Associative Memories as a Building Block in Transformers

Alberto Bietti

Flatiron Institute, Simons Foundation

Cargèse, August 2025

Associative Memories as a Building Block in Transformers

Alberto Bietti

Flatiron Institute. Simons Foundation

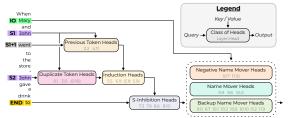
Cargèse, August 2025

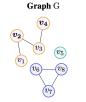
w/ V. Cabannes, E. Dohmatob, D. Bouchacourt, H. Jégou, L. Bottou (Meta), E. Nichani, J. Lee (Princeton), M. Vural (U Toronto), D. Wu (NYU/Flatiron)

What are Transformer LLMs doing?

Reasoning over context

- Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
- Many results on expressivity (e.g., circuits, formal languages, graph connectivity)
 - e.g., (Merrill et al., 2022; Liu et al., 2023; Sanford et al., 2023)





Task: Are v_2 and v_4 connected?

Task. Ate 02 and 04 connect

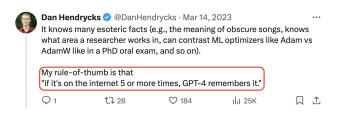
What are Transformer LLMs doing?

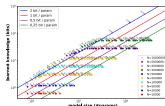
Reasoning over context

- Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
- Many results on expressivity (e.g., circuits, formal languages, graph connectivity)
 - ► e.g., (Merrill et al., 2022; Liu et al., 2023; Sanford et al., 2023)

Knowledge storage

- Memorization, factual recall, parameter scaling
 - ► e.g., (Geva et al., 2020; Allen-Zhu and Li, 2024)
- Allows higher-level reasoning





What are Transformer LLMs doing?

Reasoning over context

- Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
- Many results on expressivity (e.g., circuits, formal languages, graph connectivity)
 - ► e.g., (Merrill et al., 2022; Liu et al., 2023; Sanford et al., 2023)

Knowledge storage

- Memorization, factual recall, parameter scaling
 - ► e.g., (Geva et al., 2020; Allen-Zhu and Li, 2024)
- Allows higher-level reasoning

Goal: tractable model for both + training dynamics?

Input: sequence of discrete tokens $(z_1, \ldots, z_T) \in [N]^T$

3 / 25

Input: sequence of discrete tokens $(z_1, \ldots, z_T) \in [N]^T$

Embeddings

- input e_z , positional p_t , output u_v , in \mathbb{R}^d
- ullet this talk: **fixed** to **random** init $\mathcal{N}(0,1/d)$

Input: sequence of discrete tokens $(z_1, \ldots, z_T) \in [N]^T$

Embeddings

- input e_z , positional p_t , output u_v , in \mathbb{R}^d
- this talk: **fixed** to **random** init $\mathcal{N}(0, 1/d)$

Residual streams (Elhage et al., 2021)

• embed each token $z_t \in [N]$ as $x_t := e_{z_t} + p_t$

Input: sequence of discrete tokens $(z_1, \ldots, z_T) \in [N]^T$

Embeddings

- input e_z , positional p_t , output u_v , in \mathbb{R}^d
- this talk: **fixed** to **random** init $\mathcal{N}(0, 1/d)$

Residual streams (Elhage et al., 2021)

- embed each token $z_t \in [N]$ as $x_t := e_{z_t} + p_t$
- (causal) self-attention $x_t := x_t + \mathsf{MHSA}(x_t, x_{1:t})$

$$\mathsf{MHSA}(\mathbf{x}_t, \mathbf{x}_{1:t}) = \sum_{h=1}^H \sum_{s=1}^t \beta_s^h W_O^{h\top} W_V^h \mathbf{x}_s, \quad \text{ with } \beta_s^h = \frac{\exp(\mathbf{x}_s^\top W_K^{h\top} W_Q^h \mathbf{x}_t)}{\sum_{s=1}^t \exp(\mathbf{x}_s^\top W_K^{h\top} W_Q^h \mathbf{x}_t)}$$

where W_K , W_Q , W_V , $W_Q \in \mathbb{R}^{d_h \times d}$ (key/query/value/output matrices)

Input: sequence of discrete tokens $(z_1, \ldots, z_T) \in [N]^T$

Embeddings

- input e_z , positional p_t , output u_v , in \mathbb{R}^d
- this talk: **fixed** to **random** init $\mathcal{N}(0, 1/d)$

Residual streams (Elhage et al., 2021)

- embed each token $z_t \in [N]$ as $x_t := e_{z_t} + p_t$
- (causal) self-attention $x_t := x_t + \mathsf{MHSA}(x_t, x_{1:t})$
- feed-forward $x_t := x_t + MLP(x_t)$

$$\mathsf{MLP}(\mathbf{x}_t) = V^{\top} \sigma(U\mathbf{x}_t)$$

where $U, V \in \mathbb{R}^{m \times d}$, often m = 4d

Input: sequence of discrete tokens $(z_1, \ldots, z_T) \in [N]^T$

Embeddings

- input e_z , positional p_t , output u_v , in \mathbb{R}^d
- this talk: **fixed** to **random** init $\mathcal{N}(0,1/d)$

Residual streams (Elhage et al., 2021)

- embed each token $z_t \in [N]$ as $x_t := e_{z_t} + p_t$
- (causal) self-attention $x_t := x_t + MHSA(x_t, x_{1:t})$
- feed-forward $x_t := x_t + MLP(x_t)$
- residual stream x_t is a sum of embeddings/"features"



Input: sequence of discrete tokens $(z_1, \ldots, z_T) \in [N]^T$

Embeddings

- input e_z , positional p_t , output u_v , in \mathbb{R}^d
- this talk: **fixed** to **random** init $\mathcal{N}(0,1/d)$

Residual streams (Elhage et al., 2021)

- embed each token $z_t \in [N]$ as $x_t := e_{z_t} + p_t$
- (causal) self-attention $x_t := x_t + MHSA(x_t, x_{1:t})$
- feed-forward $x_t := x_t + MLP(x_t)$
- residual stream x_t is a sum of embeddings/"features"

Next-token prediction

cross-entropy loss

$$\sum_{t < T} \ell(z_{t+1}; (\underbrace{u_j}^\top x_t)_j)$$

Outline

Associative memories

2 Application to Transformers I: factual recall (Nichani et al., 2024)

3 Application to Transformers II: reasoning / retrieval (B. et al., 2023; Vural et al., 2025+)

Alberto Bietti Transformers and Associative Memories Cargèse 2025 4 / 25

Hopfield nets (Hopfield, 1982)

• Store *N* patterns $\xi_i \in \{\pm 1\}^d$ using Hebb's rule:

$$W = \sum_{i=1}^{N} \xi_i \xi_i^{\top} \in \mathbb{R}^{d \times d}$$

• Recover pattern from corrupted version by iterating: x' = sign(Wx)

Hopfield nets (Hopfield, 1982)

• Store N patterns $\xi_i \in \{\pm 1\}^d$ using Hebb's rule:

$$W = \sum_{i=1}^{N} \xi_i \xi_i^{\top} \in \mathbb{R}^{d \times d}$$

- Recover pattern from corrupted version by iterating: x' = sign(Wx)
- Iterates descend on a quadratic energy landscape $E(x) = -x^{T}Wx$
- ullet Can store $N= ilde{\Theta}(d)$ patterns (Amit et al., 1985; McEliece et al., 1988)

Hopfield nets (Hopfield, 1982)

• Store N patterns $\xi_i \in \{\pm 1\}^d$ using Hebb's rule:

$$W = \sum_{i=1}^{N} \xi_i \xi_i^{\top} \in \mathbb{R}^{d \times d}$$

- Recover pattern from corrupted version by iterating: x' = sign(Wx)
- Iterates descend on a quadratic energy landscape $E(x) = -x^{T}Wx$
- Can store $N = \tilde{\Theta}(d)$ patterns (Amit et al., 1985; McEliece et al., 1988)

Modern Hopfield nets (a.k.a dense associative memories)

- Improve capacity through higher-order energy function
 - ► (Krotov and Hopfield, 2016; Demircigil et al., 2017; Lucibello and Mézard, 2024)
- ullet e.g., capacity d^{k-1} when using energy $E(x) = -\sum_{i=1}^N (\xi_i^\top x)^k$

Hopfield nets (Hopfield, 1982)

• Store *N* patterns $\xi_i \in \{\pm 1\}^d$ using Hebb's rule:

$$W = \sum_{i=1}^{N} \xi_i \xi_i^{\top} \in \mathbb{R}^{d \times d}$$

- Recover pattern from corrupted version by iterating: x' = sign(Wx)
- Iterates descend on a quadratic energy landscape $E(x) = -x^{T}Wx$
- ullet Can store $N= ilde{\Theta}(d)$ patterns (Amit et al., 1985; McEliece et al., 1988)

Modern Hopfield nets (a.k.a dense associative memories)

- Improve capacity through higher-order energy function
 - ► (Krotov and Hopfield, 2016; Demircigil et al., 2017; Lucibello and Mézard, 2024)
- e.g., capacity d^{k-1} when using energy $E(x) = -\sum_{i=1}^{N} (\xi_i^{\top} x)^k$

Attention as associative memory

- Softmax attention as one step retrieval in dense associative memory over context
 - ▶ Ramsauer et al. (2020); Smart, B., and Sengupta (2025): emerges from in-context denoising

• Consider sets of nearly orthonormal embeddings $\{e_z\}_{z\in\mathcal{Z}}$ and $\{u_y\}_{y\in\mathcal{Y}}$:

$$\|e_z\| \approx 1$$
 and $e_z^{\top} e_{z'} \approx 0$
 $\|u_y\| \approx 1$ and $u_y^{\top} u_{y'} \approx 0$

• Consider sets of nearly orthonormal embeddings $\{e_z\}_{z\in\mathcal{Z}}$ and $\{u_y\}_{y\in\mathcal{Y}}$:

$$\|e_z\| \approx 1$$
 and $e_z^{\top} e_{z'} \approx 0$
 $\|u_y\| \approx 1$ and $u_y^{\top} u_{y'} \approx 0$

• Consider pairwise associations $(z, y) \in \mathcal{M}$ with weights α_{zy} and define:

$$W = \sum_{(z,y)\in\mathcal{M}} \alpha_{zy} \mathbf{u}_{y} \mathbf{e}_{z}^{\top}$$

• Consider sets of nearly orthonormal embeddings $\{e_z\}_{z\in\mathcal{Z}}$ and $\{u_y\}_{y\in\mathcal{Y}}$:

$$\|e_z\| \approx 1$$
 and $e_z^{\top} e_{z'} \approx 0$
 $\|u_y\| \approx 1$ and $u_y^{\top} u_{y'} \approx 0$

• Consider pairwise associations $(z, y) \in \mathcal{M}$ with weights α_{zv} and define:

$$W = \sum_{(z,y)\in\mathcal{M}} \alpha_{zy} \mathbf{u}_{y} \mathbf{e}_{z}^{\top} \implies \mathbf{u}_{y}^{\top} W \mathbf{e}_{z} \approx \alpha_{zy}$$

• Consider sets of nearly orthonormal embeddings $\{e_z\}_{z\in\mathcal{Z}}$ and $\{u_y\}_{y\in\mathcal{Y}}$:

$$\|e_z\| \approx 1$$
 and $e_z^{\top} e_{z'} \approx 0$
 $\|u_y\| \approx 1$ and $u_y^{\top} u_{y'} \approx 0$

• Consider pairwise associations $(z, y) \in \mathcal{M}$ with weights α_{zy} and define:

$$W = \sum_{(z,y)\in\mathcal{M}} \alpha_{zy} \mathbf{u}_{y} \mathbf{e}_{z}^{\top} \implies \mathbf{u}_{y}^{\top} W \mathbf{e}_{z} \approx \alpha_{zy}$$

Examples in Transformers

- \bullet e_z , u_v are input/output/positional embeddings, or intermediate representations
- Logits in attention heads: $x_k^\top W_{KQ} x_q$
- Logits in next-token prediction: $u_y^\top U \sigma(V x_t)$ or $u_y^\top W_{OV} x_k$

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over $(z, y) \in [N]^2$, and consider the loss

$$L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,F_W(z))], \quad F_W(z)_k = \mathbf{u_k}^\top W \mathbf{e_z},$$

with ℓ the $\emph{cross-entropy loss}$ and $\emph{e}_{\emph{z}},~\emph{u}_{\emph{k}}$ input/output embeddings.

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over $(z, y) \in [N]^2$, and consider the loss

$$L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,F_W(z))], \quad F_W(z)_k = \mathbf{u_k}^\top W \mathbf{e_z},$$

with ℓ the **cross-entropy loss** and e_z , u_k input/output embeddings. Then,

$$\nabla L(W) = \sum_{k=1}^{K} \mathbb{E}_{z} [(\hat{p}_{W}(y=k|z) - p(y=k|z)) \mathbf{u}_{k} \mathbf{e}_{z}^{\top}]$$

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over $(z, y) \in [N]^2$, and consider the loss

$$L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,F_W(z))], \quad F_W(z)_k = \frac{\mathbf{u_k}^{\top} W e_z}{\mathbf{e}_z},$$

with ℓ the **cross-entropy loss** and e_z , u_k input/output embeddings. Then,

$$\nabla L(W) = \sum_{k=1}^{K} \mathbb{E}_{z} [(\hat{p}_{W}(y=k|z) - p(y=k|z)) \mathbf{u}_{k} \mathbf{e}_{z}^{\top}]$$

• Example: $z \sim \text{Unif}([N])$, $y = f_*(z)$

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over $(z, y) \in [N]^2$, and consider the loss

$$L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,F_W(z))], \quad F_W(z)_k = \frac{\mathbf{u_k}}{\mathbf{v_k}} W e_z,$$

with ℓ the **cross-entropy loss** and e_z , u_k input/output embeddings. Then,

$$\nabla L(W) = \sum_{k=1}^{K} \mathbb{E}_{z} [(\hat{p}_{W}(y=k|z) - p(y=k|z)) \mathbf{u}_{k} \mathbf{e}_{z}^{\top}]$$

- **Example**: $z \sim \text{Unif}([N])$, $y = f_*(z)$
 - ► After **one gradient step** on the population loss, assuming near-orthonormal embeddings

$$W_1 = \frac{\eta}{N} \sum_{z,k} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right) \mathbf{u}_k \mathbf{e}_z^\top \quad \Longrightarrow \quad \mathbf{u}_k^\top W_1 \mathbf{e}_z \approx \frac{\eta}{N} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right)$$

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over $(z, y) \in [N]^2$, and consider the loss

$$L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,F_W(z))], \quad F_W(z)_k = \frac{\mathbf{u_k}}{\mathbf{v_k}} W e_z,$$

with ℓ the **cross-entropy loss** and e_z , u_k input/output embeddings. Then,

$$\nabla L(W) = \sum_{k=1}^{K} \mathbb{E}_{z} [(\hat{p}_{W}(y=k|z) - p(y=k|z)) \mathbf{u}_{k} \mathbf{e}_{z}^{\top}]$$

- **Example**: $z \sim \text{Unif}([N])$, $y = f_*(z)$
 - ► After **one gradient step** on the population loss, assuming near-orthonormal embeddings

$$W_1 = \frac{\eta}{N} \sum_{z,k} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right) \mathbf{u}_k \mathbf{e}_z^\top \quad \Longrightarrow \quad \mathbf{u}_k^\top W_1 \mathbf{e}_z \approx \frac{\eta}{N} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right)$$

► Corollary: $\hat{f}(z) = \arg\max_k \frac{u_k}{u_k} W_1 e_z$ has near-perfect accuracy

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over $(z, y) \in [N]^2$, and consider the loss

$$L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,F_W(z))], \quad F_W(z)_k = \frac{\mathbf{u_k}}{\mathbf{v_k}} W e_z,$$

with ℓ the **cross-entropy loss** and e_z , u_k input/output embeddings. Then,

$$\nabla L(W) = \sum_{k=1}^{K} \mathbb{E}_{z} [(\hat{p}_{W}(y=k|z) - p(y=k|z)) \mathbf{u}_{k} \mathbf{e}_{z}^{\top}]$$

- **Example**: $z \sim \text{Unif}([N])$, $y = f_*(z)$
 - ► After **one gradient step** on the population loss, assuming near-orthonormal embeddings

$$W_1 = \frac{\eta}{N} \sum_{z,k} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right) \mathbf{u}_k \mathbf{e}_z^\top \quad \Longrightarrow \quad \mathbf{u}_k^\top W_1 \mathbf{e}_z \approx \frac{\eta}{N} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right)$$

- ▶ Corollary: $\hat{f}(z) = \arg\max_{k} u_{k}^{\top} W_{1} e_{z}$ has near-perfect accuracy
- More generally, replace u_k by "backward" vector

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over $(z, y) \in [N]^2$, and consider the loss

$$L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,F_W(z))], \quad F_W(z)_k = \frac{\mathbf{u}_k}{\mathbf{v}_k} W \mathbf{e}_z,$$

with ℓ the **cross-entropy loss** and e_z , u_k input/output embeddings. Then,

$$\nabla L(W) = \sum_{k=1}^{K} \mathbb{E}_{z} [(\hat{p}_{W}(y=k|z) - p(y=k|z)) \mathbf{u}_{k} \mathbf{e}_{z}^{\top}]$$

- Example: $z \sim \text{Unif}([N])$, $y = f_*(z)$
 - ▶ After **one gradient step** on the population loss, assuming near-orthonormal embeddings

$$W_1 = \frac{\eta}{N} \sum_{z,k} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right) \mathbf{u}_k \mathbf{e}_z^\top \quad \Longrightarrow \quad \mathbf{u}_k^\top W_1 \mathbf{e}_z \approx \frac{\eta}{N} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right)$$

- ► Corollary: $\hat{f}(z) = \arg\max_k u_k^\top W_1 e_z$ has near-perfect accuracy
- More generally, replace u_k by "backward" vector

Note: related to (Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Yang and Hu, 2021)

• Random embeddings e_z , $u_y \sim \mathcal{N}(0, \frac{1}{d}I)$

Alberto Bietti Transformers and Associative Memories 8 / 25

- Random embeddings e_z , $u_y \sim \mathcal{N}(0, \frac{1}{d}I)$
- For some $f^*:[N] \to [M]$, consider "one gradient step" solution

$$W = \sum_{z=1}^{N} u_{f^*(z)} e_z^{\top} \in \mathbb{R}^{d \times d}$$

- Random embeddings e_z , $u_y \sim \mathcal{N}(0, \frac{1}{d}I)$
- For some $f^* : [N] \to [M]$, consider "one gradient step" solution

$$W = \sum_{z=1}^{N} u_{f^*(z)} e_z^{\top} \in \mathbb{R}^{d \times d}$$

$$\gamma_{\mathbf{z},\mathbf{y}} := \mathbf{u}_{\mathbf{y}}^{\top} \mathbf{W} \mathbf{e}_{\mathbf{z}} = \sum_{\mathbf{z}'} \mathbf{u}_{\mathbf{y}}^{\top} \mathbf{u}_{f^{*}(\mathbf{z}')} \mathbf{e}_{\mathbf{z}}^{\top} \mathbf{e}_{\mathbf{z}'}$$

- Random embeddings e_z , $u_y \sim \mathcal{N}(0, \frac{1}{d}I)$
- For some $f^*:[N] \to [M]$, consider "one gradient step" solution

$$W = \sum_{z=1}^{N} u_{f^*(z)} e_z^{\top} \in \mathbb{R}^{d \times d}$$

$$\gamma_{\mathbf{z},\mathbf{y}} := \mathbf{u}_{\mathbf{y}}^{\top} \mathbf{W} \mathbf{e}_{\mathbf{z}} = \sum_{\mathbf{z}'} \mathbf{u}_{\mathbf{y}}^{\top} \mathbf{u}_{\mathbf{f}^{*}(\mathbf{z}')} \mathbf{e}_{\mathbf{z}}^{\top} \mathbf{e}_{\mathbf{z}'}$$

$$\mathbb{E}[\gamma_{z,y}] = \begin{cases} 1, & \text{if } y = f^*(z) \\ 0, & \text{otherwise.} \end{cases} \quad \mathsf{Var}[\gamma_{z,y}] \lesssim \frac{|\{f^*(z') = y\}|}{d} + \frac{|\{f^*(z') \neq y\}|}{d^2} \stackrel{?}{\lesssim} 1$$

- Random embeddings e_z , $u_y \sim \mathcal{N}(0, \frac{1}{d}I)$
- For some $f^*: [N] \to [M]$, consider "one gradient step" solution

$$W = \sum_{z=1}^{N} u_{f^*(z)} e_z^{\top} \in \mathbb{R}^{d \times d}$$

$$\gamma_{\mathbf{z},\mathbf{y}} := \mathbf{u}_{\mathbf{y}}^{\top} \mathbf{W} \mathbf{e}_{\mathbf{z}} = \sum_{\mathbf{z}'} \mathbf{u}_{\mathbf{y}}^{\top} \mathbf{u}_{f^{*}(\mathbf{z}')} \mathbf{e}_{\mathbf{z}}^{\top} \mathbf{e}_{\mathbf{z}'}$$

$$\mathbb{E}[\gamma_{z,y}] = \begin{cases} 1, & \text{if } y = f^*(z) \\ 0, & \text{otherwise.} \end{cases} \quad \mathsf{Var}[\gamma_{z,y}] \lesssim \frac{|\{f^*(z') = y\}|}{d} + \frac{|\{f^*(z') \neq y\}|}{d^2} \stackrel{?}{\lesssim} 1$$

- Examples: (Cabannes, Dohmatob, and B., 2024a; Nichani, Lee, and B., 2024)
 - f^* injective: can store up to $N \approx d^2$ associations (much better than one hot!)

- Random embeddings e_z , $u_y \sim \mathcal{N}(0, \frac{1}{d}I)$
- For some $f^*: [N] \to [M]$, consider "one gradient step" solution

$$W = \sum_{z=1}^{N} u_{f^*(z)} e_z^{\top} \in \mathbb{R}^{d \times d}$$

$$\gamma_{\mathbf{z},\mathbf{y}} := \mathbf{u}_{\mathbf{y}}^{\top} \mathbf{W} \mathbf{e}_{\mathbf{z}} = \sum_{\mathbf{z}'} \mathbf{u}_{\mathbf{y}}^{\top} \mathbf{u}_{f^{*}(\mathbf{z}')} \mathbf{e}_{\mathbf{z}}^{\top} \mathbf{e}_{\mathbf{z}'}$$

$$\mathbb{E}[\gamma_{z,y}] = \begin{cases} 1, & \text{if } y = f^*(z) \\ 0, & \text{otherwise.} \end{cases} \quad \mathsf{Var}[\gamma_{z,y}] \lesssim \frac{|\{f^*(z') = y\}|}{d} + \frac{|\{f^*(z') \neq y\}|}{d^2} \stackrel{?}{\lesssim} 1$$

- Examples: (Cabannes, Dohmatob, and B., 2024a; Nichani, Lee, and B., 2024)
 - f^* injective: can store up to $N \approx d^2$ associations (much better than one hot!)
 - $f^*(z) \in \{0,1\}$: can store up to $N \approx d$ associations

- Random embeddings e_z , $u_y \sim \mathcal{N}(0, \frac{1}{d}I)$
- For some $f^* : [N] \to [M]$, consider "one gradient step" solution

$$W = \sum_{z=1}^{N} u_{f^*(z)} e_z^{\top} \in \mathbb{R}^{d \times d}$$

$$\gamma_{\mathbf{z},\mathbf{y}} := \mathbf{u}_{\mathbf{y}}^{\top} \mathbf{W} \mathbf{e}_{\mathbf{z}} = \sum_{\mathbf{z}'} \mathbf{u}_{\mathbf{y}}^{\top} \mathbf{u}_{f^{*}(\mathbf{z}')} \mathbf{e}_{\mathbf{z}}^{\top} \mathbf{e}_{\mathbf{z}'}$$

$$\mathbb{E}[\gamma_{z,y}] = \begin{cases} 1, & \text{if } y = f^*(z) \\ 0, & \text{otherwise.} \end{cases} \quad \mathsf{Var}[\gamma_{z,y}] \lesssim \frac{|\{f^*(z') = y\}|}{d} + \frac{|\{f^*(z') \neq y\}|}{d^2} \stackrel{?}{\lesssim} 1$$

- Examples: (Cabannes, Dohmatob, and B., 2024a; Nichani, Lee, and B., 2024)
 - f^* injective: can store up to $N \approx d^2$ associations (much better than one hot!)
 - $f^*(z) \in \{0,1\}$: can store up to $N \approx d$ associations
 - Scaling laws: store the most frequent tokens with under-parameterized model

Capacity \approx number of parameters

Low-rank

- ullet $W=W_1^ op W_2$, with $W_1,W_2\in\mathbb{R}^{m imes d}$ (e.g., key-query or output-value matrices)
- can store $N \approx md$ associations when $m \leq d$
- construction: random W_1 , one step on W_2

(Nichani, Lee, and B., 2024), related to Krotov and Hopfield (2016); Demircigil et al. (2017)

Alberto Bietti Transformers and Associative Memories Cargèse 2025

9/25

Capacity \approx number of parameters

Low-rank

- ullet $W=W_1^ op W_2$, with $W_1,W_2\in\mathbb{R}^{m imes d}$ (e.g., key-query or output-value matrices)
- can store $N \approx md$ associations when $m \leq d$
- ullet construction: random W_1 , one step on W_2

Non-linear MLP

- $\hat{f}(z) = \arg\max_{\mathbf{v}} \mathbf{u}_{\mathbf{v}}^{\top} W_1 \sigma(W_2^{\top} \mathbf{e}_{\mathbf{z}}), \ W_1, W_2 \in \mathbb{R}^{d \times m}$
- can store $N \approx md$ associations for any width m
- construction: using Hermite polynomials of degree $\approx \log N/\log d$ in kernel regime

(Nichani, Lee, and B., 2024), related to Krotov and Hopfield (2016); Demircigil et al. (2017)

9/25

Capacity \approx number of parameters

Low-rank

- ullet $W=W_1^ op W_2$, with $W_1,W_2\in\mathbb{R}^{m imes d}$ (e.g., key-query or output-value matrices)
- can store $N \approx md$ associations when $m \leq d$
- ullet construction: random W_1 , one step on W_2

Non-linear MLP

- $\hat{f}(z) = \arg\max_{\mathbf{y}} \mathbf{u}_{\mathbf{y}}^{\top} W_1 \sigma(W_2^{\top} \mathbf{e}_{\mathbf{z}}), \ W_1, W_2 \in \mathbb{R}^{d \times m}$
- can store $N \approx md$ associations for any width m
- ullet construction: using Hermite polynomials of degree $pprox \log N/\log d$ in kernel regime

Multi-input

- $\hat{f}(z_1, z_2) = \operatorname{arg\,max}_y \, \underline{u_y}^\top W_1 \sigma(W_2^\top(\underline{e_{z_1}} + \tilde{\underline{e}}_{z_2}))$
- also $N \approx md$ capacity

(Nichani, Lee, and B., 2024), related to Krotov and Hopfield (2016); Demircigil et al. (2017)

Capacity \approx number of parameters

Low-rank

- ullet $W=W_1^ op W_2$, with $W_1,W_2\in\mathbb{R}^{m imes d}$ (e.g., key-query or output-value matrices)
- can store $N \approx md$ associations when $m \leq d$
- ullet construction: random W_1 , one step on W_2

Non-linear MLP

- $\hat{f}(z) = \operatorname{arg\,max}_y \mathbf{u}_y^\top W_1 \sigma(W_2^\top \mathbf{e}_z), \ W_1, W_2 \in \mathbb{R}^{d \times m}$
- can store $N \approx md$ associations for any width m
- ullet construction: using Hermite polynomials of degree $pprox \log N/\log d$ in kernel regime

Multi-input

- $\hat{f}(z_1, z_2) = \operatorname{arg\,max}_y \, \underline{u_y}^\top W_1 \sigma(W_2^\top(\underline{e_{z_1}} + \tilde{\underline{e}}_{z_2}))$
- also $N \approx md$ capacity

Note: matches information-theoretic lower bounds

(Nichani, Lee, and B., 2024), related to Krotov and Hopfield (2016); Demircigil et al. (2017)

Outline

Application to Transformers I: factual recall (Nichani et al., 2024)

Application to Transformers II: reasoning / retrieval (B. et al., 2023; Vural et al., 2025+)

Transformers and Associative Memories Cargèse 2025 10 / 25

Toy model of factual recall

The capital of France is Paris

- $s \in S$: subject token
- $r \in \mathcal{R}$: relation token
- $a^*(s,r) \in \mathcal{A}_r$: attribute/fact to be stored
- $z_i \in \mathcal{N}$: noise tokens

Toy model of factual recall

The capital of France is Paris

- $s \in S$: subject token
- $r \in \mathcal{R}$: relation token
- $a^*(s,r) \in \mathcal{A}_r$: attribute/fact to be stored
- $z_i \in \mathcal{N}$: noise tokens

Q: How many parameters do Transformers need to solve this?

- One-layer Transformer, with or without MLP, random embeddings
- Embedding dimension d_h , head dimension d_h , MLP width m, H heads

Theorem (Nichani et al., 2024, informal)

- Attention + MLP: $Hd_h \gtrsim S + R$ and $md \gtrsim SR$ succeeds
- Attention-only: $d \gtrsim R + A_{\max}$ and $Hd_h \gtrsim S$ succeeds $(A_{\max} := \max_r |A_r|)$

- One-layer Transformer, with or without MLP, random embeddings
- Embedding dimension d, head dimension d_h , MLP width m, H heads

Theorem (Nichani et al., 2024, informal)

- Attention + MLP: $Hd_h \gtrsim S + R$ and $md \gtrsim SR$ succeeds
- Attention-only: $d \gtrsim R + A_{\max}$ and $Hd_h \gtrsim S$ succeeds $(A_{\max} := \max_r |\mathcal{A}_r|)$

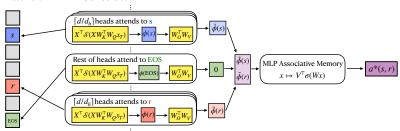
- Total parameters scale with number of facts SR (up to A_{max})
- Constructions are based on associative memories
- Attention-only needs large enough d
- Noise is negligible (log factors)

- One-layer Transformer, with or without MLP, random embeddings
- Embedding dimension d, head dimension d_h , MLP width m, H heads

Theorem (Nichani et al., 2024, informal)

- Attention + MLP: $Hd_h \gtrsim S + R$ and $md \gtrsim SR$ succeeds
- Attention-only: $d \gtrsim R + A_{\sf max}$ and $Hd_h \gtrsim S$ succeeds $(A_{\sf max} := {\sf max}_r |\mathcal{A}_r|)$

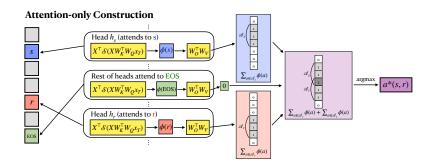
Attention + MLP Construction



- One-layer Transformer, with or without MLP, random embeddings
- Embedding dimension d, head dimension d_h , MLP width m, H heads

Theorem (Nichani et al., 2024, informal)

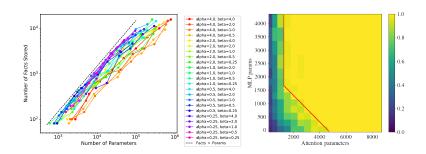
- Attention + MLP: $Hd_h \gtrsim S + R$ and $md \gtrsim SR$ succeeds
- Attention-only: $d \gtrsim R + A_{\max}$ and $Hd_h \gtrsim S$ succeeds $(A_{\max} := \max_r |\mathcal{A}_r|)$



- One-layer Transformer, with or without MLP, random embeddings
- Embedding dimension d, head dimension d_h , MLP width m, H heads

Theorem (Nichani et al., 2024, informal)

- Attention + MLP: $Hd_h \gtrsim S + R$ and $md \gtrsim SR$ succeeds
- Attention-only: $d \gtrsim R + A_{\max}$ and $Hd_h \gtrsim S$ succeeds $(A_{\max} := \max_r |\mathcal{A}_r|)$



Training dynamics

- One-layer Transformer with linear attention and one-hot embeddings
- Gradient flow with initialization $W_{OV}(a,z), w_{KQ}(z) \approx \alpha > 0$

Theorem (Nichani et al., 2024, informal)

- We have global convergence to zero loss
- ullet There is an intermediate phase where the model predicts with p(a|r) instead of p(a|s,r)

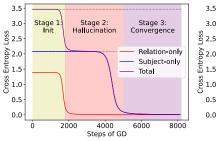
Alberto Bietti

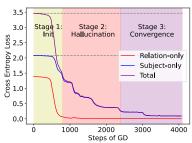
Training dynamics

- One-layer Transformer with linear attention and one-hot embeddings
- Gradient flow with initialization $W_{OV}(a,z), w_{KQ}(z) \approx \alpha > 0$

Theorem (Nichani et al., 2024, informal)

- We have global convergence to zero loss
- There is an intermediate phase where the model predicts with p(a|r) instead of p(a|s,r)
- Intermediate phase corresponds to **hallucination** (over A_r , ignoring s)





Outline

2 Application to Transformers I: factual recall (Nichani et al., 2024)

Application to Transformers II: reasoning / retrieval (B. et al., 2023; Vural et al., 2025+)

Transformers and Associative Memories

14 / 25

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr White went to the mall, it started raining, then Mr White witnessed an odd occurrence. While walking around the mall with his family, Mr White heard the sound of a helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

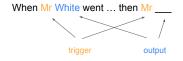
Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)



When Mr White went to the mall, it started raining, then Mr White witnessed an odd occurrence. While walking around the mall with his family, Mr White heard the sound of a helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix **trigger tokens**: q_1, \ldots, q_K

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)



When Mr White went to the mall, it started raining, then Mr White witnessed an odd occurrence. While walking around the mall with his family, Mr White heard the sound of a helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix trigger tokens: q_1, \ldots, q_K

Sample each sequence $z_{1:T} \in [N]^T$ as follows

• Output tokens: $o_k \sim \pi_o(\cdot|q_k)$ (random)

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr White went to the mall, it started raining, then Mr White witnessed an odd occurrence. While walking around the mall with his family, Mr White heard the sound of a helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix trigger tokens: q_1, \ldots, q_K

Sample each sequence $z_{1:T} \in [N]^T$ as follows

- Output tokens: $o_k \sim \pi_o(\cdot|q_k)$ (random)
- Sequence-specific Markov model: $z_1 \sim \pi_1$, $z_t | z_{t-1} \sim p(\cdot | z_{t-1})$ with

$$p(j|i) = \begin{cases} \mathbb{1}\{j = o_k\}, & \text{if } i = q_k, \quad k = 1, \dots, K \\ \pi_b(j|i), & \text{o/w.} \end{cases}$$

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr White went to the mall, it started raining, then Mr White witnessed an odd occurrence. While walking around the mall with his family, Mr White heard the sound of a helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

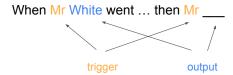
Fix trigger tokens: q_1, \ldots, q_K

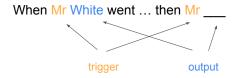
Sample each sequence $z_{1:T} \in [N]^T$ as follows

- Output tokens: $o_k \sim \pi_o(\cdot|\mathbf{q}_k)$ (random)
- Sequence-specific Markov model: $z_1 \sim \pi_1$, $z_t | z_{t-1} \sim p(\cdot | z_{t-1})$ with

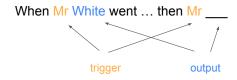
$$p(j|i) = \begin{cases} \mathbb{1}\{j = o_k\}, & \text{if } i = q_k, \quad k = 1, \dots, K \\ \pi_b(j|i), & \text{o/w.} \end{cases}$$

 π_b : global bigrams model (estimated from Karpathy's character-level Shakespeare)

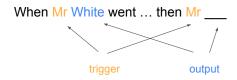




• 1-layer transformer fails: $\sim 55\%$ accuracy on in-context output predictions



- ullet 1-layer transformer fails: $\sim 55\%$ accuracy on in-context output predictions
- 2-layer transformer succeeds: $\sim 99\%$ accuracy



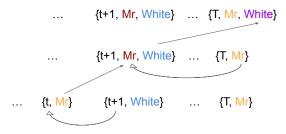
- ullet 1-layer transformer fails: $\sim 55\%$ accuracy on in-context output predictions
- 2-layer transformer succeeds: $\sim 99\%$ accuracy

See (Sanford, Hsu, and Telgarsky, 2023, 2024) for representational lower bounds

(1-hop) Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

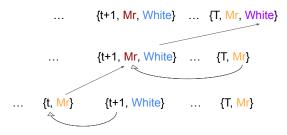
- 1st layer: previous-token head
 - ▶ attends to previous token and copies it to residual stream

(1-hop) Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)



- 1st layer: previous-token head
 - ▶ attends to previous token and copies it to residual stream
- 2nd layer: induction head
 - ▶ attends to output of previous token head, copies attended token

(1-hop) Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)



- 1st layer: previous-token head
 - ▶ attends to previous token and copies it to residual stream
- 2nd layer: induction head
 - ▶ attends to output of previous token head, copies attended token
- Matches observed attention scores:

Random embeddings in high dimension

• We consider **random** embeddings u_i with i.i.d. $\mathcal{N}(0,1/d)$ entries and d large

$$\|u_i\| pprox 1$$
 and $u_i^ op u_j = O(1/\sqrt{d})$

Alberto Bietti

Random embeddings in high dimension

• We consider **random** embeddings u_i with i.i.d. $\mathcal{N}(0,1/d)$ entries and d large

$$\|u_i\| pprox 1$$
 and $u_i^ op u_j = O(1/\sqrt{d})$

• **Remapping**: multiply by random matrix W with $\mathcal{N}(0,1/d)$ entries:

$$\| \textit{Wu}_i \| pprox 1$$
 and $\textit{u}_i^{ op} \textit{Wu}_i = \textit{O}(1/\sqrt{d})$

Random embeddings in high dimension

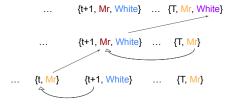
• We consider **random** embeddings u_i with i.i.d. $\mathcal{N}(0,1/d)$ entries and d large

$$\|u_i\| pprox 1$$
 and $u_i^ op u_j = O(1/\sqrt{d})$

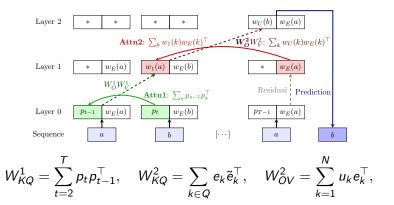
• **Remapping**: multiply by random matrix W with $\mathcal{N}(0,1/d)$ entries:

$$\| \textit{Wu}_i \| pprox 1$$
 and $\textit{u}_i^{ op} \textit{Wu}_i = \textit{O}(1/\sqrt{d})$

• Value/Output matrices help with token **remapping**: $Mr \mapsto Mr$, White \mapsto White

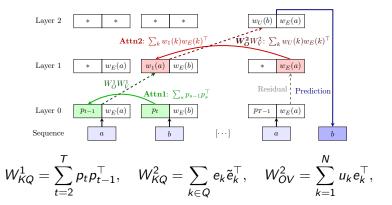


Induction head with associative memories



- Random embeddings e_k , u_k , random matrix W_{OV}^1 (frozen at init)
- **Remapped** previous tokens: $\tilde{e}_k := W_{OV}^1 e_k$

Induction head with associative memories

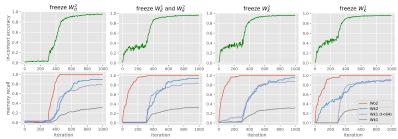


- Random embeddings e_k , u_k , random matrix W_{OV}^1 (frozen at init)
- **Remapped** previous tokens: $\tilde{e}_k := W_{OV}^1 e_k$

Q: Does this match practice?

Empirically probing the dynamics

Train only W_{KQ}^1 , W_{KQ}^2 , W_{OV}^2 , loss on deterministic output tokens only

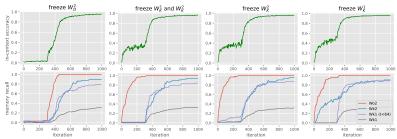


• "Memory recall **probes**": for target memory $W_* = \sum_{i=1}^M u_i e_i^{ op}$, compute

$$R(\hat{W}, W_*) = \frac{1}{M} \sum_{i=1}^{M} \mathbb{1}\{i = \operatorname{arg\,max}_{j} u_{j}^{\top} \hat{W} e_i\}$$

Empirically probing the dynamics

Train only W_{KQ}^1 , W_{KQ}^2 , W_{OV}^2 , loss on deterministic output tokens only



• "Memory recall **probes**": for target memory $W_* = \sum_{i=1}^M u_i e_i^{\top}$, compute

$$R(\hat{W}, W_*) = \frac{1}{M} \sum_{i=1}^{M} \mathbb{1}\{i = \operatorname{arg\,max}_{j} u_{j}^{\top} \hat{W} e_i\}$$

- Natural learning "**order**": W_{OV}^2 first, W_{KO}^2 next, W_{KO}^1 last
- Joint learning is faster

Gradient steps for the bigram task

Setting: transformer on the bigram task

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture
- Infinite width, infinite data, $N \gg T$

Gradient steps for the bigram task

Setting: transformer on the bigram task

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture
- Infinite width, infinite data, $N \gg T$

Theorem (B. et al., 2023, informal)

In the setup above, we can recover the desired associative memories with **3 gradient steps** on the population loss: first on W_{CV}^2 , then W_{KO}^1 , then W_{KO}^1 .

Gradient steps for the bigram task

Setting: transformer on the bigram task

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture
- Infinite width, infinite data, $N \gg T$

Theorem (B. et al., 2023, informal)

In the setup above, we can recover the desired associative memories with **3 gradient steps** on the population loss: first on W_{CV}^2 , then W_{KO}^2 , then W_{KO}^1 .

Key ideas

- ullet Attention is uniform at initialization \Longrightarrow inputs are sums of embeddings
- \bullet W_{OV}^2 : correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z_T
- $W_{KQ}^{1/2}$: correct associations lead to more focused attention

Gradient steps for the bigram task

Setting: transformer on the bigram task

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture
- Infinite width, infinite data, $N \gg T$

Theorem (B. et al., 2023, informal)

In the setup above, we can recover the desired associative memories with **3 gradient steps** on the population loss: first on W_{CV}^2 , then W_{KO}^2 , then W_{KO}^1 .

Key ideas

- ullet Attention is uniform at initialization \Longrightarrow inputs are sums of embeddings
- ullet W_{OV}^2 : correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z_T
- $W_{KO}^{1/2}$: correct associations lead to more focused attention
- See also Eshaan's talk for k-hop with finite samples

Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs, B. et al., 2023)

Let p be a data distribution over $(x, y) \in \mathbb{R}^d \times [N]$, and consider the loss

$$L(W) = \mathbb{E}_{(x,y)\sim p}[\ell(y,F_W(x))], \quad F_W(z)_k = u_k^\top W x.$$

Alberto Bietti Transformers and Associative Memories

Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs, B. et al., 2023)

Let p be a data distribution over $(x,y) \in \mathbb{R}^d \times [N]$, and consider the loss

$$L(W) = \mathbb{E}_{(x,y)\sim p}[\ell(y,F_W(x))], \quad F_W(z)_k = \mathbf{u}_k^\top W \mathbf{x}.$$

Denoting
$$\mu_k := \mathbb{E}[x|y=k]$$
 and $\hat{\mu}_k := \mathbb{E}_x[\frac{\hat{p}_W(k|x)}{p(y=k)}x]$, we have

$$\nabla_W L(W) = \sum_{k=1}^N p(y=k) \mathbf{u}_k (\hat{\mu}_k - \mu_k)^\top.$$

Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs, B. et al., 2023)

Let p be a data distribution over $(x,y) \in \mathbb{R}^d \times [N]$, and consider the loss

$$L(W) = \mathbb{E}_{(x,y)\sim p}[\ell(y,F_W(x))], \quad F_W(z)_k = \mathbf{u}_k^\top W \mathbf{x}.$$

Denoting $\mu_k := \mathbb{E}[x|y=k]$ and $\hat{\mu}_k := \mathbb{E}_x[\frac{\hat{p}_W(k|x)}{p(y=k)}x]$, we have

$$\nabla_W L(W) = \sum_{k=1}^N \rho(y=k) \mathbf{u}_k (\hat{\mu}_k - \mu_k)^\top.$$

• **Example**: $y \sim \text{Unif}([N]), t \sim \text{Unif}([T]), x = e_y + p_t$.

Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs, B. et al., 2023)

Let p be a data distribution over $(x,y) \in \mathbb{R}^d \times [N]$, and consider the loss

$$L(W) = \mathbb{E}_{(x,y)\sim p}[\ell(y,F_W(x))], \quad F_W(z)_k = \mathbf{u}_k^\top W \mathbf{x}.$$

Denoting $\mu_k := \mathbb{E}[x|y=k]$ and $\hat{\mu}_k := \mathbb{E}_x[\frac{\hat{p}_W(k|x)}{p(y=k)}x]$, we have

$$\nabla_W L(W) = \sum_{k=1}^N p(y=k) \mathbf{u}_k (\hat{\mu}_k - \mu_k)^\top.$$

• **Example**: $y \sim \text{Unif}([N])$, $t \sim \text{Unif}([T])$, $x = e_y + p_t$. One gradient step:

$$u_k^{\top} W_1(e_y + \rho_t) \approx \frac{\eta}{N} \mathbb{1}\{y = k\} + O\left(\frac{1}{N^2}\right)$$

Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs, B. et al., 2023)

Let p be a data distribution over $(x,y) \in \mathbb{R}^d \times [N]$, and consider the loss

$$L(W) = \mathbb{E}_{(x,y)\sim p}[\ell(y,F_W(x))], \quad F_W(z)_k = \mathbf{u}_k^\top W \mathbf{x}.$$

Denoting $\mu_k := \mathbb{E}[x|y=k]$ and $\hat{\mu}_k := \mathbb{E}_x[\frac{\hat{p}_W(k|x)}{p(y=k)}x]$, we have

$$\nabla_W L(W) = \sum_{k=1}^N p(y=k) \mathbf{u}_k (\hat{\mu}_k - \mu_k)^\top.$$

• **Example**: $y \sim \text{Unif}([N])$, $t \sim \text{Unif}([T])$, $x = e_y + p_t$. One gradient step:

$$u_k^{\top} W_1(e_y + \rho_t) \approx \frac{\eta}{N} \mathbb{1}\{y = k\} + O\left(\frac{1}{N^2}\right)$$

Similar arguments for attention matrices

Alberto Bietti

• Data model: $y = f^*(z_{t^*})$, with **one planted relevant token** z_{t^*} in a context of length T

Alberto Bietti Transformers and Associative Memories Cargèse 2025

23 / 25

- Data model: $y = f^*(z_{t^*})$, with **one planted relevant token** z_{t^*} in a context of length T
- Assume first layer is already learned (trigger appears along with relevant token)

- Data model: $y = f^*(z_{t^*})$, with **one planted relevant token** z_{t^*} in a context of length T
- Assume first layer is already learned (trigger appears along with relevant token)
- Three steps: first W_{OV} , then W_{KQ} , then W_{OV} again (see also Oymak et al., 2023)

- Data model: $y = f^*(z_{t^*})$, with **one planted relevant token** z_{t^*} in a context of length T
- Assume first layer is already learned (trigger appears along with relevant token)
- Three steps: first W_{OV} , then W_{KQ} , then W_{OV} again (see also Oymak et al., 2023)
- d: embed dimension, N: vocab size, T: context length, n: sample size

- Data model: $y = f^*(z_{t^*})$, with **one planted relevant token** z_{t^*} in a context of length T
- Assume first layer is already learned (trigger appears along with relevant token)
- Three steps: first W_{OV} , then W_{KQ} , then W_{OV} again (see also Oymak et al., 2023)
- d: embed dimension, N: vocab size, T: context length, n: sample size

Theorem (Learnability of induction head, Vural, Wu, and B., 2025+, informal)

Assume $d \gg \sqrt{N} \gg 1$ and $n \gg N$. The Transformer learns the desired mapping iff

$$d\gg \frac{T^2}{N}\min\left\{1,\left(\frac{N^2}{Tn}\right)^{2/3}\right\}$$

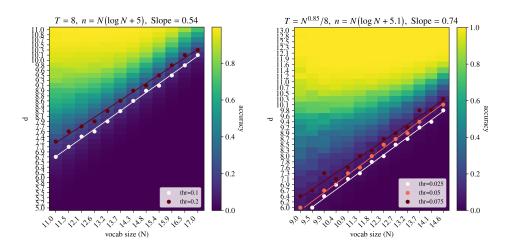
- Data model: $y = f^*(z_{t^*})$, with **one planted relevant token** z_{t^*} in a context of length T
- Assume first layer is already learned (trigger appears along with relevant token)
- Three steps: first W_{OV} , then W_{KQ} , then W_{OV} again (see also Oymak et al., 2023)
- d: embed dimension, N: vocab size, T: context length, n: sample size

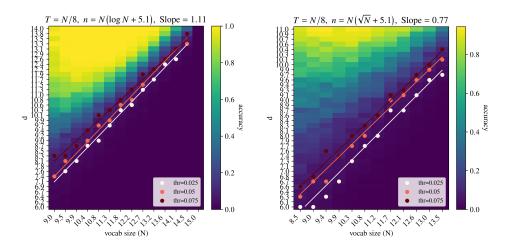
Theorem (Learnability of induction head, Vural, Wu, and B., 2025+, informal)

Assume $d \gg \sqrt{N} \gg 1$ and $n \gg N$. The Transformer learns the desired mapping iff

$$d\gg \frac{T^2}{N}\min\left\{1,\left(\frac{N^2}{Tn}\right)^{2/3}\right\}$$

- If $T = \Theta(1)$, $d \gg \sqrt{N}$ is enough
- If $T \gg 1$, need $d \gg \sqrt{N}$ is **not** enough unless n is very large





Concluding remarks

Transformer weights as associative memories

- Storage capacity and gradient-based learning
- Toy models of reasoning and factual recall

Concluding remarks

Transformer weights as associative memories

- Storage capacity and gradient-based learning
- Toy models of reasoning and factual recall

Future directions

- Analysis for more general tasks
- Fine-grained optimization
- Learning embeddings

Concluding remarks

Transformer weights as associative memories

- Storage capacity and gradient-based learning
- Toy models of reasoning and factual recall

Future directions

- Analysis for more general tasks
- Fine-grained optimization
- Learning embeddings

Thank you!

References I

- Z. Allen-Zhu and Y. Li. Physics of language models: Part 3.3, knowledge capacity scaling laws. *arXiv* preprint arXiv:2404.05405, 2024.
- D. J. Amit, H. Gutfreund, and H. Sompolinsky. Storing infinite numbers of patterns in a spin-glass model of neural networks. *Physical Review Letters*, 55(14):1530, 1985.
- A. B., V. Cabannes, D. Bouchacourt, H. Jegou, and L. Bottou. Birth of a transformer: A memory viewpoint. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- J. Ba, M. A. Erdogdu, T. Suzuki, Z. Wang, D. Wu, and G. Yang. High-dimensional asymptotics of feature learning: How one gradient step improves the representation. *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- V. Cabannes, E. Dohmatob, and A. B. Scaling laws for associative memories. In *International Conference on Learning Representations (ICLR)*, 2024a.
- V. Cabannes, B. Simsek, and A. B. Learning associative memories with gradient descent. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2024b.
- L. Chen, J. Bruna, and A. B. How truncating weights improves reasoning in language models. *arXiv* preprint arXiv:2406.03068, 2024.
- A. Damian, J. Lee, and M. Soltanolkotabi. Neural networks can learn representations with gradient descent. In *Conference on Learning Theory (COLT)*, 2022.

References II

- Y. Dandi, F. Krzakala, B. Loureiro, L. Pesce, and L. Stephan. Learning two-layer neural networks, one (giant) step at a time. *arXiv preprint arXiv:2305.18270*, 2023.
- M. Demircigil, J. Heusel, M. Löwe, S. Upgang, and F. Vermet. On a model of associative memory with huge storage capacity. *Journal of Statistical Physics*, 168:288–299, 2017.
- N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, N. DasSarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*, 2021.
- M. Geva, R. Schuster, J. Berant, and O. Levy. Transformer feed-forward layers are key-value memories. arXiv preprint arXiv:2012.14913, 2020.
- J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. *Proceedings of the national academy of sciences*, 79(8):2554–2558, 1982.
- M. Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.
- D. Krotov and J. J. Hopfield. Dense associative memory for pattern recognition. *Advances in neural information processing systems*, 29, 2016.
- B. Liu, J. T. Ash, S. Goel, A. Krishnamurthy, and C. Zhang. Transformers learn shortcuts to automata. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2023.

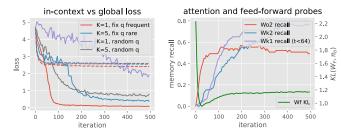
References III

- C. Lucibello and M. Mézard. Exponential capacity of dense associative memories. *Physical Review Letters*, 132(7):077301, 2024.
- R. McEliece, E. Posner, E. Rodemich, and S. Venkatesh. The capacity of the hopfield associative memory. *IEEE transactions on Information Theory*, 33(4):461–482, 1988.
- W. Merrill, A. Sabharwal, and N. A. Smith. Saturated transformers are constant-depth threshold circuits. *Transactions of the Association for Computational Linguistics*, 10:843–856, 2022.
- E. Nichani, J. D. Lee, and A. B. Understanding factual recall in transformers via associative memories. arXiv preprint arXiv:2412.06538, 2024.
- C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, S. Johnston, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah. In-context learning and induction heads. *Transformer Circuits Thread*, 2022.
- S. Oymak, A. S. Rawat, M. Soltanolkotabi, and C. Thrampoulidis. On the role of attention in prompt-tuning. In *International Conference on Machine Learning*, 2023.
- H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, T. Adler, L. Gruber, M. Holzleitner, M. Pavlović, G. K. Sandve, et al. Hopfield networks is all you need. arXiv preprint arXiv:2008.02217, 2020.

References IV

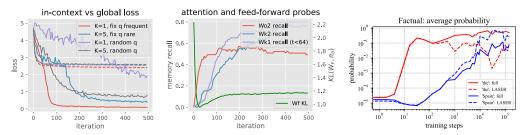
- C. Sanford, D. Hsu, and M. Telgarsky. Representational strengths and limitations of transformers. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- C. Sanford, D. Hsu, and M. Telgarsky. One-layer transformers fail to solve the induction heads task. arXiv preprint arXiv:2408.14332, 2024.
- P. Sharma, J. T. Ash, and D. Misra. The truth is in there: Improving reasoning in language models with layer-selective rank reduction. *arXiv preprint arXiv:2312.13558*, 2023.
- M. Smart, A. B., and A. M. Sengupta. In-context denoising with one-layer transformers: connections between attention and associative memory retrieval. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2025.
- M. Vural, D. Wu, and A. B. Sample complexity of learning attention. in prep, 2025+.
- K. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt. Interpretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint arXiv:2211.00593, 2022.
- G. Yang and E. J. Hu. Tensor programs iv: Feature learning in infinite-width neural networks. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2021.

Global vs in-context associations



• Global bigrams are learned much faster than induction head, tend to be stored in MLPs

Global vs in-context associations

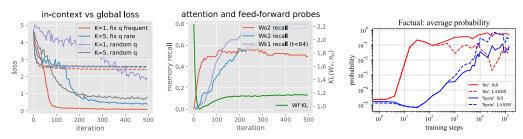


Global bigrams are learned much faster than induction head, tend to be stored in MLPs

Trade-offs between global and in-context predictions (Chen, Bruna, and B., 2024)

- Trade-offs also appear in LLMs
 - ▶ "Madrid is located in" \rightarrow {the, Spain} on Pythia-1B
 - ▶ Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context

Global vs in-context associations



Global bigrams are learned much faster than induction head, tend to be stored in MLPs

Trade-offs between global and in-context predictions (Chen, Bruna, and B., 2024)

- Trade-offs also appear in LLMs
 - ▶ "Madrid is located in" \rightarrow {the, Spain} on Pythia-1B
 - ▶ Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context

Theorem (Chen et al., 2024, informal)

In toy setting, feed-forward layer learns global bigram after O(1) samples, attention after O(N) samples due to noise.

Setting

•
$$z_i \sim p(z)$$
, $y_i = f^*(z_i)$, n samples: $S_n = \{z_1, ..., z_n\}$, $0/1$ loss:

$$L(\hat{f}_n) = \mathbb{P}(\underline{y} \neq \hat{f}_n(\underline{z}))$$

Cargèse 2025

Setting

• $z_i \sim p(z)$, $y_i = f^*(z_i)$, n samples: $S_n = \{z_1, ..., z_n\}$, 0/1 loss:

$$L(\hat{f}_n) = \mathbb{P}(y \neq \hat{f}_n(z))$$

• Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

$$p(z) \propto z^{-\alpha}$$

Setting

• $z_i \sim p(z)$, $y_i = f^*(z_i)$, n samples: $S_n = \{z_1, \dots, z_n\}$, 0/1 loss:

$$L(\hat{f}_n) = \mathbb{P}(y \neq \hat{f}_n(z))$$

• Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

$$p(z) \propto z^{-\alpha}$$

• Hutter (2021): with infinite memory, we have

$$L(\hat{f}_n) \lesssim n^{-\frac{\alpha-1}{\alpha}}$$

Setting

• $z_i \sim p(z)$, $y_i = f^*(z_i)$, n samples: $S_n = \{z_1, \dots, z_n\}$, 0/1 loss:

$$L(\hat{f}_n) = \mathbb{P}(y \neq \hat{f}_n(z))$$

• Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

$$p(z) \propto z^{-\alpha}$$

Hutter (2021): with infinite memory, we have

$$L(\hat{f}_n) \lesssim n^{-\frac{\alpha-1}{\alpha}}$$

• Q: What about finite capacity?

- Random embeddings $e_z, u_v \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_{y} \mathbf{u}_{y}^{\top} W_{n,d} e_{z}$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) u_{f^*(z)} e_z^{\top}$$

- ullet Random embeddings $e_z, \underline{u_y} \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_{y} \mathbf{u}_{y}^{\top} W_{n,d} e_{z}$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) u_{f^*(z)} e_z^{\top}$$

• Single population gradient step on cross-entropy loss: $q(z) \approx p(z)$

Alberto Bietti

- ullet Random embeddings $e_z, \underline{u_y} \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_y u_y^\top W_{n,d} e_z$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) u_{f^*(z)} e_z^{\top}$$

• Single population gradient step on cross-entropy loss: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, and B., 2024a, informal)

① For
$$q(z) = \sum_{i} \mathbb{1}\{z = z_i\}$$
: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$

- Random embeddings $e_z, u_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg\max_{y} \mathbf{u}_{y}^{\top} W_{n,d} \mathbf{e}_{z}$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) u_{f^*(z)} e_z^{\top}$$

• Single population gradient step on cross-entropy loss: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, and B., 2024a, informal)

- ① For $q(z) = \sum_{i} \mathbb{1}\{z = z_{i}\}: L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$
- ② For $q(z) = \mathbb{1}\{z \in S_n\}$, and $d \gg N$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-k}$ for any k

- ullet Random embeddings $e_z, \underline{u_y} \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_{y} \mathbf{u}_{y}^{\top} W_{n,d} \mathbf{e}_{z}$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) u_{f^*(z)} e_z^{\mathsf{T}}$$

• Single population gradient step on cross-entropy loss: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, and B., 2024a, informal)

- ① For $q(z) = \sum_{i} \mathbb{1}\{z = z_{i}\}: L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$
- ② For $q(z) = \mathbb{1}\{z \in S_n\}$, and $d \gg N$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-k}$ for any k
- 3 For $q(z) = 1\{z \text{ seen at least s times in } S_n\}$: $L(\hat{f}_{n,d}) \leq n^{-\frac{\alpha-1}{\alpha}} + d^{-\alpha+1}$

- Random embeddings $e_z, \underline{u_V} \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg\max_{v} \mathbf{u}_{v}^{\top} W_{n,d} \mathbf{e}_{z}$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) u_{f^*(z)} e_z^{\mathsf{T}}$$

• Single population gradient step on cross-entropy loss: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, and B., 2024a, informal)

- ① For $q(z) = \sum_{i} \mathbb{1}\{z = z_{i}\}: L(\hat{f}_{n,d}) \leq n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$
- 2 For $q(z) = \mathbb{1}\{z \in S_n\}$, and $d \gg N$: $L(\hat{f}_{n,d}) \leq n^{-\frac{\alpha-1}{\alpha}} + d^{-k}$ for any k
- 3 For $q(z) = 1\{z \text{ seen at least s times in } S_n\}$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\alpha+1}$
- $n^{-\frac{\alpha-1}{\alpha}}$ is the same as (Hutter, 2021)
- Can store at most d memories (approximation error: $d^{-\alpha+1}$)

Alberto Bietti Transformers and Associative Memories

32 / 25

$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)] \qquad \rightarrow \qquad W_{n,d} \approx \sum_{z=1}^N q(z)u_{f^*(z)}e_z^{\top}$$

$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)] \qquad \rightarrow \qquad W_{n,d} \approx \sum_{z=1}^N q(z) u_{f^*(z)} e_z^{\top}$$

Different algorithms lead to different memory schemes q(z):

• One step of SGD with large batch: $q(z) \approx p(z)$

$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)] \qquad \rightarrow \qquad W_{n,d} \approx \sum_{z=1}^{N} q(z) u_{f^*(z)} e_z^{\top}$$

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d\gg N$: $q(z)\approx 1$

$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)] \qquad \rightarrow \qquad W_{n,d} \approx \sum_{z=1}^N q(z) u_{f^*(z)} e_z^{\top}$$

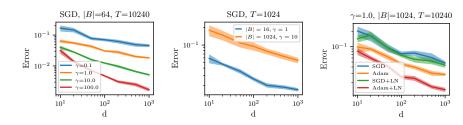
- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training

$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)] \qquad \rightarrow \qquad W_{n,d} \approx \sum_{z=1}^N q(z) u_{f^*(z)} e_z^{\top}$$

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training
- Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)] \qquad \rightarrow \qquad W_{n,d} \approx \sum_{z=1}^N q(z)u_{f^*(z)}e_z^{\top}$$

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training
- Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)



$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)], \qquad \ell$$
: cross-entropy loss

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)

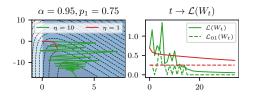
ullet Orthogonal embeddings \Longrightarrow logarithmic growth of margins for any step-size

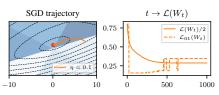
Alberto Bietti

$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)], \qquad \ell$$
: cross-entropy loss

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)

- ullet Orthogonal embeddings \Longrightarrow logarithmic growth of margins for any step-size
- \bullet Correlated embeddings + imbalance \implies oscillatory regimes

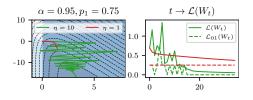


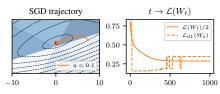


$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)], \qquad \ell$$
: cross-entropy loss

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)

- ullet Orthogonal embeddings \Longrightarrow logarithmic growth of margins for any step-size
- \bullet Correlated embeddings + imbalance \implies oscillatory regimes
- Large step-sizes help reach perfect accuracy faster despite oscillations (empirically)





$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)], \qquad \ell$$
: cross-entropy loss

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)

- ullet Orthogonal embeddings \Longrightarrow logarithmic growth of margins for any step-size
- \bullet Correlated embeddings + imbalance \implies oscillatory regimes
- Large step-sizes help reach perfect accuracy faster despite oscillations (empirically)
- Over-optimization can hurt in under-parameterized settings (empirically)

