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What are Transformer LLMs doing?

Reasoning over context

o A "biology"” of circuits (Elhage et al., 2021; Wang et al., 2022), (Anthropic, 2025)
o Many results on expressivity (e.g., circuits, formal languages, graph algorithms)
» e.g., (Merrill et al., 2022; Liu et al., 2023; Sanford et al., 2023)
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What are Transformer LLMs doing?

Reasoning over context

o A "biology"” of circuits (Elhage et al., 2021; Wang et al., 2022), (Anthropic, 2025)
o Many results on expressivity (e.g., circuits, formal languages, graph algorithms)
» e.g., (Merrill et al., 2022; Liu et al., 2023; Sanford et al., 2023)

Knowledge storage

o Memorization, factual recall, parameter scaling
» e.g., (Geva et al., 2020; Allen-Zhu and Li, 2024)

o Allows higher-level reasoning

6 Dan Hendrycks & @DanHendrycks - Mar 14, 2023 a5 param
It knows many esoteric facts (e.g., the meaning of obscure songs, knows
what area a researcher works in, can contrast ML optimizers like Adam vs
AdamW like in a PhD oral exam, and so on).

N~10000000
« N=5000000

learned knowledge (bits)

My rule-of-thumb is that
"if it's on the internet 5 or more times, GPT-4 remembers it."

o Ne10000

Q1 M 28 Q 184 il 25K N a

model size (#params)
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What are Transformer LLMs doing?

Reasoning over context

o A "biology"” of circuits (Elhage et al., 2021; Wang et al., 2022), (Anthropic, 2025)
o Many results on expressivity (e.g., circuits, formal languages, graph algorithms)
» e.g., (Merrill et al., 2022; Liu et al., 2023; Sanford et al., 2023)

Knowledge storage
o Memorization, factual recall, parameter scaling
» e.g., (Geva et al., 2020; Allen-Zhu and Li, 2024)

o Allows higher-level reasoning

Goal: tractable model for both + training dynamics?
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Transformer language models

Input: sequence of discrete tokens (zy,...,z7) € [N]"
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Transformer language models

Input: sequence of discrete tokens (zy,...,z7) € [N]"
Embeddings

o input e, positional p;, output v, in R9

o this talk: fixed to random init N'(0,1/d)
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Embeddings

o input e, positional p;, output v, in R9
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Residual streams (Elhage et al., 2021)

o embed each token z; € [N] as x; := e, + p;
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Transformer language models

Input: sequence of discrete tokens (zy,...,z7) € [N]"
Embeddings

o input e, positional p;, output v, in R9

o this talk: fixed to random init N'(0,1/d)

Residual streams (Elhage et al., 2021)
o embed each token z; € [N] as x; := e, + p;
o (causal) self-attention x; := x; + MHSA(X¢, x1:¢)

H ot T /hT \/h
. exp(x ' W' Wixe)
MHSA(x, x1.+) = E E BIWET W .. with g7 =
t e ° v ° frexp(e TWET W)

where Wy, Wo, Wy, Wo € R%*9 (key/query/value/output matrices)
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Transformer language models

Input: sequence of discrete tokens (zy,...,z7) € [N]"
Embeddings

o input e, positional p;, output v, in R9

o this talk: fixed to random init N'(0,1/d)

Residual streams (Elhage et al., 2021)
o embed each token z; € [N] as x; := e, + p;
o (causal) self-attention x; := x; + MHSA(X¢, x1:¢)
o feed-forward x; := x; + MLP(x;)

MLP(x;) = Vo (Ux:)
where U, V € R™*9 often m = 4d

Alberto Bietti Transformers and Associative Memories CUNY 2025

3/23



Transformer language models

Input: sequence of discrete tokens (zy,...,z7) € [N]"
Embeddings

o input e, positional p;, output v, in R9

o this talk: fixed to random init N'(0,1/d)

Residual streams (Elhage et al., 2021)

o embed each token z; € [N] as x; := e, + p;
(causal) self-attention x; := x¢ + MHSA(x¢, x1:¢)
feed-forward x; := x¢ + MLP(x)

©

©

©

residual stream x; is a sum of embeddings/“features”
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Transformer language models

Input: sequence of discrete tokens (zy,...,z7) € [N]"
Embeddings

o input e, positional p;, output v, in R9

o this talk: fixed to random init N'(0,1/d)

Residual streams (Elhage et al., 2021)

o embed each token z; € [N] as x; := e, + p;
(causal) self-attention x; := x¢ + MHSA(x¢, x1:¢)
feed-forward x; := x¢ + MLP(x)

©

©

©

residual stream x; is a sum of embeddings/“features”

Next-token prediction

o cross-entropy loss

Z Uzt41; (UJTXt)j)

t<T
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QOutline

@ Associative memories

2) Application to Transformers I: in-context reasoning (B. et al., 2023)

3) Application to Transformers II: factual recall (Nichani et al., 2025)



Associative memories: background
Hopfield nets (Hopfield, 1982)
o Store N patterns &; € {#1}9 using Hebb's rule:

N
W=> ¢ e R
i=1

o Recover pattern from corrupted version by iterating: x’ = sign(Wx)
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Associative memories: background
Hopfield nets (Hopfield, 1982)
o Store N patterns &; € {#1}9 using Hebb's rule:
N
W — Z‘f"éiT c RIxd
i=1
o Recover pattern from corrupted version by iterating: x’ = sign(Wx)

o Iterates descend on a quadratic energy landscape E(x) = —x ' Wx
o Can store N = ©(d) patterns (Amit et al., 1985; McEliece et al., 1988)

Alberto Bietti Transformers and Associative Memories CUNY 2025

5/23



Associative memories: background
Hopfield nets (Hopfield, 1982)
o Store N patterns &; € {#1}9 using Hebb's rule:
N
W — Z‘f"éiT c Raxd
i=1
o Recover pattern from corrupted version by iterating: x’ = sign(Wx)

o Iterates descend on a quadratic energy landscape E(x) = —x ' Wx
o Can store N = ©(d) patterns (Amit et al., 1985; McEliece et al., 1988)

Modern Hopfield nets (a.k.a dense associative memories)
o Improve capacity through higher-order energy function
» (Krotov and Hopfield, 2016; Demircigil et al., 2017; Lucibello and Mézard, 2024)

o e.g., capacity d~1 when using energy E(x) = — Z,N:l(flj—x)k
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Associative memories: background
Hopfield nets (Hopfield, 1982)
o Store N patterns &; € {#1}9 using Hebb's rule:

N
W — Z‘f"giT c RI*d
i=1
o Recover pattern from corrupted version by iterating: x’ = sign(Wx)
o Iterates descend on a quadratic energy landscape E(x) = —x ' Wx
o Can store N = ©(d) patterns (Amit et al., 1985; McEliece et al., 1988)

Modern Hopfield nets (a.k.a dense associative memories)
o Improve capacity through higher-order energy function
» (Krotov and Hopfield, 2016; Demircigil et al., 2017; Lucibello and Mézard, 2024)

o e.g., capacity d~1 when using energy E(x) = — Z,N:l(flj—x)k

Attention as associative memory

o Softmax attention as one step retrieval in dense associative memory over context

» Ramsauer et al. (2020); Hoover et al. (2023)
» Smart, B., and Sengupta (2025): emerges from in-context denoising
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Transformer weights as associative memories

o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,} cy:

e =1 and e e, =0

|uy||~1 and wu,"u, =0
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Transformer weights as associative memories

o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,} cy:

e =1 and e e, =0

|uy||~1 and wu,"u, =0
o Consider pairwise associations (z,y) € M with weights «,, and define:

-
W = Z Oz Uy e,
(z,y)em
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Transformer weights as associative memories

o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,} cy:

e =1 and e e, =0

|uy||~1 and wu,"u, =0
o Consider pairwise associations (z,y) € M with weights «,, and define:
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Transformer weights as associative memories

o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

le.| ~1 and e e, ~0

|uy||~1 and wu,"u, =0

o Consider pairwise associations (z,y) € M with weights «,, and define:

W= Z ozzyuyez—r — uyTWeZ R Oz
(z,y)em

Examples in Transformers
o e, uy, are input/output/positional embeddings, or intermediate representations
o Logits in attention heads: x, Wikgxq
o Logits in next-token prediction: u; Uo(Vx:) or u; Wov xk
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Gradient associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTWGZ?

with ¢ the cross-entropy loss and e,, uy input/output embeddings.
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Gradient associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTWGZ?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1
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Gradient associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
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Gradient associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings

W, = ;\7/; (]1{;‘*(2) =k} — /{/) me,' = u Wie, ~ % (]l{f*(Z) =k} — ,{,)
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Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings
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» Corollary: f(z) = arg maxy u, " Whe, has near-perfect accuracy
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Gradient associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings

W, = ;\7/; (]1{;‘*(2) =k} — /{/) me,' = u Wie, ~ % (]l{f*(Z) =k} — ,{,)

» Corollary: f(z) = arg maxy u, " Whe, has near-perfect accuracy

o More generally, replace vy by “backward” vector
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Gradient associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(Z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings

W, = ;\7/; (]1{;‘*(2) =k} — /{/) me,' = u Wie, ~ % (]l{f*(Z) =k} — ,{,)

» Corollary: ?(z) = arg maxy ;| Wie, has near-perfect accuracy
o More generally, replace vy by “backward” vector
Note: related to (Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Yang and Hu, 2021)
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Capacity: Intuition
o Random embeddings e., u, ~ N(0, 21)

Alberto Bietti Transformers and Associative Memories CUNY 2025 8/23



Capacity: Intuition
o Random embeddings e., u, ~ N(0, 21)

o For some f* : [N] — [M], consider “one gradient step” solution

N
T dxd
W = E Ufx(z)€z eR
z=1
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Capacity: Intuition
o Random embeddings e., u, ~ N(0, 21)

o For some f* : [N] — [M], consider “one gradient step” solution

N
W= Z uf*(z)ez—r S RdXd
z=1

_ *
o When can we recover arg maxy v, = f*(z) for all z?

T _ T T
Yz, i=u, We, = Z Uy Ups (7)€, €y
Z/
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Capacity: Intuition
o Random embeddings e., u, ~ N(0, 21)

o For some f* : [N] — [M], consider “one gradient step” solution

N
W= Z uf*(z)ez—r S RdXd
z=1

_ *
o When can we recover arg maxy v, = f*(z) for all z?

T _ T T
Yz, i=u, We, = Z Uy Ups (7)€, €y
Z/

E[’)’z,y] = { d

0, otherwise.
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Capacity: Intuition
Random embeddings e., u, ~ N(0, 1)

©

o For some f* : [N] — [M], consider “one gradient step” solution
N
W = Z uf*(z)ez—r S RdXd
z=1

©

_ *
When can we recover arg max, v,,, = f*(z) for all z?

T _ T T
Yz, i=u, We, = Z Uy Ups (7)€, €y
Z/

1, ify=1*(2) (@) =y} , HF (@) # ¥} 2
Elvz,y| = \% z 5 + S 1
bz {0, otherwise. arlzy] d d?

Examples: (Cabannes, Dohmatob, and B., 2024a; Nichani, Lee, and B., 2025)
» f* injective: can store up to N ~ d” associations (much better than one hot!)

©
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Capacity: Intuition

©

©

©

©

Random embeddings e., u, ~ N(0, 1)

For some * : [N] — [M], consider “one gradient step” solution
N
W = Z uf*(z)ez—r S RdXd
z=1

_ f*
When can we recover arg max, v,,, = f*(z) for all z?
T _ T T
Yz, i=u, We, = Z Uy Ups (7)€, €y
Z/

1, ify=~Ff*(2)

() =y}l | () A3 2

E[v,,] = Var[yz,] <
bz {0, otherwise. bz d d?

Examples: (Cabannes, Dohmatob, and B., 2024a; Nichani, Lee, and B., 2025)

» f* injective: can store up to N ~ d” associations (much better than one hot!)
» *(z) € {0,1}: can store up to N =~ d associations
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Capacity: Intuition
Random embeddings e., u, ~ N(0, 1)

©

o For some f* : [N] — [M], consider “one gradient step” solution
N
W = Z uf*(z)ez—r S RdXd
z=1

©

_ *
When can we recover arg max, v,,, = f*(z) for all z?

T _ T T
Yz, i=u, We, = Z Uy Ups (7)€, €y
Z/

L, ify=1f"(z) (@) =y} HF (@) # v} 2
E[v,,] = Var[v;.,] < + S
bz {0, otherwise. bz d d?
Examples: (Cabannes, Dohmatob, and B., 2024a; Nichani, Lee, and B., 2025)

» f* injective: can store up to N ~ d” associations (much better than one hot!)
» *(z) € {0,1}: can store up to N =~ d associations
» Scaling laws: store the most frequent tokens with under-parameterized model

©
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Capacity =~ number of parameters

Low-rank
o W =W]"Ws, with Wy, W, € R™<9 (e.g., key-query or output-value matrices)
o can store N ~ md associations when m < d

o construction: random W, one step on W5

(Nichani, Lee, and B., 2025), related to Krotov and Hopfield (2016); Demircigil et al. (2017)
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Low-rank
o W =W]"Ws, with Wy, W, € R™<9 (e.g., key-query or output-value matrices)
o can store N ~ md associations when m < d

o construction: random W, one step on W5

Non-linear MLP
o f(z) = argmax, u, | Wio(W, e,), Wy, Wy € RIX™
o can store N &~ md associations for any width m

o construction: using Hermite polynomials of degree ~ log N/ log d in kernel regime

(Nichani, Lee, and B., 2025), related to Krotov and Hopfield (2016); Demircigil et al. (2017)
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Capacity =~ number of parameters

Low-rank
o W =W]"Ws, with Wy, W, € R™<9 (e.g., key-query or output-value matrices)
o can store N ~ md associations when m < d

o construction: random W, one step on W5

Non-linear MLP
o f(z) = argmax, u, | Wio(W, e,), Wy, Wy € RIX™
o can store N &~ md associations for any width m

o construction: using Hermite polynomials of degree ~ log N/ log d in kernel regime

Multi-input
o f(z1,2) = argmax, u, " Wio(W, (e, + &.,))

o also N = md capacity

(Nichani, Lee, and B., 2025), related to Krotov and Hopfield (2016); Demircigil et al. (2017)
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Capacity =~ number of parameters

Low-rank
o W =W]"Ws, with Wy, W, € R™<9 (e.g., key-query or output-value matrices)
o can store N ~ md associations when m < d

o construction: random W, one step on W5

Non-linear MLP
o f(z) = argmax, u, | Wio(W, e,), Wy, Wy € RIX™
o can store N &~ md associations for any width m

o construction: using Hermite polynomials of degree ~ log N/ log d in kernel regime

Multi-input
o f(z1,2) = argmax, u, " Wio(W, (e, + &.,))

o also N = md capacity

Note: matches information-theoretic lower bounds
(Nichani, Lee, and B., 2025), related to Krotov and Hopfield (2016); Demircigil et al. (2017)
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Outline

(@ Application to Transformers I: in-context reasoning (B. et al., 2023)
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The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Vir White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.
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The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Vir White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix trigger tokens: q1,...,qk
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The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Vir White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix trigger tokens: q1,...,qk
Sample each sequence zi.7 € [N]7 as follows

o Output tokens: o, ~ mo(-|qx) (random)
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The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Vir White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix e | TR
Sample each sequence zi.7 € [N]7 as follows
o Output tokens: o, ~ mo(-|qx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(:|z¢—1) with

1{j=o, ifi=q, k=1,....,K
m(jl7), o/w.

p(ili) =
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The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Vir White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a
output

Fix e | TR
Sample each sequence zi.7 € [N]7 as follows
o Output tokens: o, ~ mo(-|qx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(:|z¢—1) with

1{j=o, ifi=q, k=1,....,K
m(jl7), o/w.

p(jli) =
7p: global bigrams model (estimated from Karpathy's character-level Shakespeare)
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Transformers on the bigram task
When IVir White went ... then

T

output
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When Vir White went ... then Vir
output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions
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Transformers on the bigram task

When Vir White went ... then Vir
output
o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions

o 2-layer transformer succeeds: ~ 99% accuracy

See (Sanford, Hsu, and Telgarsky, 2023, 2024) for representational lower bounds
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(1-hop) Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, White} ... {T, Vr, White}
. {t+1, Mr, White} ... {T, Vir}
///////////' ai\\\\\_“AAA#_ﬂ//////
{t, M} {t+1, White} o AT
.

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
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(1-hop) Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, White} ... {T, Vr, White}
. {t+1, Mr, White} ... {T, Vir}
/ k_/
{t, M} {t+1, White} o AT I}

o

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
o 2nd layer: induction head
» attends to output of previous token head, copies attended token
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(1-hop) Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, White} ... {T, Vr, White}
. {t+1, Mr, White} ... {T, Vir}
/ k_/
{t, M} {t+1, White} o AT

o

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
o 2nd layer: induction head
» attends to output of previous token head, copies attended token

o Matches observed attention scores:
1
", ',
| |
l.

n "

rsabtslLabtsl, ab
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N'(0,1/d) entries and d large

|ui| =1 and o u; = O(1/Vd)

i
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N'(0,1/d) entries and d large
|ui| =1 and o u; = O(1/Vd)

i

o Remapping: multiply by random matrix W with N'(0,1/d) entries:

[Wuil| ~1 and o Wuj = O(1/Vd)
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N'(0,1/d) entries and d large
|ui| =1 and o u; = O(1/Vd)

i

o Remapping: multiply by random matrix W with N'(0,1/d) entries:

[Wuil| ~1 and o Wuj = O(1/Vd)

o Value/Output matrices help with token remapping: — Mr, White — White

{t+1, Mr, White} ... {T, \r, White}
{t+1,Mr,vtht;) e T 0
v
{t, V1) {t+1, White} ... {T, 11}
S
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Induction head with associative memories

bz [ ] [+ ]

wg(a)
Attn2: >, wy (k)wg (k)" 2172,

Layer 1 ‘ * ‘ wg(a) ‘

wy(a) [ wg(b)

IVIII‘I, -

Attnl: > ps_1p] Residual | Predlctmn

/\
Layer 0 ‘ Pt—1 ‘ wg(a) ‘ ‘ ‘ ub(b
Sequence ’—2—‘ b fi

.

1 T T

Wiq = ZPrPt—lv WKQ = Z exdr, Wiy = Z Uk »
t=2 keqQ k=1

o Random embeddings ek, g, random matrix W}, (frozen at init)

o Remapped previous tokens: & := W}, ek
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Induction head with associative memories

Layer 2 ‘ * ‘ * ‘ ‘ * ‘ * ‘

Attn2: 3, wi(b)wp(k)" _.--* WZH‘ S wu(k)wp(k)T

Layer 1 ‘ * ‘ wg(a) ‘

wi(a) [u:E(b) ‘
P

WAW 7"

Attnl: 3 ps_1p,] Residual | Predlctmn

/\
Layer 0 ‘ Pi—1 ‘ wg(a) ‘ ‘ ‘ wg(b) ‘
Sequence a b ’77

.

1 T T

Wiq = ZPrPt—lv WKQ = Z g, Wiy = Z Uk »
t=2 keqQ k=1

o Random embeddings ek, g, random matrix W}, (frozen at init)

o Remapped previous tokens: & := W}, ek
Q: Does this match practice?
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Empirically probing the dynamics

Train only W}(Q, W,%Q, W(%V, loss on deterministic output tokens only

o “Memory

freeze W3

10- 1o-
9
§os- 084
S o6- 06-
Fos- 0.4-
So2- 02-
70'3" i . . . = 0.0
0 200 400 600 800 1000
10- 104
T o8 08-
Los 1
H 06
Sos 0.4-
g
£02 0.2-
00 00-

0 200 400 600 800 1000
iteration

recall probes”: for

R(W,

Alberto Bietti

freeze W} and W2 . freeze W} » freeze W}
o8- 0.8-
06 06-
04 0.4-
02- 02-
| | | | TR, | | | | o 0o | | | | .
0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000

e = T

0s- // 0s-
04- 04- — w2
— wa
—V’f 02- 02- WL (t<64)
Wkl
00- 00-

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration iteration

target memory W, = Z,{\il u,-e,-T, compute

M

1 .
W,) = i 1{i = arg max uJ-T We;}
1

i=
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Empirically probing the dynamics

Train only W}(Q, W,%Q, W(%V, loss on deterministic output tokens only

o “Memory

freeze W3

10 10-
9

8 o8- o8-
Sos- 06-
§oa 04-
So2- 02-
00 ; " v v 00

0 200 400 600 800 1000

10- 10-
T o8 08-
o A
< 056
§

2o 0.4-
g

£02 02-
00 00-

0 200 400 600 800 1000
iteration

recall probes”: for

R(W,

freeze W} and W2 freeze W} freeze W}
10- 10-
o8- 0.8-
06 06-
0a- 0.4-
02- 02-
; " ;00 ; ; ; ; 00 " ; " ; 5
0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000
10- 10-
p— e
0s- P 05~
056 / 06-
04 04- — wo2
— w2
[ 024 02- Wl (t<64)
J — wia
00- 0.0-
0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000
iteration iteration iteration

target memory W, = Z,{\il u,-e,-T, compute

1 M

i=

o Natural learning “order": W(%V first, W,%Q next, W&Q last

o Joint learning is faster

Alberto Bietti

Transformers and Associative Memories

1{i = arg max uJ-T Wej}
1 J

CUNY 2025
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Gradient steps for the bigram task
Setting: transformer on the bigram task
o Focus on predicting second output token
o All distributions are uniform
o Some simplifications to architecture
o Infinite width, infinite data, N > T
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o Focus on predicting second output token
o All distributions are uniform
o Some simplifications to architecture
o Infinite width, infinite data, N > T

Theorem (B. et al., 2023, informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss: first on Wg,,, then W, then Wig.
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Gradient steps for the bigram task
Setting: transformer on the bigram task
o Focus on predicting second output token
o All distributions are uniform
o Some simplifications to architecture
o Infinite width, infinite data, N > T

Theorem (B. et al., 2023, informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss: first on Wg,,, then W, then Wig.

Key ideas
o Attention is uniform at initialization = inputs are sums of embeddings
o W(2)v3 correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z7

1/2 . .
o WKé : correct associations lead to more focused attention
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Gradient steps for the bigram task
Setting: transformer on the bigram task
o Focus on predicting second output token
o All distributions are uniform
o Some simplifications to architecture
o Infinite width, infinite data, N > T

Theorem (B. et al., 2023, informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss: first on Wg,,, then W, then Wig.

Key ideas
o Attention is uniform at initialization = inputs are sums of embeddings
o W(2)v3 correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z7
o W;g: correct associations lead to more focused attention
o Extension to multi-hop with curriculum (Wang et al., 2025):

John holds the apple. John is in the . Where is the apple?
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Key idea: gradient associative memories with noisy inputs

Insight: residual streams, attention output at init, are noisy sums of embeddings
Lemma (Gradients with noisy inputs, B. et al., 2023)

Let p be a data distribution over (x,y) € RY x [N], and consider the loss

L(W) = Byl Fw()]. Fu(2)ic = " Wi
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Key idea: gradient associative memories with noisy inputs

Insight: residual streams, attention output at init, are noisy sums of embeddings
Lemma (Gradients with noisy inputs, B. et al., 2023)

Let p be a data distribution over (x,y) € RY x [N], and consider the loss

L(W) = Byl Fw()]. Fu(2)ic = " Wi

Denoting 11 == E[x|y = k| and [1, := Ey [pW(k|X x], we have

N
VwL(W Z K)u(fie — /1k)T.
k=1
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Key idea: gradient associative memories with noisy inputs

Insight: residual streams, attention output at init, are noisy sums of embeddings
Lemma (Gradients with noisy inputs, B. et al., 2023)

Let p be a data distribution over (x,y) € RY x [N], and consider the loss

L(W) = Byl Fw()]. Fu(2)ic = " Wi

Denoting 11 == E[x|y = k| and [1, := IEX[pW(k|X x], we have

N
VwL(W) = Z K)u(fie — /1k)T.

o Example: y ~ Unif([N]), t ~ Unif([T]), x = e, + pt.
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Key idea: gradient associative memories with noisy inputs

Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs, B. et al., 2023)

Let p be a data distribution over (x,y) € RY x [N], and consider the loss

L(W) = Exyyplly, Fw (), Fw(2)k = ux" W

Denoting 11 == E[x|y = k| and [1, := Ex[%x], we have

N
Vwl(W) =" ply = k)ur(fie — 1)
k=1

o Example: y ~ Unif([N]), t ~ Unif([T]), x = e, + pt. One gradient step:

1
l WAle, +pr) ~ 3y 1y = Kb+ 0 (1)

Alberto Bietti Transformers and Associative Memories CUNY 2025

18/23



Key idea: gradient associative memories with noisy inputs

Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs, B. et al., 2023)

Let p be a data distribution over (x,y) € RY x [N], and consider the loss

L(W) = Exyyplly, Fw (), Fw(2)k = ux" W

Denoting 11 == E[x|y = k| and [1, := Ex[%x], we have

N
Vwl(W) =" ply = k)ur(fie — 1)
k=1

o Example: y ~ Unif([N]), t ~ Unif([T]), x = e, + pt. One gradient step:

1
l WAle, +pr) ~ 3y 1y = Kb+ 0 (1)

o Similar arguments for attention matrices
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Outline

(3 Application to Transformers Il: factual recall (Nichani et al., 2025)
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Toy model of factual recall

The capital of France is Paris

o s € S: subject token
r € R: relation token
a*(s,r) € A,: attribute/fact to be stored

z; € N: noise tokens

©

©

©
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Toy model of factual recall

The capital of France is Paris

o s € S: subject token
r € R: relation token
a*(s,r) € A,: attribute/fact to be stored

z; € N: noise tokens

©

©

©

Q: How many parameters do Transformers need to solve this?
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How many parameters do we need?

o One-layer Transformer, with or without MLP, random embeddings
o Embedding dimension d, head dimension dp, MLP width m, H heads

Theorem (Nichani et al., 2025, informal)
o Attention + MLP: Hdy 2 S + R and md 2 SR succeeds
o Attention-only: d 2 R + Amax and Hdy 2 S + R succeeds (Amax := max, |A;|)
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How many parameters do we need?

o One-layer Transformer, with or without MLP, random embeddings
o Embedding dimension d, head dimension dp, MLP width m, H heads

Theorem (Nichani et al., 2025, informal)
o Attention + MLP: Hdy 2 S + R and md 2 SR succeeds
o Attention-only: d 2 R + Amax and Hdy 2 S + R succeeds (Amax := max, |A;|)

o Total parameters scale with number of facts SR (up to Amax)
o Constructions are based on associative memories
o Attention-only needs large enough d

o Noise is negligible (log factors)
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How many parameters do we need?

o One-layer Transformer, with or without MLP, random embeddings
o Embedding dimension d, head dimension dp, MLP width m, H heads

Theorem (Nichani et al., 2025, informal)
o Attention + MLP: Hd, 2 S + R and md 2 SR succeeds
o Attention-only: d 2 R + Amax and Hdy 2 S + R succeeds (Amax := max, |A;|)

Attention + MLP Construction

|:| dldj,]heads attends to s
o (0]

R 0 \

|:| Rest of heads anend IO EOS E|_. ) |_(MLP associative Memory
X' (XWTWQ)‘T) _’¢(EOS ] WTWV o) x = VTe(Wx) 2

|:| [d/d,|heads attends IO r /
XT&(XWTWQxT) — (r)—> WT M
EOS
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How many parameters do we need?

o One-layer Transformer, with or without MLP, random embeddings
o Embedding dimension d, head dimension dp, MLP width m, H heads

Theorem (Nichani et al., 2025, informal)
o Attention + MLP: Hdy 2 S + R and md 2 SR succeeds
o Attention-only: d 2 R + Amax and Hdy 2 S + R succeeds (Amax := max, |A;|)

Attention-only Construction

|:| Head h, attends tos) ﬁ\<

xch(wawaT) — (s)—»M

D Rest of heads attend to EOS 2.

|:| XT&(XWTWQXT) — | (EOS WTWV

D Head h, (attends to r) o
XTJ(XWTWQ,\T) — (r)—> WTWV E < .

Lo
e, @

[N ENC BN ENENEN|

A
&
=

$@

-

=
[ ]-]

DI ORD W O]

Y

[TTl
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How many parameters do we need?

o One-layer Transformer, with or without MLP, random embeddings
o Embedding dimension d, head dimension dp, MLP width m, H heads

Theorem (Nichani et al., 2025, informal)
o Attention + MLP: Hd, 2 S + R and md 2 SR succeeds
o Attention-only: d 2 R + Amax and Hdy 2 S + R succeeds (Amax := max, |A;|)
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Training dynamics
o One-layer Transformer with linear attention and one-hot embeddings
o Gradient flow with initialization Woy(a, z), wkq(z) = a > 0

Theorem (Nichani et al., 2025, informal)
o We have global convergence to zero loss

o There is an intermediate phase where the model predicts with p(a|r) instead of p(als,r)
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Training dynamics
o One-layer Transformer with linear attention and one-hot embeddings
o Gradient flow with initialization Woy(a, z), wkq(z) = a > 0

Theorem (Nichani et al., 2025, informal)

o We have global convergence to zero loss
o There is an intermediate phase where the model predicts with p(a|r) instead of p(als,r)

o Intermediate phase corresponds to hallucination (over A,, ignoring s)

35 35

3.0{ Stagel Stage 2: Stage 3: 3.0 Stage 2: Stage 3:
" Init Hallucination Convergence » Hallucination Convergence
825 825
S S2.
Boo] ————————— —— Relation-only 220 - —— Relation-only
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w 1.5 —— Total w15 —— Total
2 @
S 1.0 S 1.0
o (s}

0.5 0.5
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0 2000 4000 6000 8000 0 1000 2000 3000 4000
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Concluding remarks

Transformer weights as associative memories
o Storage capacity and gradient-based learning
o Toy models of reasoning and factual recall
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o K-hop reasoning with log K layers via gradient steps with curriculum

» Wang, Nichani, B., Damian, Hsu, Lee, and Wu (2025)
o Scaling trade-offs in learning attention at finite width/samples

» Vural, Wu, and B. (2025+)
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o Fine-grained study of capacity
o Fine-grained optimization for multiple layers
o Analysis for more general tasks
o Learning embeddings
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Concluding remarks

Transformer weights as associative memories
o Storage capacity and gradient-based learning
o Toy models of reasoning and factual recall

Extensions

o Scaling laws and optimization dynamics for imbalanced data

» Cabannes, Dohmatob, and B. (2024a); Cabannes, Simsek, and B. (2024b)
o K-hop reasoning with log K layers via gradient steps with curriculum

» Wang, Nichani, B., Damian, Hsu, Lee, and Wu (2025)
o Scaling trade-offs in learning attention at finite width/samples

» Vural, Wu, and B. (2025+)

Future directions
o Fine-grained study of capacity
o Fine-grained optimization for multiple layers

o Analysis for more general tasks
o Learning embeddings

Thank youl!
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o Three steps: first Woy, then Wkq, then Woy again (see also Oymak et al., 2023)

o d: embed dimension, N: vocab size, T: context length, n: sample size

Theorem (Learnability of induction head, Vural, Wu, and B., 2025+, informal)
Assume d > /N > 1 and n>> N. The Transformer learns the desired mapping iff

T2 n2\*?
d >> Wm|n {1, <7_n>
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o Data model: y = f*(z:), with one planted relevant token z; in a context of length T

©

Assume first layer is already learned (trigger appears along with relevant token)

©

Three steps: first Woy, then Wkq, then Woy again (see also Oymak et al., 2023)

o d: embed dimension, N: vocab size, T: context length, n: sample size

Theorem (Learnability of induction head, Vural, Wu, and B., 2025+, informal)
Assume d > /N > 1 and n>> N. The Transformer learns the desired mapping iff

T2 n2\*?
d >> Wm|n {1, <7_n>

o If T=0(1), d>> VN is enough
o If T>>1, need d > /N is not enough unless n is very large
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Finite width and finite samples (Vural et al., 2025+)
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Finite width and finite samples (Vural et al., 2025+)

T =N/8, n=N(logN +5.1), Slope = 1.11
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Global vs in-context associations

in-context vs global loss attention and feed-forward probes
5 —— K=1, fix q frequent 0.8 —— Wo2 recall 2.2
—— K=5, fix q rare —— WKk2 recall 2.0
4- —— K=1, random q = 06- ~— WK1 recall (t<64) .
—— K=5, random q 9] T ™M —n~ | -1873
3- L =
I 20.4- 16 &
8 5 S
2° g 14 Y
£02
1- 1.2
0- i i i i i i 00- . . . . i WfKL‘ e
0 100 200 300 400 500 0 100 200 300 400 500
iteration iteration

o Global bigrams are learned much faster than induction head, tend to be stored in MLPs
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in-context vs global loss attention and feed-forward probes
5- —— K=1, fix q frequent 08~ —— Wo2 recall =22
—— K=5, fix q rare —— WKk2 recall
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iteration iteration

o Global bigrams are learned much faster than induction

Factual: average probability
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— the”: full
== 'the LASER
—— 'Spain" full
== 'Spain’: LASER

T T T T T T
10 10 10° 10° 10* 10°
training steps

head, tend to be stored in MLPs

Trade-offs between global and in-context predictions (Chen, Bruna, and B., 2024)

o Trade-offs also appear in LLMs
» “Madrid is located in" — {the, Spain} on Pythia-1B

» Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context
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Global vs in-context associations

in-context vs global loss attention and feed-forward probes
- - Factual: average probabili
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iteration iteration training steps

o Global bigrams are learned much faster than induction head, tend to be stored in MLPs

Trade-offs between global and in-context predictions (Chen, Bruna, and B., 2024)
o Trade-offs also appear in LLMs
» “Madrid is located in" — {the, Spain} on Pythia-1B
» Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context

Theorem (Chen et al., 2024, informal)

In toy setting, feed-forward layer learns global bigram after O(1) samples, attention
after O(N) samples due to noise.
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:

L(%n) = P(y 7& ?n(z))
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o Hutter (2021): with infinite memory, we have
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:

L(%n) = P(y 7& ?n(z))
o Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)
«

p(z) x z~

o Hutter (2021): with infinite memory, we have

a—1

L(F) <n "5

o Q: What about finite capacity?
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Scaling laws with finite capacity
o Random embeddings e., u, € R? with N(0,1/d) entries

o Estimator: IA‘,,,d(x) = arg max, u},T W, dez, with

nd—zq Uf*
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Wh.a = Z q(z Uf*

o Single population gradient step on cross-entropy loss: g(z) ~ p(z)

Theorem (Cabannes, Dohmatob, and B., 2024a, informal)

@ Forqz) =X 1{z=z}: L(fa) Sn~ "% +d~ %
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Scaling laws with finite capacity
o Random embeddings e., u, € R? with N(0,1/d) entries

o Estimator: ?md(X) = arg max, u},T W, dez, with
Wh.a = Z q(z Uf*
o Single population gradient step on cross-entropy loss: g(z) ~ p(z)

Theorem (Cabannes, Dohmatob, and B., 2024a, informal)

@ Forq(z) =Y 1{z =z}: L(fag) Sn™°C +d~ 5

@ Forq(z)=1{z€ S,}, and d > N: L(?n,d) < n & +dk for any k
(2)

@ For q(z) = 1{z seen at least s times in Sp}: L(fnq) < na + d-otl

o n*aTil is the same as (Hutter, 2021)
o g =1 is best if we have enough capacity

o Can store at most d memories (approximation error: d~**1)
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Scaling laws with optimization algorithms

LW) = Ezpll(f*(2), UWe)] = Waam ) a(2)up (e’

Different algorithms lead to different memory schemes ¢(z):
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Scaling laws with optimization algorithms

LW) = Ezpll(f*(2), UWe)] = Waam ) a(2)up (e’

Different algorithms lead to different memory schemes ¢(z):

One step of SGD with large batch: q(z) =~ p(z)

©

©

SGD with batch size one + large step-size, d > N: q(z) =~ 1

©

For d < N, smaller step-sizes can help later in training

©

Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)
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Optimization with imbalance and small capacity

L(W) =E,p[t(f*(z), UWe.)], ¢: cross-entropy loss

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)

o Orthogonal embeddings = logarithmic growth of margins for any step-size
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L(W) =E,p[t(f*(z), UWe.)], ¢: cross-entropy loss

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)
o Orthogonal embeddings = logarithmic growth of margins for any step-size

o Correlated embeddings + imbalance = oscillatory regimes
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L(W) =E,p[t(f*(z), UWe.)], ¢: cross-entropy loss

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)
o Orthogonal embeddings = logarithmic growth of margins for any step-size
o Correlated embeddings + imbalance = oscillatory regimes

o Large step-sizes help reach perfect accuracy faster despite oscillations (empirically)
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Optimization with imbalance and small capacity

L(W) =E,p[t(f*(z), UWe.)], ¢: cross-entropy loss

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)

o Orthogonal embeddings = logarithmic growth of margins for any step-size

o Correlated embeddings + imbalance = oscillatory regimes
o Large step-sizes help reach perfect accuracy faster despite oscillations (empirically)
o Over-optimization can hurt in under-parameterized settings (empirically)

a=0.95p =0.75 t— L(W,) SGD trajectory t— L(W)

— L(Wy) 4 L o | 0.75 LW)/2
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