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Mechanisms inside Transformer LLMs

Reasoning over context
o Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
o A “biology" of circuits found by mechanistic interpretability (e.g., Anthropic, 2025)
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Mechanisms inside Transformer LLMs

Reasoning over context
o Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
o A “biology" of circuits found by mechanistic interpretability (e.g., Anthropic, 2025)

Knowledge storage
o Memorization, factual recall, parameter scaling
» (Geva et al., 2020; Meng et al., 2022; Allen-Zhu and Li, 2024)
o Learn rules that help higher-level reasoning

6 Dan Hendrycks € @DanHendrycks - Mar 14, 2023

It knows many esoteric facts (e.g., the meaning of obscure songs, knows
what area a researcher works in, can contrast ML optimizers like Adam vs
AdamW like in a PhD oral exam, and so on).

N-10000000
« Ne5000000
0000

learned knowledge (bits)

My rule-of-thumb is that
"if it's on the internet 5 or more times, GPT-4 remembers it."
(OF] 028 Q 184 iht 25K Qo model size tparams)
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Mechanisms inside Transformer LLMs

Reasoning over context
o Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
o A “biology" of circuits found by mechanistic interpretability (e.g., Anthropic, 2025)

Knowledge storage
o Memorization, factual recall, parameter scaling
» (Geva et al., 2020; Meng et al., 2022; Allen-Zhu and Li, 2024)

o Learn rules that help higher-level reasoning

Q: How do these arise during training?
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Emergence and training dynamics

Emergent capabilities and sequential learning (Wei et al. 2022; Power et al., 2022; Saxe et al. 2013)
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Model scale (training FLOPs)
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Emergence and training dynamics

Emergent capabilities and sequential learning (Wei et al. 2022; Power et al., 2022; Saxe et al. 2013)

Modular Division (training on 50% of data)
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Emergence and training dynamics

Emergent capabilities and sequential learning (Wei et al. 2022; Power et al., 2022; Saxe et al. 2013)

Modular Division (training on 50% of data)

100 — train 10
— val
0 0.8
06
> 80 w
g a
3 =
g 2 0.4
20 0.2
o 0.0
10! 107 100 106 108 108 0 50 100 150 200 250
Optimization Steps Epoch

Why do we care about understanding?

o Highlight role of data, training algorithm, architecture
o = improve training methodology
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Transformer setup

Input: sequence of discrete tokens (z1,...,z7) € [N]
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Transformer setup

Input: sequence of discrete tokens (z1,...,z7) € [N]
Embeddings

o input e, positional p;, output Uy, in R4
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Transformer setup

Input: sequence of discrete tokens (z1,...,z7) € [N]
Embeddings

o input e, positional p;, output Uy, in R4

Residual streams (Elhage et al., 2021)
o embed each token z; € [N] as x; := e,, + p;
o (causal) self-attention x; := x¢ + MHSA(x¢, x1.¢)

t exp( T W[}T W(gxt)

H
MHSA(x;, BhWETWE.,  with g =
) = 2308 et

where Wy, Wo, Wy, Wo € R%*9 (key/query/value/output matrices)
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Transformer setup

Input: sequence of discrete tokens (z1,...,z7) € [N]
Embeddings

o input e, positional p;, output Uy, in R4

Residual streams (Elhage et al., 2021)
o embed each token z; € [N] as x; := e,, + p;
o (causal) self-attention x; := x¢ + MHSA(x¢, x1.¢)
o feed-forward x; := x; + MLP(x;)

MLP(x:) = Vo (Ux:)

where U, V € R™*9 often m = 4d
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Transformer setup

Input: sequence of discrete tokens (z1,...,z7) € [N]
Embeddings

o input e, positional p;, output Uy, in R4

Residual streams (Elhage et al., 2021)
o embed each token z; € [N] as x; := e,, + p;
o (causal) self-attention x; := x¢ + MHSA(x¢, x1.¢)
o feed-forward x; := x; + MLP(x;)

o residual stream x; is a sum of embeddings/"features”
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Transformer setup

Input: sequence of discrete tokens (z1,...,z7) € [N]
Embeddings

o input e, positional p;, output Uy, in R4

Residual streams (Elhage et al., 2021)
o embed each token z; € [N] as x; := e,, + p;
o (causal) self-attention x; := x¢ + MHSA(x¢, x1.¢)
o feed-forward x; := x; + MLP(x;)

o residual stream x; is a sum of embeddings/"features”

Next-token prediction

o cross-entropy loss

Z U(zt11; (UJTXt)j)

t<T
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(@ Memorization and factual recall

2) In-context reasoning



Weights as associative memories

o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

e 1 and e e, =0

|uy||~1 and u,"u, =0
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Weights as associative memories

o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

e 1 and e e, =0

|uy||~1 and u,"u, =0
o For pairwise associations (z,y) € M with weights o, define:

-
W = Z Oz Uy e,
(z,y)eM
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Weights as associative memories

o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

e 1 and e e, =0

|uy||~1 and u,"u, =0

o For pairwise associations (z,y) € M with weights o, define:

— T T ~
W= g Olzy Uiy €, =  u, We, = ay,
(zy)em
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Weights as associative memories

o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

e 1 and e e, =0

|uy||~1 and u,"u, =0

o For pairwise associations (z,y) € M with weights o, define:

W= Z ozzyuyezT — uyTWeZ R Oz
(z,y)eM

o Examples in Transformers:
» Logits in attention heads: x, Wikqgxq
» Logits in next-token prediction: uyT Uo(Vx;) or uyT Wov X
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Weights as associative memories
o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

e 1 and e e, =0

|uy||~1 and u,"u, =0

o For pairwise associations (z,y) € M with weights o, define:

W= Z ozzyuyezT — uyTWeZ R Oz
(z,y)eM

o Examples in Transformers:
» Logits in attention heads: x, Wikqgxq
» Logits in next-token prediction: uyT Uo(Vx;) or uyT Wov X
o For random embeddings, capacity ~ number of parameters
» See Cabannes et al. (2024); Nichani et al. (2024), extends to MLPs
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Weights as associative memories

o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

e 1 and e e, =0

|uy||~1 and u,"u, =0

o For pairwise associations (z,y) € M with weights o, define:

W= Z ozzyuyezT — uyTWeZ R Oz
(z,y)eM

o Examples in Transformers:
» Logits in attention heads: x, Wikqgxq
» Logits in next-token prediction: uyT Uo(Vx;) or uyT Wov X
o For random embeddings, capacity ~ number of parameters
» See Cabannes et al. (2024); Nichani et al. (2024), extends to MLPs

o Related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969); Iscen et al. (2017)

Alberto Bietti Mechanisms and Emergence in Transformers Flatiron 2025 6/21



Gradients lead to associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTWGZ?

with ¢ the cross-entropy loss and e,, uy input/output embeddings.

Alberto Bietti Mechanisms and Emergence in Transformers Flatiron 2025 7/21



Gradients lead to associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1
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Gradients lead to associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
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Gradients lead to associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings

W, = ;\7/; (]1{;‘*(2) =k} — /{/) me,' = u Wie, ~ % (]l{f*(Z) =k} — ,{,)
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Gradients lead to associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings

W, = ;\7/; (]1{;‘*(2) =k} — /{/) me,' = u Wie, ~ % (]l{f*(Z) =k} — ,{,)

» Corollary: f(z) = arg maxy u, " Whe, has near-perfect accuracy
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Gradients lead to associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(Z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings

W, = ;\7/; (]1{;‘*(2) =k} — /{/) me,' = u Wie, ~ % (]l{f*(Z) =k} — ,{,)

» Corollary: f(z) = arg maxy u, " Whe, has near-perfect accuracy

o More generally, replace vy by “backward” vector
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Gradients lead to associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(Z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings

W, = ;\7/; (]1{;‘*(2) =k} — /{/) me,' = u Wie, ~ % (]l{f*(Z) =k} — ,{,)

» Corollary: ?(z) = arg maxy ;| Wie, has near-perfect accuracy
o More generally, replace vy by “backward” vector
Note: related to (Ba et al., 2022; Damian et al., 2022; Oymak et al., 2023; Yang and Hu, 2021)
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Application to factual recall: toy model

The capital of France is Paris

©

s € §: subject token
o r € R: relation token
a*(s,r) € A,: attribute/fact to be stored
zi € N: noise tokens

()

©
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Application to factual recall: toy model

The capital of France is Paris

©

s € §: subject token
o r € R: relation token
a*(s,r) € A,: attribute/fact to be stored
zi € N noise tokens

()

©

Q: How do Transformers solve this?
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Two mechanisms

o One-layer Transformer, with or without MLP, random embeddings
o Embedding dimension d, head dimension d,, MLP width m, H heads
Theorem (Nichani et al., 2024, informal)

A one-layer Transformer with or without MLP can achieve perfect factual recall with O(SR)
parameters. (note: attention-only needs large enough d)
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Two mechanisms

o One-layer Transformer, with or without MLP, random embeddings
o Embedding dimension d, head dimension d,, MLP width m, H heads

Theorem (Nichani et al., 2024, informal)

A one-layer Transformer with or without MLP can achieve perfect factual recall with O(SR)

parameters. (note: attention-only needs large enough d)

Attention-only Construction

|:| Head A (attends to s)
|z| XTS(XWEWoxr) —» (s) —» WTW
Rest of heads attend to EOS
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Two mechanisms

o One-layer Transformer, with or without MLP, random embeddings
o Embedding dimension d, head dimension d,, MLP width m, H heads

Theorem (Nichani et al., 2024, informal)

A one-layer Transformer with or without MLP can achieve perfect factual recall with O(SR)
parameters. (note: attention-only needs large enough d)

Attention + MLP Construction

[d/d, | heads attends to s -
&(s)

SO
Rest of heads attend Io EOS E—» MLP Associative Memory
XTS(XWTWQXT) —» ¢(EOS —>| WTWV (r] X VT(F(WX) -

[d/d,|heads attends to r
XTS(XWEWpxy) [—> —»

[
[]
]

EOS
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Two mechanisms

o One-layer Transformer, with or without MLP, random embeddings

o Embedding dimension d, head dimension d,, MLP width m, H heads

Theorem (Nichani et al., 2024, informal)

A one-layer Transformer with or without MLP can achieve perfect factual recall with O(SR)
parameters. (note: attention-only needs large enough d)
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Training dynamics
o One-layer Transformer with linear attention and one-hot embeddings
o Gradient flow with initialization Woy(a, z), wkq(z) = a > 0

Theorem (Nichani et al., 2024, informal)

o There is global convergence to zero loss

o There is an intermediate phase where the model predicts using p(a|r) instead of p(als, r)
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Training dynamics

o One-layer Transformer with linear attention and one-hot embeddings
o Gradient flow with initialization Woy(a, z), wkq(z) = a > 0

Theorem (Nichani et al., 2024, informal)

o There is global convergence to zero loss
o There is an intermediate phase where the model predicts using p(a|r) instead of p(als, r)

o Intermediate phase corresponds to hallucination (uniform over A,, ignoring s)
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The bigram data model for in-context reasoning

When White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.
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The bigram data model for in-context reasoning

When White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix trigger tokens: qi,...,qk
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The bigram data model for in-context reasoning

When White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix trigger tokens: qi,...,qk
Sample each sequence zi.7 € [N]7 as follows

o Output tokens: oy ~ mo(+|gx) (random)
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The bigram data model for in-context reasoning

When White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix e P
Sample each sequence zi.7 € [N]7 as follows
o Output tokens: oy ~ mo(+|gx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(:|z¢—1) with

1{j=o}, ifi=q, k=1,... K

PUD=\motil), opw.

Alberto Bietti Mechanisms and Emergence in Transformers Flatiron 2025 12 /21



The bigram data model for in-context reasoning

When White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a
output

Fix e P
Sample each sequence zi.7 € [N]7 as follows
o Output tokens: oy ~ mo(+|gx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(:|z¢—1) with

1{j=o}, ifi=q, k=1,... K

PUD=\motil), opw.

7p: global bigrams model (estimated from Karpathy's character-level Shakespeare)

Alberto Bietti Mechanisms and Emergence in Transformers Flatiron 2025
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Transformers on the bigram task
When IVir White went ... then

T

output
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Transformers on the bigram task

When Vir White went ... then Vir
output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions
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Transformers on the bigram task

When Vir White went ... then Vir
output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions

o 2-layer transformer succeeds: ~ 99% accuracy
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Transformers on the bigram task

When Vir White went ... then Vir
output
o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions

o 2-layer transformer succeeds: ~ 99% accuracy

See (Sanford, Hsu, and Telgarsky, 2023, 2024b) for representational lower bounds
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, White} ... {T, Vr, White}
. {t+1, Mr, White} ... {T, Vir}
/ k_/
{t, M} {t+1, White} o AT

o

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, White} ... {T, Vr, White}
. {t+1, Mr, White} ... {T, Vir}
/ k_/
{t, M} {t+1, White} o AT

o

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
o 2nd layer: induction head
» attends to output of previous token head, copies attended token
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, White} ... {T, Vr, White}
. {t+1, Mr, White} ... {T, Vir}
/ k_/
{t, M} {t+1, White} o AT

o

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
o 2nd layer: induction head
» attends to output of previous token head, copies attended token

o Matches observed attention scores:
1
", ',
| |
l.

n "

rsabtslLabtsl, ab
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Induction head with associative memories

bz [ ] [+ ]

wg(a)
Attn2: >, wy (k)wg (k)" 2172,

wy(a) [ wg(b)

Layer 1 ‘ * ‘ wg(a) ‘

Wiy,
Attnl: > ps_1p] Residual | Predlctmn

/\
Layer 0 ‘ Pt—1 ‘ wg(a) ‘ ‘ ‘ ub(b
Sequence ’—2—‘ b fi

.

1 T T

Wiq = ZPrPt—lv WKQ = Z exdr, Wiy = Z Uk »
t=2 keqQ k=1

o Random embeddings ek, g, random matrix W}, (frozen at init)

o Remapped previous tokens: & := W}, ek
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Induction head with associative memories

Layer 2 ‘ * ‘ * ‘ ‘ * ‘ * ‘

Attn2: 3, wi(b)wp(k)" _.--* WZH‘ S wu(k)wp(k)T

wi(a) [u:E(b) ‘
P

WAW 7"

Attnl: 3 ps_1p,] Residual | Predlctmn

/\
Layer 0 ‘ Pi—1 ‘ wg(a) ‘ ‘ ‘ wg(b) ‘
Sequence a b ’77

.

1 T T

Wiq = ZPrPt—lv WKQ = Z g, Wiy = Z Uk »
t=2 keqQ k=1

Layer 1 ‘ * ‘ wg(a) ‘

o Random embeddings ek, g, random matrix W}, (frozen at init)

o Remapped previous tokens: & := W}, ek

Q: Does this match practice?
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Empirically probing the dynamics

Train only W,%Q, W,%Q, W(%V, loss on predictable tokens after trigger

o “Memory

freeze W3

10 10-
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8 o8- o8-
Sos- 06-
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g
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00 ; " v v 00

0 200 400 600 800 1000

10- 10-
T o8 0.8-
8
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< 056
5 04-

2o 0.4
g

Eo02- 02
00- 00

0 200 400 600 800 1000
iteration

recall probes”: for

R(W,

Alberto Bietti

freeze W} and W2 freeze W} freeze W}
10- 10-
o8- 08-
06 06-
04 04-
02- 02-
: . . . 00 ! ! ! | o 0o | | | | .
0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000
10- 10-
/,_/—rf — e
08~ Pad 0.8+
] 06- / 06+ /
| 0a- 04- — wo2
— w2
1 / 02- 02- WKl (t<64)
— w1
. 00- 0.0-

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration iteration

target memory W, = Z,{\il u,-e,-T, compute

M

1 .
W,) = i 1{i = arg max uJ-T We;}
1

i=
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Empirically probing the dynamics

Train only W,%Q, W,%Q, W(%V, loss on predictable tokens after trigger

o “Memory

freeze W3
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iteration
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0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000
10- 10-
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0s- P 05~
056 / 06-
04 04- — wo2
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00- 0.0-
0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000
iteration iteration iteration

target memory W, = Z,{\il u,-e,-T, compute

1 M

i=

o Natural learning “order": W(%V first, W,%Q next, W&Q last

o Joint learning is faster
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Gradient steps for the bigram task

Theorem (B. et al., 2023, informal)

In a simplified setup, we can recover the desired associative memories with 3 sequential
gradient steps on the population loss: first on Wg,,, then W, then Wi,.
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Gradient steps for the bigram task

Theorem (B. et al., 2023, informal)

In a simplified setup, we can recover the desired associative memories with 3 sequential
gradient steps on the population loss: first on Wg,,, then W, then Wi,.

Key ideas
o Attention is uniform at initialization = inputs are sums of embeddings
o W(%V: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z7

1/2 . .
o WKé . correct associations lead to more focused attention
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Gradient steps for the bigram task

Theorem (B. et al., 2023, informal)

In a simplified setup, we can recover the desired associative memories with 3 sequential
gradient steps on the population loss: first on Wg,,, then W, then Wi,.

Key ideas
o Attention is uniform at initialization = inputs are sums of embeddings
o W(%V: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z7

1/2 . .
o WKé . correct associations lead to more focused attention

see also (Snell et al., 2021; Oymak et al., 2023)
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Distributional vs in-context associations

. distributional association
(Y oo

x y

(Madrid is located in) {




Distributional vs in-context associations

Factual: average probability

probability

the
Madrid is located in {
Spain 10"

—_—

10° 10° 10! 10°
training steps

. y 10° 10'

o Distributional associations (e.g., common bigrams like “in the”) are learned much
faster than in-context reasoning, tend to be stored in late MLPs:
» “Madrid is located in" — {the, Spain} on Pythia-1B
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o Distributional associations (e.g., common bigrams like “in the”) are learned much
faster than in-context reasoning, tend to be stored in late MLPs:
» “Madrid is located in" — {the, Spain} on Pythia-1B
» Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context
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Distributional vs in-context associations

Factual: average probability

probability

the ’
Madrid is located in { 10
Spain 10

—_—

x y 10 10

fu
== ‘Spain: LASER

10° 10° 10! 10°
training steps

o Distributional associations (e.g., common bigrams like “in the”) are learned much
faster than in-context reasoning, tend to be stored in late MLPs:
» “Madrid is located in" — {the, Spain} on Pythia-1B
» Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context
o We study this on simple induction head task -+ noisy bigram token z (“the"):

~BBdkie. . BE. . EE. . BE. 2. -EE..
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Distributional vs in-context associations

Factual: average probability

probability

the
Madrid is located in { 10
Spain 10

—_—

x y

10° 10° 10! 10°
training steps

10

o Distributional associations (e.g., common bigrams like “in the”) are learned much
faster than in-context reasoning, tend to be stored in late MLPs:
» “Madrid is located in" — {the, Spain} on Pythia-1B
» Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context

o We study this on simple induction head task -+ noisy bigram token z (“the"):

~BBdkie. . BE. . EE. . BE. 2. -EE..

Theorem (Chen, Bruna, and B., 2024, informal)

In toy model above, feed-forward layer learns global bigram after O(1) samples, attention
after O(N) samples due to noise.
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Multi-step reasoning

o Composition of multiple statements given in context. Example:

John holds the apple. John is in the . Where is the apple?
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Multi-step reasoning
o Composition of multiple statements given in context. Example:
John holds the apple. John is in the . Where is the apple?

» composition of 2 hops: (apple — John) and (John — )
» harder than the (1-hop) induction head task: (Mr — White)
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o More generally, consider k-hop reasoning: compose k functions given in context

Alberto Bietti Mechanisms and Emergence in Transformers Flatiron 2025

19/21



Multi-step reasoning
o Composition of multiple statements given in context. Example:
John holds the apple. John is in the . Where is the apple?
» composition of 2 hops: (apple — John) and (John — )
» harder than the (1-hop) induction head task: (Mr — White)
o More generally, consider k-hop reasoning: compose k functions given in context
o Can be solved wih only log k transformer layers (Liu et al., 2023; Sanford et al., 2024a)
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Multi-step reasoning

o Composition of multiple statements given in context. Example:

John holds the apple. John is in the

» composition of 2 hops: (apple — John) and (John —
» harder than the (1-hop) induction head task: (Mr — White)

o More generally, consider k-hop reasoning: compose k functions given in context

. Where is the apple?

o Can be solved wih only log k transformer layers (Liu et al., 2023; Sanford et al., 2024a)

ey
p

rrrtrrr
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Q: what about training dynamics?
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Training dynamics for k-hop reasoning
Failure of gradient descent (based on statistical query model)

Theorem (Wang, Nichani, et al., 2025+, informal) J

Gradient descent requires either exp(k) samples or exp(k) compute to solve the k-hop task.
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Training dynamics for k-hop reasoning
Failure of gradient descent (based on statistical query model)

Theorem (Wang, Nichani, et al., 2025+, informal)
Gradient descent requires either exp(k) samples or exp(k) compute to solve the k-hop task. J

Easy-to-hard data to the rescue

Theorem (Wang, Nichani, et al., 2025+, informal)

When using easy-to-hard curriculum learning, or training on a mixture of hops, gradient
descent solves k-hop with O(k) samples/compute.
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Theorem (Wang, Nichani, et al., 2025+, informal)

When using easy-to-hard curriculum learning, or training on a mixture of hops, gradient
descent solves k-hop with O(k) samples/compute.

o Hops 1, 2, 4, etc. are learned incrementally (layer-wise)
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Training dynamics for k-hop reasoning
Failure of gradient descent (based on statistical query model)

Theorem (Wang, Nichani, et al., 2025+, informal)
Gradient descent requires either exp(k) samples or exp(k) compute to solve the k-hop task. J

Easy-to-hard data to the rescue

Theorem (Wang, Nichani, et al., 2025+, informal)

When using easy-to-hard curriculum learning, or training on a mixture of hops, gradient
descent solves k-hop with O(k) samples/compute.

o Hops 1, 2, 4, etc. are learned incrementally (layer-wise)
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Concluding remarks
Mechanisms in Transformers
o Weights as associative memories
o (Multi-hop) reasoning with attention circuits
o distributional associations vs reasoning in MLPs vs attention
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Training dynamics elucidate phenomena
o Hallucinations as an intermediate training phase
o Multi-hop reasoning can be solved only with curriculum

o MLPs learn faster than attention
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o Hallucinations as an intermediate training phase
o Multi-hop reasoning can be solved only with curriculum

o MLPs learn faster than attention

Future directions
o Learning embeddings
o Continuous data

o Scientific problems (simulation, astrophysics, biology, ...)
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Concluding remarks
Mechanisms in Transformers
o Weights as associative memories
o (Multi-hop) reasoning with attention circuits
o distributional associations vs reasoning in MLPs vs attention

Training dynamics elucidate phenomena
o Hallucinations as an intermediate training phase
o Multi-hop reasoning can be solved only with curriculum

o MLPs learn faster than attention

Future directions
o Learning embeddings
o Continuous data

o Scientific problems (simulation, astrophysics, biology, ...)

Thank you!
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