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Convolutional NetworksParadigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

(LeCun et al., 1998)

Exploiting data structure
Model local information at different scales, hierarchically
Provide some invariance through pooling
Useful inductive biases for learning efficiently on natural data
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Setup

Nonparametric regression with kernels
Data model: y = f ∗(x) + noise
Linear/kernel models: f (x) = 〈f ,Φ(x)〉H (H: RKHS)
Kernel ridge regression with kernel K (x , x ′) = 〈Φ(x),Φ(x ′)〉H

f̂n = arg min
f ∈H

1
n

n∑
i=1

(yi − f (xi ))2 + λ‖f ‖2H

Questions
What are good assumptions on f ∗ for common high-dimensional problems?
How does the norm ‖ · ‖H (↔ architecture) exploit this for efficient learning?
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Kernels for Convolutional Models

This talk (B. et al., 2021; B., 2022):
Formal study of convolutional kernels and their RKHS
Benefits of (deep) convolutional structure

Invariance
Locality

Long-range interactions
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Why Kernels?

Clean and well-developed theory
Tractable optimization algorithms (convex)
Universal approximation guarantees
Optimal statistical rates for many problems

I e.g., smooth functions (Caponnetto and De Vito, 2007)

We rarely have all three, e.g.:
Benefits of depth: no algorithms (Eldan and Shamir, 2016; Mhaskar and Poggio, 2016)

Optimization landscape: no universal approximation (Soltanolkotabi et al., 2018)

A starting point to understand CNNs
Understand the features Φ(x) provided by architectures (≈ least squares before Lasso)
Good performance on Cifar10 (Mairal, 2016; Li et al., 2019; Shankar et al., 2020; B., 2022)
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Outline

1 Group Invariance and Stability

2 Locality and Depth
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Invariance and Geometric Stability

Q: Does invariance improve statistical efficiency?
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Invariance and Geometric Stability: Definitions

Invariant Function Classes

• These domain transformations are lifted to linear transformations (a.k.a. 
group representations):

$ " ! = "($"#!)
' ∶ Ω → Ω ' ∶ #(Ω) → #(Ω)

Functions f : X ⊂ Rd → R that are “smooth” along known transformations of input x
e.g., translations, rotations, permutations, deformations

We consider: permutations σ ∈ G

(σ · x)i = xσ−1(i)

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

f (σ · x) = f (x), σ ∈ G

Geometric stability: For other sets G (e.g., local shifts, deformations), we want

f (σ · x) ≈ f (x), σ ∈ G

Alberto Bietti Benefits of Convolutional Models Flatiron, June 13, 2022 8 / 22



Invariance and Geometric Stability: Definitions

Invariant Function Classes

• These domain transformations are lifted to linear transformations (a.k.a. 
group representations):

$ " ! = "($"#!)
' ∶ Ω → Ω ' ∶ #(Ω) → #(Ω)

Functions f : X ⊂ Rd → R that are “smooth” along known transformations of input x
e.g., translations, rotations, permutations, deformations
We consider: permutations σ ∈ G

(σ · x)i = xσ−1(i)

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

f (σ · x) = f (x), σ ∈ G

Geometric stability: For other sets G (e.g., local shifts, deformations), we want

f (σ · x) ≈ f (x), σ ∈ G

Alberto Bietti Benefits of Convolutional Models Flatiron, June 13, 2022 8 / 22



Invariance and Geometric Stability: Definitions

Invariant Function Classes

• These domain transformations are lifted to linear transformations (a.k.a. 
group representations):

$ " ! = "($"#!)
' ∶ Ω → Ω ' ∶ #(Ω) → #(Ω)

Functions f : X ⊂ Rd → R that are “smooth” along known transformations of input x
e.g., translations, rotations, permutations, deformations
We consider: permutations σ ∈ G

(σ · x)i = xσ−1(i)

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

f (σ · x) = f (x), σ ∈ G

Geometric stability: For other sets G (e.g., local shifts, deformations), we want

f (σ · x) ≈ f (x), σ ∈ G

Alberto Bietti Benefits of Convolutional Models Flatiron, June 13, 2022 8 / 22



Invariance and Geometric Stability: Definitions

Invariant Function Classes

• These domain transformations are lifted to linear transformations (a.k.a. 
group representations):

$ " ! = "($"#!)
' ∶ Ω → Ω ' ∶ #(Ω) → #(Ω)

Functions f : X ⊂ Rd → R that are “smooth” along known transformations of input x
e.g., translations, rotations, permutations, deformations
We consider: permutations σ ∈ G

(σ · x)i = xσ−1(i)

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

f (σ · x) = f (x), σ ∈ G

Geometric stability: For other sets G (e.g., local shifts, deformations), we want

f (σ · x) ≈ f (x), σ ∈ G
Alberto Bietti Benefits of Convolutional Models Flatiron, June 13, 2022 8 / 22



Interlude: Kernels for Wide Shallow Networks

f (x) = 1√m

m∑
i=1

viρ(〈wi , x〉)

= 〈v , ϕ(x)〉, with ϕ(x) = 1√mρ(Wx) ∈ Rm

Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): wi ∼ N (0, I), learn v

KRF (x , x ′) = lim
m→∞〈ϕ(x), ϕ(x ′)〉

= Ew [ρ(〈w , x〉)ρ(〈w , x ′〉)] = κρ(〈x , x ′〉) when x , x ′ ∈ Sd−1

Related to Neural Tangent Kernel (NTK, Jacot et al., 2018): train both wi and vi near
random initialization
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Group-Invariant Models through Pooling

ϕ(x) = 1√mρ(Wx)

Convolutional network with pooling (group averaging)

fG(x) = 〈v , 1
|G |

∑
σ∈G

ϕ(σ · x)︸ ︷︷ ︸
Φ(x)

〉

Invariant kernel (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

KG(x , x ′) = 1
|G |

∑
σ∈G

κ(〈σ · x , x ′〉), when x , x ′ ∈ Sd−1

When κ = κρ, this corresponds to Random Features kernel for fG
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Statistical Benefits of Group Invariance

Regression: R(f ) := E(y − f (x))2, x uniform on the sphere Sd−1, and f ∗(x) = E[y |x ].

Kernel ridge regression (KRR) using:

KG(x , x ′) = 1
|G |

∑
σ∈G

κ(〈σ · x , x ′〉) vs. K (x , x ′) = κ(〈x , x ′〉)

Theorem (Benefits of invariance (B., Venturi, and Bruna, 2021))
Assume f ∗ is G-invariant and s-smooth. KRR with kernel KG vs K achieves

ER(f̂KG ,n)− R(f ∗) ≤ Cd

(1 + o(1)
|G |n

) 2s
2s+d−1

vs. ER(f̂K ,n)− R(f ∗) ≤ Cd

(1
n

) 2s
2s+d−1

=⇒ asymptotic gains by a factor |G | in sample complexity.
|G | can be exponential in d for some groups (e.g., the full permutation group)
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Key Technical Ingredient: Counting Invariant Harmonics

Key Technical Ingredient: Counting Invariant Harmonics

SG≠≠≠æ

Expand in L2(Sd≠1) basis of spherical harmonics Yk,j

Nk harmonics of degree k

Pooling projects down to Nk invariant harmonics

Theorem ((B., Venturi, and Bruna, 2021b))
As k æ Œ, we have

“d(k) := N(d , k)
N(d , k) = 1

|G | + o(1).

Relies on singularity analysis of density of È‡ · x , xÍ (Saldanha and Tomei, 1996)
Decay rate can be quantified using cycle statistics of ‡ œ G
Uses a characterization of “d(k) due to Mei et al. (2021), who study a di�erent regime:

I They study d æ Œ with fixed k (“d(k) = �d(d≠–)), gains at most polynomial in d
I We study k æ Œ with fixed d , gain |G | can be exponential in d .

Alberto Bietti Benefits of Convolutional Models NYU, April 19, 2022 16 / 38

Expansions in the basis of spherical harmonics Yk,j on the sphere Sd−1

Nk : number of harmonics of degree k

Pooling projects down to Nk invariant harmonics
Key result: decrease in effective dimensionality by a factor |G |

Theorem (Invariant harmonics (B., Venturi, and Bruna, 2021))
As k →∞, we have

Nk
Nk
→ 1
|G |
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Extension to Stability and Discussion

Extension to geometric stability: G is not a group (e.g., local shifts/deformations)
Pooling operation is no longer a projection, but leads to natural assumption
Similar bounds with effective sample size n|G |
|G | is exponential in d for a simple toy model of deformations!

Curse of dimensionality
If the target f ∗ is non-smooth, e.g., only Lipschitz, the rate is cursed! (and unimprovable)

R(f̂n)− f (f ∗) . n−
2

2+d−1

Q: How can we break this curse?
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Outline

1 Group Invariance and Stability

2 Locality and Depth
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Locality

Q: Can locality improve statistical efficiency?
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One-Layer Convolutional Kernels on Patches

x

xu

ϕ

1D signal: x [u], u ∈ Ω
Patches: xu = (x [u], . . . , x [u + p − 1]) ∈ Rp, features ϕ(xu) = 1√mρ(Wxu), m→∞

Convolutional network:

with

f (x) =
∑
u∈Ω
〈vu, ϕ(xu)〉 =: 〈v ,Φ(x)〉

Convolutional kernel (with k(z , z ′) = 〈ϕ(z), ϕ(z ′)〉 the RF patch kernel)

K (x , x ′) =
∑
u∈Ω

k(xu, x ′u)
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One-Layer Convolutional Kernels on Patches

x

xu

ϕ

h

1D signal: x [u], u ∈ Ω
Patches: xu = (x [u], . . . , x [u + p − 1]) ∈ Rp, features ϕ(xu) = 1√mρ(Wxu), m→∞
Convolutional network: with pooling filter h

fh(x) =
∑
u∈Ω
〈vu,

∑
v

h[u − v ]ϕ(xv )〉

Convolutional kernel (with k(z , z ′) = 〈ϕ(z), ϕ(z ′)〉 the RF patch kernel)

Kh(x , x ′) =
∑
u∈Ω

∑
v ,v ′

h[u − v ]h[u − v ′]k(xv , x ′v ′)
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One-Layer Convolutional Kernels on Patches

x

xu

ϕ

h = 1/|Ω|

1D signal: x [u], u ∈ Ω
Patches: xu = (x [u], . . . , x [u + p − 1]) ∈ Rp, features ϕ(xu) = 1√mρ(Wxu), m→∞
Convolutional network: with global pooling (h = 1/|Ω|)

fh(x) =
∑
u∈Ω
〈vu, |Ω|−1

∑
v
ϕ(xv )〉

Convolutional kernel (with k(z , z ′) = 〈ϕ(z), ϕ(z ′)〉 the RF patch kernel)

Kh(x , x ′) = |Ω|−1
∑
v ,v ′

k(xv , x ′v ′)
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One-Layer Convolutional Kernels on Patches

x

xu

ϕ

h = δ

1D signal: x [u], u ∈ Ω
Patches: xu = (x [u], . . . , x [u + p − 1]) ∈ Rp, features ϕ(xu) = 1√mρ(Wxu), m→∞
Convolutional network: with no pooling (Dirac h = δ)

fh(x) =
∑
u∈Ω
〈vu, ϕ(xu)〉

Convolutional kernel (with k(z , z ′) = 〈ϕ(z), ϕ(z ′)〉 the RF patch kernel)

Kh(x , x ′) =
∑
u∈Ω

k(xu, x ′u)
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Benefits of Locality and Pooling
Assume additive, invariant target f ∗(x) = ∑

u∈Ω g∗(xu)
Consider the kernels:
(global pool) Kg (x , x ′) =

∑
v ,v ′

k(xv , x ′v ′) vs (no pool) Kδ(x , x ′) =
∑

u
k(xu, x ′u)

Theorem (Statistical rates with one-layer (B., 2022))
Assume g∗ is s-smooth, non-overlapping patches on Sp−1. KRR with Kh yields

ER(f̂g ,n)− R(f ∗) ≤ Cp

(1
n

) 2s
2s+p−1

vs ER(f̂δ,n)− R(f ∗) ≤ Cp

( |Ω|
n

) 2s
2s+p−1

Patch dimension p � d = p|Ω| in the rate (breaks the curse!)
With localized pooling h, we can also learn f ∗(x) = ∑

u∈Ω g∗u (xu) with different g∗u
I The bound above interpolates between 1 and |Ω| via ‖h‖22

For overlapping patches, see (Favero et al., 2021; Misiakiewicz and Mei, 2021)
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Long-Range Interactions

Q: How to capture interactions between multiple patches?

→ “add more layers”! Hierarchical kernels (Cho and Saul, 2009):

K (x , x ′) =
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Long-Range Interactions

Q: How to capture interactions between multiple patches?

→ “add more layers”! Hierarchical kernels (Cho and Saul, 2009):

K (x , x ′) = 〈ϕ2(ϕ1(x)), ϕ2(ϕ1(x ′))〉
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Long-Range Interactions

Q: How to capture interactions between multiple patches?

→ “add more layers”! Hierarchical kernels (Cho and Saul, 2009):

K (x , x ′) = κ2(κ1(〈x , x ′〉))
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RKHS of Two-Layer Convolutional Kernels (B., 2022)

x

xu

ϕ1

h1

Φ1(x)

∈ Hs2
1

ϕ2

h2

Φ2(x)

ϕ2/κ2 captures interactions between patches

Take κ2(u) = u2. RKHS contains

f (x) =
∑
|u−v |≤r

gu,v (xu, xv )

Receptive field r depends on h1 and s2
gu,v ∈ H1 ⊗H1

Effect of RKHS norm:
I Pooling h1: invariance to relative position
I Pooling h2: invariance to global position
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Is it a Good Model for Cifar10? (B., 2022)

Compute 50 000× 50 000 kernel matrix (costly!) and run Kernel Ridge Regression (ok!)

2-layers, patch sizes (3, 5), Gaussian pooling factors (2,5).
κ1 κ2 Test acc.
Exp Exp 88.3%
Exp Poly4 88.3%
Exp Poly3 88.2%
Exp Poly2 87.4%
Exp Linear 80.9%

Polynomial kernels at second layer suffice!
State-of-the-art for kernels on Cifar10 (at a large computational cost...)

I Shankar et al. (2020): 88.2% with 10 layers (90% with data augmentation)
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Statistical Benefits with Two Layers (B., 2022)

Consider invariant f ∗(x) = ∑
u,v∈Ω g∗(xu, xv )

Assume Ex [k(xu, xu′)k(xv , xv ′)] ≤ ε if u 6= u′ or v 6= v ′

Compare different pooling layers (h1, h2 ∈ {global, δ}) and patch sizes (s2):

Excess risk bounds when g∗ ∈ Hk ⊗Hk (slow rates)

h1 h2 s2 R(f̂n)− R(f ∗) (for ε→ 0)
δ δ |Ω| ‖g∗‖|Ω|2.5/√n
δ global |Ω| ‖g∗‖|Ω|2/√n

global global |Ω| ‖g∗‖|Ω|/√n
global global or δ 1 ‖g∗‖/√n

Polynomial gains in |Ω| when using the right architecture!1

1Best ≈ deep sets (Zaheer et al., 2017)
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Concluding Remarks

Understanding benefits of architectures with kernels
Pooling improves generalization under invariance and stability
Locality + depth + pooling capture structured interaction models with invariances

What’s missing?
Sparsity/adaptivity

I First layer: adaptive convolutional filters (Gabors)
I Following layers: structured interactions/symmetries

Beyond CNNs
I GNNs, Transformers

Thank you!
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