On the Benefits of Convolutional Models: a Kernel Perspective

Alberto Bietti

NYU Center for Data Science \rightarrow Flatiron CCM

Challenges and Prospects of ML for the Physical Sciences. Flatiron, June 13, 2022.

Convolutional Networks

(LeCun et al., 1998)

Exploiting data structure

- Model local information at different scales, hierarchically
- Provide some invariance through pooling
- Useful inductive biases for learning efficiently on natural data

Convolutional Networks

Exploiting data structure

- Model local information at different scales, hierarchically
- Provide some invariance through pooling
- Useful inductive biases for learning efficiently on natural data

Setup

Nonparametric regression with kernels

- Data model: $y = f^*(x) + noise$
- Linear/kernel models: $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$ (\mathcal{H} : RKHS)
- Kernel ridge regression with kernel $K(x,x')=\langle \Phi(x),\Phi(x')
 angle_{\mathcal{H}}$

$$\hat{f}_n = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}}^2$$

Setup

Nonparametric regression with kernels

- Data model: $y = f^*(x) + noise$
- Linear/kernel models: $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$ (\mathcal{H} : RKHS)
- Kernel ridge regression with kernel $K(x,x') = \langle \Phi(x), \Phi(x')
 angle_{\mathcal{H}}$

$$\hat{f}_n = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 + \lambda \|f\|_{\mathcal{H}}^2$$

Questions

- What are good **assumptions** on f^* for common high-dimensional problems?
- How does the norm $\|\cdot\|_{\mathcal{H}}$ (\leftrightarrow architecture) exploit this for **efficient learning**?

Kernels for Convolutional Models

This talk (B. et al., 2021; B., 2022):

- Formal study of convolutional kernels and their RKHS
- Benefits of (deep) convolutional structure

Kernels for Convolutional Models

This talk (B. et al., 2021; B., 2022):

- Formal study of convolutional kernels and their RKHS
- Benefits of (deep) convolutional structure

Invariance

Kernels for Convolutional Models

This talk (B. et al., 2021; B., 2022):

- Formal study of convolutional kernels and their RKHS
- Benefits of (deep) convolutional structure

Invariance

Locality Long-range interactions

Clean and well-developed theory

- Tractable optimization algorithms (convex)
- Universal approximation guarantees
- Optimal statistical rates for many problems
 - e.g., smooth functions (Caponnetto and De Vito, 2007)

Clean and well-developed theory

- Tractable optimization algorithms (convex)
- Universal approximation guarantees
- Optimal statistical rates for many problems
 - e.g., smooth functions (Caponnetto and De Vito, 2007)

We rarely have all three, e.g.:

- Benefits of depth: no algorithms (Eldan and Shamir, 2016; Mhaskar and Poggio, 2016)
- Optimization landscape: no universal approximation (Soltanolkotabi et al., 2018)

Clean and well-developed theory

- Tractable optimization algorithms (convex)
- Universal approximation guarantees
- Optimal statistical rates for many problems
 - e.g., smooth functions (Caponnetto and De Vito, 2007)

We rarely have all three, e.g.:

- Benefits of depth: no algorithms (Eldan and Shamir, 2016; Mhaskar and Poggio, 2016)
- Optimization landscape: no universal approximation (Soltanolkotabi et al., 2018)

A starting point to understand CNNs

• Understand the **features** $\Phi(x)$ provided by architectures (\approx least squares before Lasso)

Clean and well-developed theory

- Tractable optimization algorithms (convex)
- Universal approximation guarantees
- Optimal statistical rates for many problems
 - e.g., smooth functions (Caponnetto and De Vito, 2007)

We rarely have all three, e.g.:

- Benefits of depth: no algorithms (Eldan and Shamir, 2016; Mhaskar and Poggio, 2016)
- Optimization landscape: no universal approximation (Soltanolkotabi et al., 2018)

A starting point to understand CNNs

- Understand the **features** $\Phi(x)$ provided by architectures (\approx least squares before Lasso)
- Good performance on Cifar10 (Mairal, 2016; Li et al., 2019; Shankar et al., 2020; B., 2022)

Outline

1 Group Invariance and Stability

2 Locality and Depth

Invariance and Geometric Stability

Invariance and Geometric Stability

Q: Does invariance improve statistical efficiency?

Functions $f : \mathcal{X} \subset \mathbb{R}^d \to \mathbb{R}$ that are "smooth" along known transformations of input x

• e.g., translations, rotations, permutations, deformations

Functions $f : \mathcal{X} \subset \mathbb{R}^d \to \mathbb{R}$ that are "smooth" along known transformations of input x

- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)_i = x_{\sigma^{-1}(i)}$$

Functions $f : \mathcal{X} \subset \mathbb{R}^d \to \mathbb{R}$ that are "smooth" along known transformations of input x

- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)_i = x_{\sigma^{-1}(i)}$$

Group invariance: If G is a group (*e.g.*, cyclic shifts, all permutations), we want

$$f(\sigma \cdot x) = f(x), \quad \sigma \in G$$

Functions $f : \mathcal{X} \subset \mathbb{R}^d \to \mathbb{R}$ that are "smooth" along known transformations of input x

- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)_i = x_{\sigma^{-1}(i)}$$

Group invariance: If G is a group (*e.g.*, cyclic shifts, all permutations), we want

$$f(\sigma \cdot x) = f(x), \quad \sigma \in G$$

Geometric stability: For other sets G (e.g., local shifts, deformations), we want

$$f(\sigma \cdot x) \approx f(x), \quad \sigma \in G$$

$$f(x) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \rho(\langle w_i, x \rangle)$$

$$\begin{split} f(x) &= \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \rho(\langle w_i, x \rangle) \\ &= \langle v, \varphi(x) \rangle, \qquad \text{with } \varphi(x) = \frac{1}{\sqrt{m}} \rho(Wx) \in \mathbb{R}^m \end{split}$$

$$\begin{split} f(x) &= \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \rho(\langle w_i, x \rangle) \\ &= \langle v, \varphi(x) \rangle, \qquad \text{with } \varphi(x) = \frac{1}{\sqrt{m}} \rho(Wx) \in \mathbb{R}^m \end{split}$$

• Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): $w_i \sim \mathcal{N}(0, I)$, learn v

$$\begin{split} \mathcal{K}_{RF}(x,x') &= \lim_{m \to \infty} \langle \varphi(x), \varphi(x') \rangle \\ &= \mathbb{E}_w[\rho(\langle w, x \rangle) \rho(\langle w, x' \rangle)] = \kappa_\rho(\langle x, x' \rangle) \text{ when } x, x' \in \mathbb{S}^{d-1} \end{split}$$

$$\begin{split} f(x) &= \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \rho(\langle w_i, x \rangle) \\ &= \langle v, \varphi(x) \rangle, \qquad \text{with } \varphi(x) = \frac{1}{\sqrt{m}} \rho(Wx) \in \mathbb{R}^m \end{split}$$

• Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): $w_i \sim \mathcal{N}(0, I)$, learn v

$$\begin{split} \mathcal{K}_{RF}(x,x') &= \lim_{m \to \infty} \langle \varphi(x), \varphi(x') \rangle \\ &= \mathbb{E}_w[\rho(\langle w, x \rangle) \rho(\langle w, x' \rangle)] = \kappa_\rho(\langle x, x' \rangle) \text{ when } x, x' \in \mathbb{S}^{d-1} \end{split}$$

• Related to **Neural Tangent Kernel** (NTK, Jacot et al., 2018): train both *w_i* and *v_i* near random initialization

Group-Invariant Models through Pooling

$$\varphi(x) = \frac{1}{\sqrt{m}}\rho(Wx)$$

Convolutional network with pooling (group averaging)

$$f_G(x) = \langle v, \underbrace{\frac{1}{|G|} \sum_{\sigma \in G} \varphi(\sigma \cdot x)}_{\Phi(x)} \rangle$$

Group-Invariant Models through Pooling

$$\varphi(x) = \frac{1}{\sqrt{m}}\rho(Wx)$$

Convolutional network with pooling (group averaging)

$$f_G(x) = \langle v, \underbrace{\frac{1}{|G|} \sum_{\sigma \in G} \varphi(\sigma \cdot x)}_{\Phi(x)} \rangle$$

Invariant kernel (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

$$\mathcal{K}_{\mathcal{G}}(x,x') = rac{1}{|\mathcal{G}|} \sum_{\sigma \in \mathcal{G}} \kappa(\langle \sigma \cdot x, x'
angle), \quad ext{when } x, x' \in \mathbb{S}^{d-1}$$

• When $\kappa = \kappa_{\rho}$, this corresponds to Random Features kernel for f_{G}

• Regression: $R(f) := \mathbb{E}(y - f(x))^2$, x uniform on the sphere \mathbb{S}^{d-1} , and $f^*(x) = \mathbb{E}[y|x]$.

- Regression: $R(f) := \mathbb{E}(y f(x))^2$, x uniform on the sphere \mathbb{S}^{d-1} , and $f^*(x) = \mathbb{E}[y|x]$.
- Kernel ridge regression (KRR) using:

$$\mathcal{K}_{G}(x,x') = rac{1}{|G|} \sum_{\sigma \in G} \kappa(\langle \sigma \cdot x, x' \rangle)$$
 vs. $\mathcal{K}(x,x') = \kappa(\langle x, x' \rangle)$

• Regression: $R(f) := \mathbb{E}(y - f(x))^2$, x uniform on the sphere \mathbb{S}^{d-1} , and $f^*(x) = \mathbb{E}[y|x]$.

Kernel ridge regression (KRR) using:

$$\mathcal{K}_{G}(x,x') = rac{1}{|G|} \sum_{\sigma \in G} \kappa(\langle \sigma \cdot x, x' \rangle)$$
 vs. $\mathcal{K}(x,x') = \kappa(\langle x, x' \rangle)$

Theorem (Benefits of invariance (B., Venturi, and Bruna, 2021)) Assume f^* is G-**invariant** and s-**smooth**. KRR with kernel K_G vs K achieves

$$\mathbb{E} R(\hat{f}_{K_{G},n}) - R(f^{*}) \leq C_{d} \left(\frac{1 + o(1)}{|G|n}\right)^{\frac{2s}{2s+d-1}} \quad vs. \quad \mathbb{E} R(\hat{f}_{K,n}) - R(f^{*}) \leq C_{d} \left(\frac{1}{n}\right)^{\frac{2s}{2s+d-1}}$$

• Regression: $R(f) := \mathbb{E}(y - f(x))^2$, x uniform on the sphere \mathbb{S}^{d-1} , and $f^*(x) = \mathbb{E}[y|x]$.

• Kernel ridge regression (KRR) using:

$$\mathcal{K}_{G}(x,x') = \frac{1}{|G|} \sum_{\sigma \in G} \kappa(\langle \sigma \cdot x, x' \rangle)$$
 vs. $\mathcal{K}(x,x') = \kappa(\langle x, x' \rangle)$

Theorem (Benefits of invariance (B., Venturi, and Bruna, 2021)) Assume f^* is *G*-invariant and *s*-smooth. KRR with kernel K_G vs K achieves

$$\mathbb{E} R(\hat{f}_{K_{G},n}) - R(f^{*}) \leq C_{d} \left(\frac{1 + o(1)}{|G|n}\right)^{\frac{2s}{2s+d-1}} \quad vs. \quad \mathbb{E} R(\hat{f}_{K,n}) - R(f^{*}) \leq C_{d} \left(\frac{1}{n}\right)^{\frac{2s}{2s+d-1}}$$

 \implies asymptotic gains by a factor |G| in sample complexity.

• Regression: $R(f) := \mathbb{E}(y - f(x))^2$, x uniform on the sphere \mathbb{S}^{d-1} , and $f^*(x) = \mathbb{E}[y|x]$.

• Kernel ridge regression (KRR) using:

$$\mathcal{K}_{G}(x,x') = rac{1}{|G|} \sum_{\sigma \in G} \kappa(\langle \sigma \cdot x, x' \rangle)$$
 vs. $\mathcal{K}(x,x') = \kappa(\langle x, x' \rangle)$

Theorem (Benefits of invariance (B., Venturi, and Bruna, 2021)) Assume f^* is *G*-invariant and *s*-smooth. KRR with kernel K_G vs K achieves

$$\mathbb{E} R(\hat{f}_{K_{G},n}) - R(f^{*}) \leq C_{d} \left(\frac{1 + o(1)}{|G|n}\right)^{\frac{2s}{2s+d-1}} \quad \text{vs.} \quad \mathbb{E} R(\hat{f}_{K,n}) - R(f^{*}) \leq C_{d} \left(\frac{1}{n}\right)^{\frac{2s}{2s+d-1}}$$

 \implies asymptotic gains by a factor |G| in sample complexity.

• |G| can be exponential in d for some groups (e.g., the full permutation group)

Key Technical Ingredient: Counting Invariant Harmonics

- Expansions in the basis of **spherical harmonics** $Y_{k,j}$ on the sphere \mathbb{S}^{d-1}
- *N_k*: number of harmonics of degree *k*

Key Technical Ingredient: Counting Invariant Harmonics

- Expansions in the basis of **spherical harmonics** $Y_{k,j}$ on the sphere \mathbb{S}^{d-1}
- *N_k*: number of harmonics of degree *k*
- Pooling projects down to \overline{N}_k invariant harmonics

Key Technical Ingredient: Counting Invariant Harmonics

- Expansions in the basis of **spherical harmonics** $Y_{k,j}$ on the sphere \mathbb{S}^{d-1}
- N_k: number of harmonics of degree k
- Pooling projects down to \overline{N}_k invariant harmonics
- Key result: decrease in effective dimensionality by a factor |G|

Theorem (Invariant harmonics (B., Venturi, and Bruna, 2021)) As $k \to \infty$, we have $\frac{\overline{N}_k}{N_k} \to \frac{1}{|G|}$

Extension to Stability and Discussion

Extension to geometric stability: G is not a group (e.g., local shifts/deformations)

- Pooling operation is no longer a projection, but leads to natural assumption
- Similar bounds with effective sample size n | G |
- |G| is exponential in d for a simple toy model of deformations!

Extension to Stability and Discussion

Extension to geometric stability: G is not a group (e.g., local shifts/deformations)

- Pooling operation is no longer a projection, but leads to natural assumption
- Similar bounds with effective sample size n | G |
- |G| is exponential in d for a simple toy model of deformations!

Curse of dimensionality

• If the target f^* is non-smooth, *e.g.*, only Lipschitz, the rate is cursed! (and unimprovable)

$$R(\hat{f}_n)-f(f^*)\lesssim n^{-\frac{2}{2+d-1}}$$

Extension to Stability and Discussion

Extension to geometric stability: G is not a group (e.g., local shifts/deformations)

- Pooling operation is no longer a projection, but leads to natural assumption
- Similar bounds with effective sample size n | G |
- |G| is exponential in d for a simple toy model of deformations!

Curse of dimensionality

• If the target f^* is non-smooth, e.g., only Lipschitz, the rate is cursed! (and unimprovable)

$$R(\hat{f}_n)-f(f^*)\lesssim n^{-\frac{2}{2+d-1}}$$

Q: How can we break this curse?

Outline

1 Group Invariance and Stability

2 Locality and Depth

Locality

Locality

Q: Can locality improve statistical efficiency?

- 1D signal: $x[u], u \in \Omega$
- Patches: $x_u = (x[u], \dots, x[u+p-1]) \in \mathbb{R}^p$, features $\varphi(x_u) = \frac{1}{\sqrt{m}}\rho(Wx_u), m \to \infty$

• 1D signal: $x[u], u \in \Omega$

• Patches: $x_u = (x[u], \dots, x[u+p-1]) \in \mathbb{R}^p$, features $\varphi(x_u) = \frac{1}{\sqrt{m}}\rho(Wx_u), m \to \infty$

Convolutional network:

$$f(x) = \sum_{u \in \Omega} \langle v_u, \varphi(x_u) \rangle =: \langle v, \Phi(x) \rangle$$

$$\mathcal{K}(x,x') = \sum_{u \in \Omega} k(x_u,x'_u)$$

- 1D signal: $x[u], u \in \Omega$
- Patches: $x_u = (x[u], \dots, x[u+p-1]) \in \mathbb{R}^p$, features $\varphi(x_u) = \frac{1}{\sqrt{m}}\rho(Wx_u), m \to \infty$
- Convolutional network: with pooling filter h

$$f_h(x) = \sum_{u \in \Omega} \langle v_u, \sum_v h[u-v]\varphi(x_v) \rangle$$

$$K_{h}(x, x') = \sum_{u \in \Omega} \sum_{v, v'} h[u - v] h[u - v'] k(x_{v}, x'_{v'})$$

- 1D signal: $x[u], u \in \Omega$
- Patches: $x_u = (x[u], \dots, x[u+p-1]) \in \mathbb{R}^p$, features $\varphi(x_u) = \frac{1}{\sqrt{m}}\rho(Wx_u), m \to \infty$
- Convolutional network: with global pooling $(h = 1/|\Omega|)$

$$f_h(x) = \sum_{u \in \Omega} \langle v_u, |\Omega|^{-1} \sum_{v} \varphi(x_v) \rangle$$

$$K_h(x, x') = |\Omega|^{-1} \sum_{v, v'} k(x_v, x'_{v'})$$

- 1D signal: $x[u], u \in \Omega$
- Patches: $x_u = (x[u], \dots, x[u+p-1]) \in \mathbb{R}^p$, features $\varphi(x_u) = \frac{1}{\sqrt{m}}\rho(Wx_u), m \to \infty$
- Convolutional network: with no pooling (Dirac $h = \delta$)

$$f_h(x) = \sum_{u \in \Omega} \langle v_u, \varphi(x_u) \rangle$$

$$\mathcal{K}_h(x,x') = \sum_{u \in \Omega} k(x_u, x'_u)$$

- Assume additive, invariant target $f^*(x) = \sum_{u \in \Omega} g^*(x_u)$
- Consider the kernels:

(global pool)
$$K_g(x,x') = \sum_{v,v'} k(x_v,x'_{v'})$$
 vs (no pool) $K_\delta(x,x') = \sum_u k(x_u,x'_u)$

- Assume additive, invariant target $f^*(x) = \sum_{u \in \Omega} g^*(x_u)$
- Consider the kernels:

(global pool)
$$K_g(x,x') = \sum_{v,v'} k(x_v,x'_{v'})$$
 vs (no pool) $K_\delta(x,x') = \sum_u k(x_u,x'_u)$

Theorem (Statistical rates with one-layer (B., 2022))

Assume g^* is s-**smooth**, non-overlapping patches on \mathbb{S}^{p-1} . KRR with K_h yields

$$\mathbb{E} R(\hat{f}_{g,n}) - R(f^*) \le C_p \left(\frac{1}{n}\right)^{\frac{2s}{2s+p-1}} \quad vs \quad \mathbb{E} R(\hat{f}_{\delta,n}) - R(f^*) \le C_p \left(\frac{|\Omega|}{n}\right)^{\frac{2s}{2s+p-1}}$$

- Assume additive, invariant target $f^*(x) = \sum_{u \in \Omega} g^*(x_u)$
- Consider the kernels:

(global pool)
$$K_g(x,x') = \sum_{v,v'} k(x_v,x'_{v'})$$
 vs (no pool) $K_{\delta}(x,x') = \sum_u k(x_u,x'_u)$

Theorem (Statistical rates with one-layer (B., 2022))

Assume g^* is s-**smooth**, non-overlapping patches on \mathbb{S}^{p-1} . KRR with K_h yields

$$\mathbb{E} R(\hat{f}_{g,n}) - R(f^*) \le C_p \left(\frac{1}{n}\right)^{\frac{2s}{2s+p-1}} \quad vs \quad \mathbb{E} R(\hat{f}_{\delta,n}) - R(f^*) \le C_p \left(\frac{|\Omega|}{n}\right)^{\frac{2s}{2s+p-1}}$$

• Patch dimension $p \ll d = p|\Omega|$ in the rate (breaks the curse!)

- Assume additive, invariant target $f^*(x) = \sum_{u \in \Omega} g^*(x_u)$
- Consider the kernels:

(global pool)
$$K_g(x,x') = \sum_{v,v'} k(x_v,x'_{v'})$$
 vs (no pool) $K_\delta(x,x') = \sum_u k(x_u,x'_u)$

Theorem (Statistical rates with one-layer (B., 2022))

Assume g^* is s-smooth, non-overlapping patches on \mathbb{S}^{p-1} . KRR with K_h yields

$$\mathbb{E} R(\hat{f}_{g,n}) - R(f^*) \le C_p \left(\frac{1}{n}\right)^{\frac{2s}{2s+p-1}} \quad vs \quad \mathbb{E} R(\hat{f}_{\delta,n}) - R(f^*) \le C_p \left(\frac{|\Omega|}{n}\right)^{\frac{2s}{2s+p-1}}$$

• Patch dimension $p \ll d = p|\Omega|$ in the rate (breaks the curse!)

• With localized pooling h, we can also learn $f^*(x) = \sum_{u \in \Omega} g_u^*(x_u)$ with different g_u^*

• The bound above interpolates between 1 and $|\Omega|$ via $||h||_2^2$

- Assume additive, invariant target $f^*(x) = \sum_{u \in \Omega} g^*(x_u)$
- Consider the kernels:

(global pool)
$$K_g(x,x') = \sum_{v,v'} k(x_v,x'_{v'})$$
 vs (no pool) $K_\delta(x,x') = \sum_u k(x_u,x'_u)$

Theorem (Statistical rates with one-layer (B., 2022))

Assume g^* is s-**smooth**, non-overlapping patches on \mathbb{S}^{p-1} . KRR with K_h yields

$$\mathbb{E} R(\hat{f}_{g,n}) - R(f^*) \le C_p \left(\frac{1}{n}\right)^{\frac{2s}{2s+p-1}} \quad vs \quad \mathbb{E} R(\hat{f}_{\delta,n}) - R(f^*) \le C_p \left(\frac{|\Omega|}{n}\right)^{\frac{2s}{2s+p-1}}$$

- Patch dimension $p \ll d = p|\Omega|$ in the rate (breaks the curse!)
- With localized pooling h, we can also learn $f^*(x) = \sum_{u \in \Omega} g_u^*(x_u)$ with different g_u^*
 - The bound above interpolates between 1 and $|\Omega|$ via $||h||_2^2$
- For overlapping patches, see (Favero et al., 2021; Misiakiewicz and Mei, 2021)

Q: How to capture interactions between multiple patches?

Q: How to capture interactions between multiple patches?

 \rightarrow "add more layers"! Hierarchical kernels (Cho and Saul, 2009):

 $K(x,x') = \langle \varphi_2(\varphi_1(x)), \varphi_2(\varphi_1(x')) \rangle$

Q: How to capture interactions between multiple patches?

 \rightarrow "add more layers"! Hierarchical kernels (Cho and Saul, 2009):

 $K(x,x') = \kappa_2(\langle \varphi_1(x), \varphi_1(x') \rangle)$

Q: How to capture interactions between multiple patches?

 \rightarrow "add more layers"! Hierarchical kernels (Cho and Saul, 2009):

 $K(x,x') = \kappa_2(\kappa_1(\langle x,x'\rangle))$

RKHS of Two-Layer Convolutional Kernels (B., 2022)

• φ_2/κ_2 captures **interactions** between patches

RKHS of Two-Layer Convolutional Kernels (B., 2022)

φ₂/κ₂ captures interactions between patches
 Take κ₂(u) = u². RKHS contains

• Receptive field r depends on h_1 and s_2

•
$$g_{u,v} \in \mathcal{H}_1 \otimes \mathcal{H}_1$$

RKHS of Two-Layer Convolutional Kernels (B., 2022)

φ₂/κ₂ captures interactions between patches
 Take κ₂(u) = u². RKHS contains

$$f(x) = \sum_{|u-v| \leq r} g_{u,v}(x_u, x_v)$$

• Receptive field r depends on h_1 and s_2

•
$$g_{u,v} \in \mathcal{H}_1 \otimes \mathcal{H}_1$$

- Effect of RKHS norm:
 - Pooling *h*₁: invariance to **relative** position
 - ► Pooling *h*₂: invariance to **global** position

Is it a Good Model for Cifar10? (B., 2022)

Compute 50 000 \times 50 000 kernel matrix (costly!) and run Kernel Ridge Regression (ok!)

Is it a Good Model for Cifar10? (B., 2022)

Compute 50 000 \times 50 000 kernel matrix (costly!) and run Kernel Ridge Regression (ok!)

κ_1	κ_2	Test acc.
Exp	Exp	88.3%
Exp	Poly4	88.3%
Exp	Poly3	88.2%
Exp	Poly2	87.4%
Exp	Linear	80.9%

2-layers, patch sizes (3, 5), Gaussian pooling factors (2,5).

Is it a Good Model for Cifar10? (B., 2022)

Compute 50 000 \times 50 000 kernel matrix (costly!) and run Kernel Ridge Regression (ok!)

κ_1	κ_2	Test acc.
Exp	Exp	88.3%
Exp	Poly4	88.3%
Exp	Poly3	88.2%
Exp	Poly2	87.4%
Exp	Linear	80.9%

2-layers, patch sizes (3, 5), Gaussian pooling factors (2,5).

- Polynomial kernels at second layer suffice!
- State-of-the-art for kernels on Cifar10 (at a large computational cost...)
 - ▶ Shankar et al. (2020): 88.2% with 10 layers (90% with data augmentation)

Statistical Benefits with Two Layers (B., 2022)

- Consider invariant $f^*(x) = \sum_{u,v \in \Omega} g^*(x_u, x_v)$
- Assume $\mathbb{E}_{x}[k(x_{u}, x_{u'})k(x_{v}, x_{v'})] \leq \epsilon$ if $u \neq u'$ or $v \neq v'$
- Compare different pooling layers $(h_1, h_2 \in \{\text{global}, \delta\})$ and patch sizes (s_2) :

Statistical Benefits with Two Layers (B., 2022)

• Consider invariant
$$f^*(x) = \sum_{u,v \in \Omega} g^*(x_u, x_v)$$

- Assume $\mathbb{E}_x[k(x_u, x_{u'})k(x_v, x_{v'})] \leq \epsilon$ if $u \neq u'$ or $v \neq v'$
- Compare different pooling layers $(h_1, h_2 \in \{\text{global}, \delta\})$ and patch sizes (s_2) :

Excess risk bounds when $g^* \in \mathcal{H}_k \otimes \mathcal{H}_k$ (slow rates)

<i>h</i> ₁	<i>h</i> ₂	<i>s</i> ₂	$R(\hat{f}_n) - R(f^*) \text{ (for } \epsilon o 0)$
δ	δ	$ \Omega $	$\ g^*\ \Omega ^{2.5}/\sqrt{n}$
δ	global	$ \Omega $	$\ g^*\ \Omega ^2/\sqrt{n}$
global	global	$ \Omega $	$\ g^*\ \Omega /\sqrt{n}$
global	global or δ	1	$\ g^*\ /\sqrt{n}$

Statistical Benefits with Two Layers (B., 2022)

• Consider invariant
$$f^*(x) = \sum_{u,v \in \Omega} g^*(x_u, x_v)$$

- Assume $\mathbb{E}_x[k(x_u, x_{u'})k(x_v, x_{v'})] \leq \epsilon$ if $u \neq u'$ or $v \neq v'$
- Compare different pooling layers $(h_1, h_2 \in \{\text{global}, \delta\})$ and patch sizes (s_2) :

Excess risk bounds when $g^* \in \mathcal{H}_k \otimes \mathcal{H}_k$ (slow rates)

h_1	<i>h</i> ₂	<i>s</i> ₂	$R(\hat{f}_n) - R(f^*) \text{ (for } \epsilon o 0)$
δ	δ	$ \Omega $	$\ g^*\ \Omega ^{2.5}/\sqrt{n}$
δ	global	$ \Omega $	$\ g^*\ \Omega ^2/\sqrt{n}$
global	global	$ \Omega $	$\ g^*\ \Omega /\sqrt{n}$
global	global or δ	1	$\ g^*\ /\sqrt{n}$

Polynomial gains in $|\Omega|$ when using the right architecture!¹

¹Best \approx deep sets (Zaheer et al., 2017)

Concluding Remarks

Understanding benefits of architectures with kernels

- Pooling improves generalization under invariance and stability
- \bullet Locality + depth + pooling capture structured interaction models with invariances

Concluding Remarks

Understanding benefits of architectures with kernels

- Pooling improves generalization under invariance and stability
- \bullet Locality + depth + pooling capture structured interaction models with invariances

What's missing?

- Sparsity/adaptivity
 - ► First layer: adaptive convolutional filters (Gabors)
 - ► Following layers: structured interactions/symmetries
- Beyond CNNs
 - ► GNNs, Transformers

Concluding Remarks

Understanding benefits of architectures with kernels

- Pooling improves generalization under invariance and stability
- \bullet Locality + depth + pooling capture structured interaction models with invariances

What's missing?

- Sparsity/adaptivity
 - ► First layer: adaptive convolutional filters (Gabors)
 - ► Following layers: structured interactions/symmetries
- Beyond CNNs
 - ► GNNs, Transformers

Thank you!

References I

- A. B. Approximation and learning with deep convolutional models: a kernel perspective. In *Proceedings* of the International Conference on Learning Representations (ICLR), 2022.
- A. B., L. Venturi, and J. Bruna. On the sample complexity of learning with geometric stability. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
- A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm. *Foundations of Computational Mathematics*, 7(3):331–368, 2007.
- Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in Neural Information Processing Systems (NIPS), 2009.
- R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In *Conference on Learning Theory (COLT)*, 2016.
- A. Favero, F. Cagnetta, and M. Wyart. Locality defeats the curse of dimensionality in convolutional teacher-student scenarios. *arXiv preprint arXiv:2106.08619*, 2021.
- B. Haasdonk and H. Burkhardt. Invariant kernel functions for pattern analysis and machine learning. *Machine learning*, 68(1):35–61, 2007.
- K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.

References II

- A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2018.
- Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
- Z. Li, R. Wang, D. Yu, S. S. Du, W. Hu, R. Salakhutdinov, and S. Arora. Enhanced convolutional neural tangent kernels. *arXiv preprint arXiv:1911.00809*, 2019.
- J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks. In Advances in Neural Information Processing Systems (NIPS), 2016.
- H. N. Mhaskar and T. Poggio. Deep vs. shallow networks: An approximation theory perspective. *Analysis and Applications*, 14(06):829–848, 2016.
- T. Misiakiewicz and S. Mei. Learning with convolution and pooling operations in kernel methods. arXiv preprint arXiv:2111.08308, 2021.
- Y. Mroueh, S. Voinea, and T. A. Poggio. Learning with group invariant features: A kernel perspective. In Advances in Neural Information Processing Systems (NIPS), 2015.
- R. M. Neal. Bayesian learning for neural networks. Springer, 1996.
- A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural Information Processing Systems (NIPS), 2007.

References III

- V. Shankar, A. Fang, W. Guo, S. Fridovich-Keil, L. Schmidt, J. Ragan-Kelley, and B. Recht. Neural kernels without tangents. *arXiv preprint arXiv:2003.02237*, 2020.
- M. Soltanolkotabi, A. Javanmard, and J. D. Lee. Theoretical insights into the optimization landscape of over-parameterized shallow neural networks. *IEEE Transactions on Information Theory*, 65(2): 742–769, 2018.
- M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. Salakhutdinov, and A. Smola. Deep sets. In *Advances in Neural Information Processing Systems (NIPS)*, 2017.