case N = 3, one can find examples where
competition between the memories leads the minimizer of
L to “forget” the most frequent association. When N be-
comes large in front of d, these cases become the norm. On
these landscapes, one can come up with examples of catas-
trophic forgetting, where the dynamics is first dominated by
frequent tokens that are well memorized until rare classes
come into play, perturbing the minimizer of L, ultimately

leading to convergence to a sub-optimal place. We illustrate
it on the right of Figure 4.

To further illustrate the differences between the dynamics
in over- and under-parameterized regimes, Figure 5 illus-
trates the sharpness, as defined by the operator norm of
the Hessian of L(W ) along two descent trajectories. We
compute the Hessian in closed-form to show its level lines,
illustrating that the sharpness of the logistic loss is mainly
high for small values of the norm of W . We observe three
types of behaviors. In the separable case, e.g. when d � N ,
the transitory regime goes through relatively sharp regions,
before the stationary regime where the sharpness decreases
until reaching zero at infinity. In the non-separable case,
with is typical when d < N , either the learning rate is small
enough and we converge to the minimum of L presenting a
sharpness H⇤ greater than 2/⌘, or the learning rate is greater
than 2/H⇤ and we oscillate around the minimizer of L.

5.2. Larger dimension

When the dimension d is larger, although we can not plot
the weight-space, we can plot the evolution of certain statis-
tics, such as the margin, along descent trajectories. In Fig-
ure 6, we consider a setup with N = M = 5, f⇤(x) = x,
and p(x) / 1/x, in different dimensions (with random
embeddings). We show the evolution of the margins

mt(x) = huf⇤(x), Wexi � max
j 6=x

huj , Wexi. (22)

Perfect accuracy is achieved when mt(x) > 0 for all x.
We see the faster increase of margins for more frequent
tokens, faster convergence with large step-size ⌘, at the
cost of oscillations, and benefits of larger d. The latter are
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Optimization with imbalance and small capacity

L(W ) = Ez∼p[ℓ(f ∗(z), UW ez)], ℓ: cross-entropy loss

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)
Orthogonal embeddings =⇒ logarithmic growth of margins for any step-size
Correlated embeddings + imbalance =⇒ oscillatory regimes
Large step-sizes help reach perfect accuracy faster despite oscillations (empirically)

Over-optimization can hurt in under-parameterized settings (empirically)
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Figure 1: Level lines of L(W ) for N = d = 2 as a function
of �i(W ) := (u2 � u1)

>Wfi where (fi) is a basis of R2.
Token embeddings have correlation ↵ (16). We equally plot
the value of L01(W ), dark blue meaning perfect accuracy,
and white meaning null accuracy.

Hence, the margins only increase during training, and the
larger the learning rate, the faster the evolution. Indeed,
one gradient step is enough to learn all the associations
x ! f⇤(x), i.e. fW1

(x) = f⇤(x) for any initialization.
Continuing the training will continue to increase the mar-
gins, ultimately ensuring the convergence of Wt to the max-
margin solution of the classification problem, as character-
ized by Theorem 3, making the final classifier robust to
embedding displacements (Cortes & Vapnik, 1995).

To conclude, when the embeddings are orthogonal, the mem-
ories do not interfere much, and one can learn all the associ-
ations with one giant gradient step. This case still presents
several behaviors of interest. First of all, Equation (15)
shows that the association x ! y is learned faster when x is
frequent, i.e. p(x) is large. Indeed, early in training, one can
envision W 'Px p(x)uy ⌦ ex. However, later in training,
the training dynamics will start saturating in the direction
uy ⌦ ex for the frequent tokens, allowing the less frequent
ones to catch up. The catch-up is facilitated by large learn-
ing rates. Ultimately, as shown by Equation (3), the final
W does not depend on the token frequencies (see Byrd &
Lipton, 2019 for related observations). In other terms, if the
model has enough capacity to learn all the data (in our case,
orthogonality implies d � N ), then at the end of the train-
ing, it allocates equal capacity to every token even though
some tokens are much rarer. Nonetheless, curating data to
make them less redundant can make learning more efficient.

4.2. Particles Interfering

Let us now consider the case where N  d, but where
memories interfere between them. We first notice that in the
case when the input embeddings are orthogonal, correlated
output embeddings introduce limited competition, and this
case can largely be understood as a simplified version of the
interaction between input embeddings.

Let us analyze the simple but instructive case N = 2 of two
input tokens with f⇤(x) = x, and

↵ij = hei, eji = 1i=j + ↵1i 6=j , ↵ 2 [�1, 1]. (16)

In other terms, the input embeddings are normalized and are
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Figure 2: Loss spikes. Trajectories of Wt in the setting of
Figure 1 for two learning rates ⌘, ⌘ = 10 in green, ⌘ = 1
in red, and their traces in term of losses as a function of the
number of epochs, here t 2 [35].

↵-correlated. Two margins are at play:

mi = wii � wij = (ui � uj)
>Wei, {i, j} = {1, 2}.

The interacting system (12) becomes,
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◆
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where c = ku1 � u2k2 and we denote pi = p(i) for read-
ability. In the gradient dynamics, x = 1 pushes W in the
direction (u1 � u2) ⌦ e1, which, when ↵  0, is positively
correlated with the direction (u2 � u1) ⌦ e2 promoted by
x = 2. As can be seen in Equation (17), when ↵  0, both
margins increase during training, there is no competition
between the memories, and a single gradient step is enough
to reach perfect accuracy. To solve Equation (17), let us
introduce the orthogonal family

f1 = e1 + e2, f2 = e1 � e2,

and project the dynamics on those directions with
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>Wfi. (18)
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From the second differential equation, we see that �2 always
increases during the dynamics. The growth of �2 will slow
down the growth of �1. These together imply that W grows
logarithmically in one direction (f2, which turns out to be
the max-margin direction) and stays bounded in the orthog-
onal direction, which we prove in Appendix C.1 and is the
object of the following theorem.
Theorem 4 (Two particles interacting). Let N = 2 with
f⇤(x) = x. Assume without restriction that p1 � p2. When
Equation (16) holds, if W is initialized at zero, i.e. W0 = 0,
for gradient flow,
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tories of Wt for two different learning rates, and the trace
of these trajectories in the training loss and accuracy plots
which are usually monitored by practitioners training neural
networks.

5. Numerical Analysis
This section complements previous derivations with numeri-
cal analysis. It discusses underparameterized regimes, large
versions of model (1), as well as more complicated ones.

5.1. Limited capacity

Let us start the numerical analysis with the case where
N > d. In those cases, one can not necessarily store all
associations in memory, and the model has to favor some of
them. It was shown in Cabannes et al. (2024) that the ideal
W can usually store about d memories similarly to Hopfield
network scalings. However, this ideal W is not always the
one minimizing the cross-entropy loss.

We plot our problem in the case M = d = 2 thanks to
the statistics �i of (21). Figure 4 reveals a striking fact:
the cross-entropy loss is not calibrated for our model, i.e.,
minimizing L(W ) does not always minimize L01(W ). In-
deed, even in the case N = 3, one can find examples where
competition between the memories leads the minimizer of
L to “forget” the most frequent association. When N be-
comes large in front of d, these cases become the norm. On
these landscapes, one can come up with examples of catas-
trophic forgetting, where the dynamics is first dominated by
frequent tokens that are well memorized until rare classes
come into play, perturbing the minimizer of L, ultimately

leading to convergence to a sub-optimal place. We illustrate
it on the right of Figure 4.

To further illustrate the differences between the dynamics
in over- and under-parameterized regimes, Figure 5 illus-
trates the sharpness, as defined by the operator norm of
the Hessian of L(W ) along two descent trajectories. We
compute the Hessian in closed-form to show its level lines,
illustrating that the sharpness of the logistic loss is mainly
high for small values of the norm of W . We observe three
types of behaviors. In the separable case, e.g. when d � N ,
the transitory regime goes through relatively sharp regions,
before the stationary regime where the sharpness decreases
until reaching zero at infinity. In the non-separable case,
with is typical when d < N , either the learning rate is small
enough and we converge to the minimum of L presenting a
sharpness H⇤ greater than 2/⌘, or the learning rate is greater
than 2/H⇤ and we oscillate around the minimizer of L.

5.2. Larger dimension

When the dimension d is larger, although we can not plot
the weight-space, we can plot the evolution of certain statis-
tics, such as the margin, along descent trajectories. In Fig-
ure 6, we consider a setup with N = M = 5, f⇤(x) = x,
and p(x) / 1/x, in different dimensions (with random
embeddings). We show the evolution of the margins

mt(x) = huf⇤(x), Wexi � max
j 6=x

huj , Wexi. (22)

Perfect accuracy is achieved when mt(x) > 0 for all x.
We see the faster increase of margins for more frequent
tokens, faster convergence with large step-size ⌘, at the
cost of oscillations, and benefits of larger d. The latter are
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>Wfi where (fi) is a basis of R2.
Token embeddings have correlation ↵ (16). We equally plot
the value of L01(W ), dark blue meaning perfect accuracy,
and white meaning null accuracy.

Hence, the margins only increase during training, and the
larger the learning rate, the faster the evolution. Indeed,
one gradient step is enough to learn all the associations
x ! f⇤(x), i.e. fW1

(x) = f⇤(x) for any initialization.
Continuing the training will continue to increase the mar-
gins, ultimately ensuring the convergence of Wt to the max-
margin solution of the classification problem, as character-
ized by Theorem 3, making the final classifier robust to
embedding displacements (Cortes & Vapnik, 1995).

To conclude, when the embeddings are orthogonal, the mem-
ories do not interfere much, and one can learn all the associ-
ations with one giant gradient step. This case still presents
several behaviors of interest. First of all, Equation (15)
shows that the association x ! y is learned faster when x is
frequent, i.e. p(x) is large. Indeed, early in training, one can
envision W 'Px p(x)uy ⌦ ex. However, later in training,
the training dynamics will start saturating in the direction
uy ⌦ ex for the frequent tokens, allowing the less frequent
ones to catch up. The catch-up is facilitated by large learn-
ing rates. Ultimately, as shown by Equation (3), the final
W does not depend on the token frequencies (see Byrd &
Lipton, 2019 for related observations). In other terms, if the
model has enough capacity to learn all the data (in our case,
orthogonality implies d � N ), then at the end of the train-
ing, it allocates equal capacity to every token even though
some tokens are much rarer. Nonetheless, curating data to
make them less redundant can make learning more efficient.

4.2. Particles Interfering

Let us now consider the case where N  d, but where
memories interfere between them. We first notice that in the
case when the input embeddings are orthogonal, correlated
output embeddings introduce limited competition, and this
case can largely be understood as a simplified version of the
interaction between input embeddings.

Let us analyze the simple but instructive case N = 2 of two
input tokens with f⇤(x) = x, and

↵ij = hei, eji = 1i=j + ↵1i 6=j , ↵ 2 [�1, 1]. (16)

In other terms, the input embeddings are normalized and are
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where c = ku1 � u2k2 and we denote pi = p(i) for read-
ability. In the gradient dynamics, x = 1 pushes W in the
direction (u1 � u2) ⌦ e1, which, when ↵  0, is positively
correlated with the direction (u2 � u1) ⌦ e2 promoted by
x = 2. As can be seen in Equation (17), when ↵  0, both
margins increase during training, there is no competition
between the memories, and a single gradient step is enough
to reach perfect accuracy. To solve Equation (17), let us
introduce the orthogonal family

f1 = e1 + e2, f2 = e1 � e2,

and project the dynamics on those directions with
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From the second differential equation, we see that �2 always
increases during the dynamics. The growth of �2 will slow
down the growth of �1. These together imply that W grows
logarithmically in one direction (f2, which turns out to be
the max-margin direction) and stays bounded in the orthog-
onal direction, which we prove in Appendix C.1 and is the
object of the following theorem.
Theorem 4 (Two particles interacting). Let N = 2 with
f⇤(x) = x. Assume without restriction that p1 � p2. When
Equation (16) holds, if W is initialized at zero, i.e. W0 = 0,
for gradient flow,
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tories of Wt for two different learning rates, and the trace
of these trajectories in the training loss and accuracy plots
which are usually monitored by practitioners training neural
networks.

5. Numerical Analysis
This section complements previous derivations with numeri-
cal analysis. It discusses underparameterized regimes, large
versions of model (1), as well as more complicated ones.

5.1. Limited capacity

Let us start the numerical analysis with the case where
N > d. In those cases, one can not necessarily store all
associations in memory, and the model has to favor some of
them. It was shown in Cabannes et al. (2024) that the ideal
W can usually store about d memories similarly to Hopfield
network scalings. However, this ideal W is not always the
one minimizing the cross-entropy loss.

We plot our problem in the case M = d = 2 thanks to
the statistics �i of (21). Figure 4 reveals a striking fact:
the cross-entropy loss is not calibrated for our model, i.e.,
minimizing L(W ) does not always minimize L01(W ). In-
deed, even in the case N = 3, one can find examples where
competition between the memories leads the minimizer of
L to “forget” the most frequent association. When N be-
comes large in front of d, these cases become the norm. On
these landscapes, one can come up with examples of catas-
trophic forgetting, where the dynamics is first dominated by
frequent tokens that are well memorized until rare classes
come into play, perturbing the minimizer of L, ultimately

leading to convergence to a sub-optimal place. We illustrate
it on the right of Figure 4.

To further illustrate the differences between the dynamics
in over- and under-parameterized regimes, Figure 5 illus-
trates the sharpness, as defined by the operator norm of
the Hessian of L(W ) along two descent trajectories. We
compute the Hessian in closed-form to show its level lines,
illustrating that the sharpness of the logistic loss is mainly
high for small values of the norm of W . We observe three
types of behaviors. In the separable case, e.g. when d � N ,
the transitory regime goes through relatively sharp regions,
before the stationary regime where the sharpness decreases
until reaching zero at infinity. In the non-separable case,
with is typical when d < N , either the learning rate is small
enough and we converge to the minimum of L presenting a
sharpness H⇤ greater than 2/⌘, or the learning rate is greater
than 2/H⇤ and we oscillate around the minimizer of L.

5.2. Larger dimension

When the dimension d is larger, although we can not plot
the weight-space, we can plot the evolution of certain statis-
tics, such as the margin, along descent trajectories. In Fig-
ure 6, we consider a setup with N = M = 5, f⇤(x) = x,
and p(x) / 1/x, in different dimensions (with random
embeddings). We show the evolution of the margins

mt(x) = huf⇤(x), Wexi � max
j 6=x

huj , Wexi. (22)

Perfect accuracy is achieved when mt(x) > 0 for all x.
We see the faster increase of margins for more frequent
tokens, faster convergence with large step-size ⌘, at the
cost of oscillations, and benefits of larger d. The latter are
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