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Mechanisms inside Transformer LLMs

Reasoning over context
Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
A “biology” of circuits found by mechanistic interpretability (e.g., Anthropic, 2025)

Knowledge storage
Memorization, factual recall, parameter scaling

▶ (Geva et al., 2020; Meng et al., 2022; Allen-Zhu and Li, 2024)
Learn rules that help higher-level reasoning

in Nanda & Lieberum (2022). Mean-ablations remove the information that varies in the reference
distribution (e.g. the value of the name outputted by a head) but will preserve constant information
(e.g. the fact that a head is outputting a name).

In this work, all knockouts are performed in a modified pIOI distribution called pABC. It relies on the
same generation procedure, but instead of using two names (IO and S) it used three unrelated random
names (A, B and C). In pABC, sentences no longer have a single plausible IO, but the grammatical
structures from the pIOI templates are preserved.

We chose this distribution for mean-ablating because using pIOI would not remove enough informa-
tion helpful for the task. For instance, some information constant in pIOI (e.g. the fact that a name
is duplicated) is removed when computing the mean on pABC.

When knocking out a single node, a (head, token position) pair in our circuit, we want to preserve
the grammatical information unrelated to IOI contained in its activations. However, the grammatical
role (subject, verb, conjunction etc.) of a particular token position varies across templates. To ensure
that grammatical information is constant when averaging, we compute the mean of a node across
samples of the same template.

3 DISCOVERING THE CIRCUIT

We seek to explain how GPT-2 small implements the IOI task (Section 2). Recall the example
sentence “When Mary and John went to the store, John gave a drink to”. The following human-
interpretable algorithm suffices to perform this task:

1. Identify all previous names in the sentence (Mary, John, John).
2. Remove all names that are duplicated (in the example above: John).
3. Output the remaining name.

Below we present a circuit that we claim implements this functionality. Our circuit contains three
major classes of heads, corresponding to the three steps of the algorithm above:

• Duplicate Token Heads identify tokens that have already appeared in the sentence. They are active
at the S2 token, attend primarily to the S1 token, and signal that token duplication has occurred
by writing the position of the duplicate token.

• S-Inhibition Heads remove duplicate tokens from Name Mover Heads’ attention. They are active
at the END token, attend to the S2 token, and write in the query of the Name Mover Heads,
inhibiting their attention to S1 and S2 tokens.

• Name Mover Heads output the remaining name. They are active at END, attend to previous names
in the sentence, and copy the names they attend to. Due to the S-Inhibition Heads, they attend to
the IO token over the S1 and S2 tokens.
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Figure 2: We discover a circuit in GPT-2 small that implements IOI. The input tokens on the left are
passed into the residual stream. Attention heads move information between residual streams: the
query and output arrows show which residual streams they write to, and the key/value arrows show
which residual streams they read from.
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(a) bioS(N) data — 1000 exposures — peak R(F ) → 2 (b) bioS(N) data — 100 exposures — peak R(F ) → 1

Figure 1: Scaling laws for GPT2 pretrained on bioS(N) data using fp16 (mixed-precision) for 1000/100 exposures.

Conclusion. The peak capacity ratios consistently exceed R(F ) → 2 (resp. → 1) for 1000 exposures (resp.
100 exposures) of pretraining on each knowledge piece, regardless of model depth/size.

Remarks. Each dot ω-h represents GPT2 with ω layers, h heads, and 64d dimensions. The learned
knowledge is calculated by the bit-complexity lower bound Theorem 3.2. The appendix also includes:
Figure 11 showing similar results for bioSsimple(N) and bioR(N) data, Figure 14 demonstrating that the
same holds for quantization using int8, Figure 10 confirming full extractability of all learned knowledge.13

Larger models? Training GPT2-20-16 on bioS(10M) for 1000 exposures costs 8.5 days with 64 A100s,
while GPT2-12-32 on bioS(20M) for 100 exposures took 2.4 days. In our synthetic setting, we see no need
to scale up further. Instead, we prefer to allocate GPUs to explore other aspects covered in this paper.

Remark 4.2. One must have R(F ) → Rmax(F ), and equality is obtained if the model is perfect. For
a fixed dataset, further increases in model size do not yield additional knowledge, thus Rmax(F )
approaches zero as the model size P increases. On the other hand, Theorem 3.2 implies, ignoring
lower-order terms, that if the model parameters are 8-bit (such as int8), then R(F ) → 8.

For our bioS(N) data, we define a slightly reduced capacity ratio by omitting the diversity term.11

Definition 4.3. Given a model F with P parameters trained over the bioS(N) dataset Z, suppose
it gives p1 = lossname(Z) and p2 = lossvalue(Z), its capacity ratio12

R(F )
def
=

N log2
N0
ep1 + N log2

S0
ep2

P
and Rmax(F )

def
=

N log2
N0
N + N log2 S0

P

for N0 = 400 ↑ 400 ↑ 1000 and S0 = 2 ↑ (12 · 28 · 200) ↑ 200 ↑ 300 ↑ 100 ↑ 263 (c.f. Footnote 9).

Remark 4.4. Ignoring names, each person contains log2(S0) ↓ 47.6 bits of knowledge.

5 Base Scaling Laws

11A version of Theorem 3.2 can be proven for this dataset with a simpler proof, as it excludes the diversity set. This
could also mean the model has full prior knowledge of the diversity set (e.g., assuming a fixed set of 300 university
names) without counting this knowledge towards its learned bits.

12Here, one can let K = {birth date, birth city, university, major, employer, gender} and accordingly define

lossvalue(Z)
def
= En→N

∑
a→K ↑ log PrR

[
F↑(W (Z), n, a, R) = vω(n, a)

]
.

13A distinction exists between memorizable knowledge (e.g., text memorized during pretraining) and knowledge
flexibly extractable via instruction fine-tuning [3]; our results in this paper apply to both.
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Mechanisms inside Transformer LLMs

Reasoning over context
Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
A “biology” of circuits found by mechanistic interpretability (e.g., Anthropic, 2025)

Knowledge storage
Memorization, factual recall, parameter scaling

▶ (Geva et al., 2020; Meng et al., 2022; Allen-Zhu and Li, 2024)
Learn rules that help higher-level reasoning

Q: How do these arise during training?
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Emergence and training dynamics

Emergent capabilities and sequential learning (Wei et al. 2022; Power et al., 2022; Saxe et al. 2013)

Published in Transactions on Machine Learning Research (08/2022)
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Figure 3: Specialized prompting or finetuning methods can be emergent in that they do not have a positive
e�ect until a certain model scale. A: Wei et al. (2022b). B: Wei et al. (2022a). C: Nye et al. (2021). D:
Kadavath et al. (2022). An analogous figure with number of parameters on the x-axis instead of training
FLOPs is given in Figure 12. The model shown in A-C is LaMDA (Thoppilan et al., 2022), and the model
shown in D is from Anthropic.

Multi-step reasoning. Reasoning tasks, especially those involving multiple steps, have been challenging for
language models and NLP models more broadly (Rae et al., 2021; Bommasani et al., 2021; Nye et al., 2021). A
recent prompting strategy called chain-of-thought prompting enables language models to solve such problems
by guiding them to produce a sequence of intermediate steps before giving the final answer (Cobbe et al., 2021;
Wei et al., 2022b; Suzgun et al., 2022). As shown in Figure 3A, chain of thought prompting only surpasses
standard prompting without intermediate steps when scaled to 1023 training FLOPs (≥100B parameters).
A similar emergence in performance gain was also observed when augmenting few-shot prompting with
explanations that came after the final answer (Lampinen et al., 2022).

Instruction following. Another growing line of work aims to better enable language models to perform
new tasks simply by reading instructions describing the task (without few-shot exemplars). By finetuning
on a mixture of tasks phrased as instructions, language models have been shown to respond appropriately
to instructions describing an unseen task (Ouyang et al., 2022; Wei et al., 2022a; Sanh et al., 2022; Chung
et al., 2022). As shown in Figure 3B, Wei et al. (2022a) found that this instruction-finetuning technique hurts
performance for models of 7 ·1021 training FLOPs (8B parameters) or smaller, and only improves performance
when scaled to 1023 training FLOPs (≥100B parameters) (though Sanh et al. (2022) found shortly after that
this instruction-following behavior could be also induced by finetuning smaller encoder-decoder T5 models).

Program execution. Consider computational tasks involving multiple steps, such as adding large numbers or
executing computer programs. Nye et al. (2021) show that finetuning language models to predict intermediate
outputs (“scratchpad”) enables them to successfully execute such multi-step computations. As shown in
Figure 3C, on 8-digit addition, using a scratchpad only helps for models of ≥9 · 1019 training FLOPs (40M
parameters) or larger.

Model calibration. Finally, an important direction for deployment of language models studies is calibration,
which measures whether models can predict which questions they will be able to answer correctly. Kadavath
et al. (2022) compared two ways of measuring calibration: a True/False technique, where models first propose
answers and then evaluate the probability “P(True)” that their answers are correct, and more-standard
methods of calibration, which use the probability of the correct answer compared with other answer options.
As shown in Figure 3D, the superiority of the True/False technique only emerges when scaled to the largest
model scale of ≥3 · 1023 training FLOPs (52B parameters).

5

Why do we care about understanding?
Highlight role of data, training algorithm, architecture
=⇒ improve training methodology
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Transformer setup

Input: sequence of discrete tokens (z1, . . . , zT ) ∈ [N]T

Embeddings
input ez , positional pt , output uy , in Rd

Residual streams (Elhage et al., 2021)
embed each token zt ∈ [N] as xt := ezt + pt

(causal) self-attention xt := xt + MHSA(xt , x1:t)
feed-forward xt := xt + MLP(xt)
residual stream xt is a sum of embeddings/“features”
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(causal) self-attention xt := xt + MHSA(xt , x1:t)

feed-forward xt := xt + MLP(xt)
residual stream xt is a sum of embeddings/“features”

MHSA(xt , x1:t) =
H∑

h=1

t∑
s=1

βh
s W h⊤

O W h
V xs , with βh

s =
exp(xs

⊤W h⊤
K W h

Qxt)∑t
s=1 exp(xs⊤W h⊤

K W h
Qxt)

where WK , WQ, WV , WO ∈ Rdh×d (key/query/value/output matrices)
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Embeddings
input ez , positional pt , output uy , in Rd

Residual streams (Elhage et al., 2021)
embed each token zt ∈ [N] as xt := ezt + pt

(causal) self-attention xt := xt + MHSA(xt , x1:t)
feed-forward xt := xt + MLP(xt)

residual stream xt is a sum of embeddings/“features”

MLP(xt) = V ⊤σ(Uxt)

where U, V ∈ Rm×d , often m = 4d
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Transformer setup

Input: sequence of discrete tokens (z1, . . . , zT ) ∈ [N]T

Embeddings
input ez , positional pt , output uy , in Rd

Residual streams (Elhage et al., 2021)
embed each token zt ∈ [N] as xt := ezt + pt

(causal) self-attention xt := xt + MHSA(xt , x1:t)
feed-forward xt := xt + MLP(xt)
residual stream xt is a sum of embeddings/“features”

Next-token prediction
cross-entropy loss ∑

t<T
ℓ(zt+1; (uj

⊤xt)j)
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Outline

1 Memorization and factual recall

2 In-context reasoning
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Weights as associative memories
Consider sets of nearly orthonormal embeddings {ez}z∈Z and {uy }y∈Y :

∥ez∥ ≈ 1 and ez
⊤ez ′ ≈ 0

∥uy ∥ ≈ 1 and uy
⊤uy ′ ≈ 0

For pairwise associations (z , y) ∈ M with weights αzy , define:

W =
∑

(z,y)∈M
αzy uy ez

⊤ =⇒ uy
⊤W ez ≈ αzy

Examples in Transformers:
▶ Logits in attention heads: x⊤

k WKQxq
▶ Logits in next-token prediction: u⊤

y Uσ(Vxt) or u⊤
y WOV xk

For random embeddings, capacity ≈ number of parameters
▶ See Cabannes et al. (2024); Nichani et al. (2024), extends to MLPs

Related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969); Iscen et al. (2017)
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Gradients lead to associative memories
Lemma (Gradients as memories, B. et al., 2023)
Let p be a data distribution over (z , y) ∈ [N]2, and consider the loss

L(W ) = E(z,y)∼p[ℓ(y , FW (z))], FW (z)k = uk
⊤W ez ,

with ℓ the cross-entropy loss and ez , uk input/output embeddings.

Then,

∇L(W ) =
K∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))ukez

⊤]

Example: z ∼ Unif([N]), y = f∗(z)
▶ After one gradient step on the population loss, assuming near-orthonormal embeddings

W1 = η

N
∑
z,k

(
1{f∗(z) = k} − 1

N

)
ukez

⊤ =⇒ uk
⊤W1ez ≈ η

N

(
1{f∗(z) = k} − 1

N

)
▶ Corollary: f̂ (z) = arg maxk uk

⊤W1ez has near-perfect accuracy
More generally, replace uk by “backward” vector

Note: related to (Ba et al., 2022; Damian et al., 2022; Oymak et al., 2023; Yang and Hu, 2021)

Alberto Bietti Mechanisms and Emergence in Transformers Flatiron 2025 7 / 21



Gradients lead to associative memories
Lemma (Gradients as memories, B. et al., 2023)
Let p be a data distribution over (z , y) ∈ [N]2, and consider the loss

L(W ) = E(z,y)∼p[ℓ(y , FW (z))], FW (z)k = uk
⊤W ez ,

with ℓ the cross-entropy loss and ez , uk input/output embeddings. Then,

∇L(W ) =
K∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))ukez

⊤]

Example: z ∼ Unif([N]), y = f∗(z)
▶ After one gradient step on the population loss, assuming near-orthonormal embeddings

W1 = η

N
∑
z,k

(
1{f∗(z) = k} − 1

N

)
ukez

⊤ =⇒ uk
⊤W1ez ≈ η

N

(
1{f∗(z) = k} − 1

N

)
▶ Corollary: f̂ (z) = arg maxk uk

⊤W1ez has near-perfect accuracy
More generally, replace uk by “backward” vector

Note: related to (Ba et al., 2022; Damian et al., 2022; Oymak et al., 2023; Yang and Hu, 2021)

Alberto Bietti Mechanisms and Emergence in Transformers Flatiron 2025 7 / 21



Gradients lead to associative memories
Lemma (Gradients as memories, B. et al., 2023)
Let p be a data distribution over (z , y) ∈ [N]2, and consider the loss

L(W ) = E(z,y)∼p[ℓ(y , FW (z))], FW (z)k = uk
⊤W ez ,

with ℓ the cross-entropy loss and ez , uk input/output embeddings. Then,

∇L(W ) =
K∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))ukez

⊤]

Example: z ∼ Unif([N]), y = f∗(z)

▶ After one gradient step on the population loss, assuming near-orthonormal embeddings

W1 = η

N
∑
z,k

(
1{f∗(z) = k} − 1

N

)
ukez

⊤ =⇒ uk
⊤W1ez ≈ η

N

(
1{f∗(z) = k} − 1

N

)
▶ Corollary: f̂ (z) = arg maxk uk

⊤W1ez has near-perfect accuracy
More generally, replace uk by “backward” vector

Note: related to (Ba et al., 2022; Damian et al., 2022; Oymak et al., 2023; Yang and Hu, 2021)

Alberto Bietti Mechanisms and Emergence in Transformers Flatiron 2025 7 / 21



Gradients lead to associative memories
Lemma (Gradients as memories, B. et al., 2023)
Let p be a data distribution over (z , y) ∈ [N]2, and consider the loss

L(W ) = E(z,y)∼p[ℓ(y , FW (z))], FW (z)k = uk
⊤W ez ,

with ℓ the cross-entropy loss and ez , uk input/output embeddings. Then,

∇L(W ) =
K∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))ukez

⊤]

Example: z ∼ Unif([N]), y = f∗(z)
▶ After one gradient step on the population loss, assuming near-orthonormal embeddings

W1 = η

N
∑
z,k

(
1{f∗(z) = k} − 1

N

)
ukez

⊤ =⇒ uk
⊤W1ez ≈ η

N

(
1{f∗(z) = k} − 1

N

)

▶ Corollary: f̂ (z) = arg maxk uk
⊤W1ez has near-perfect accuracy

More generally, replace uk by “backward” vector
Note: related to (Ba et al., 2022; Damian et al., 2022; Oymak et al., 2023; Yang and Hu, 2021)

Alberto Bietti Mechanisms and Emergence in Transformers Flatiron 2025 7 / 21



Gradients lead to associative memories
Lemma (Gradients as memories, B. et al., 2023)
Let p be a data distribution over (z , y) ∈ [N]2, and consider the loss

L(W ) = E(z,y)∼p[ℓ(y , FW (z))], FW (z)k = uk
⊤W ez ,

with ℓ the cross-entropy loss and ez , uk input/output embeddings. Then,

∇L(W ) =
K∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))ukez

⊤]

Example: z ∼ Unif([N]), y = f∗(z)
▶ After one gradient step on the population loss, assuming near-orthonormal embeddings

W1 = η

N
∑
z,k

(
1{f∗(z) = k} − 1

N

)
ukez

⊤ =⇒ uk
⊤W1ez ≈ η

N

(
1{f∗(z) = k} − 1

N

)
▶ Corollary: f̂ (z) = arg maxk uk

⊤W1ez has near-perfect accuracy

More generally, replace uk by “backward” vector
Note: related to (Ba et al., 2022; Damian et al., 2022; Oymak et al., 2023; Yang and Hu, 2021)

Alberto Bietti Mechanisms and Emergence in Transformers Flatiron 2025 7 / 21



Gradients lead to associative memories
Lemma (Gradients as memories, B. et al., 2023)
Let p be a data distribution over (z , y) ∈ [N]2, and consider the loss

L(W ) = E(z,y)∼p[ℓ(y , FW (z))], FW (z)k = uk
⊤W ez ,

with ℓ the cross-entropy loss and ez , uk input/output embeddings. Then,

∇L(W ) =
K∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))ukez

⊤]

Example: z ∼ Unif([N]), y = f∗(z)
▶ After one gradient step on the population loss, assuming near-orthonormal embeddings

W1 = η

N
∑
z,k

(
1{f∗(z) = k} − 1

N

)
ukez

⊤ =⇒ uk
⊤W1ez ≈ η

N

(
1{f∗(z) = k} − 1

N

)
▶ Corollary: f̂ (z) = arg maxk uk

⊤W1ez has near-perfect accuracy
More generally, replace uk by “backward” vector

Note: related to (Ba et al., 2022; Damian et al., 2022; Oymak et al., 2023; Yang and Hu, 2021)

Alberto Bietti Mechanisms and Emergence in Transformers Flatiron 2025 7 / 21



Gradients lead to associative memories
Lemma (Gradients as memories, B. et al., 2023)
Let p be a data distribution over (z , y) ∈ [N]2, and consider the loss

L(W ) = E(z,y)∼p[ℓ(y , FW (z))], FW (z)k = uk
⊤W ez ,

with ℓ the cross-entropy loss and ez , uk input/output embeddings. Then,

∇L(W ) =
K∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))ukez

⊤]

Example: z ∼ Unif([N]), y = f∗(z)
▶ After one gradient step on the population loss, assuming near-orthonormal embeddings

W1 = η

N
∑
z,k

(
1{f∗(z) = k} − 1

N

)
ukez

⊤ =⇒ uk
⊤W1ez ≈ η

N

(
1{f∗(z) = k} − 1

N

)
▶ Corollary: f̂ (z) = arg maxk uk

⊤W1ez has near-perfect accuracy
More generally, replace uk by “backward” vector

Note: related to (Ba et al., 2022; Damian et al., 2022; Oymak et al., 2023; Yang and Hu, 2021)
Alberto Bietti Mechanisms and Emergence in Transformers Flatiron 2025 7 / 21



Application to factual recall: toy model

EOS⋯ ⋯ ⋯ →s r a*z1 zi−1 zi+1 zj−1 zj+1 zT−1

The capital of France is Paris

s ∈ S: subject token
r ∈ R: relation token
a∗(s, r) ∈ Ar : attribute/fact to be stored
zi ∈ N : noise tokens

Q: How do Transformers solve this?
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Two mechanisms

One-layer Transformer, with or without MLP, random embeddings
Embedding dimension d , head dimension dh, MLP width m, H heads

Theorem (Nichani et al., 2024, informal)
A one-layer Transformer with or without MLP can achieve perfect factual recall with Õ(SR)
parameters. (note: attention-only needs large enough d)
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Figure 3: Both the Attention-only and Attention+MLP constructions for the factual recall task.

subject/relation z. Letting Ph be a projection onto a random dh-dimensional subspace of Rd, we
set

W
(h)
O

→
W

(h)
V →

∑

z↑S(h)

∑

a↑Az

ω(a)ω(z)→Ph. (12)

In Lemma 2, we show that this construction stores at most dh tokens per head (i.e
∣∣S(h)

∣∣ ↭ dh),
and requires the dimension to scale with the number of elements in superposition (i.e |Az| ↭ d).
Since |Az| ↑ R+D, and the S(h) partition S↓R, it suffices to take d ↫ R+D and Hdh ↫ S +R.

For the MLP construction, we instead associate the subset S(h) with ↔d/dh↗ attention heads. This is
equivalent to having a single full-rank attention head per subset. We set the aggregate output-value
matrix to the identity, so that the output of the self-attention layer is FMHSA(X;ε) = ω(s)+ω(r).
Finally, the MLP layer acts as an MLP associative memory, mapping ω(s) + ω(r) to ω(a↓(s, r))
for each (s, r) pair. Via a similar computation to Theorem 2, it suffices to make the total number of
parameters md be md = !̃(SR). Since the S(h) partition S ↓ R, it suffices to take Hdh ↫ S + R
as well. See Figure 3 for a diagram describing both constructions.

4.4 Empirical Validation
We next empirically validate the claims of Theorems 3 and 4 that 100% accuracy can be obtained
as long as either the total number of self-attention or MLP parameters scales with SR. We further
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Figure 3: (Left) The number of facts stored scales linearly with the total number of parameters, for
a wide range of model sizes. (Right) For a fixed dataset, the model can trade off MLP parameters
for attention parameters to obtain 100% accuracy.

specific dataset with S = 32, R = 32, D = 8, and plot the accuracy of a wide range of models. We
observe that the model can trade off MLP parameters for attention parameters, will still maintaining
an accuracy of near 1. However, we do still require the total number of attention parameters to be
large enough; this corresponds to the Hdh = !̃(S + R) constraint in Theorems 3 and 4.

5 OPTIMIZATION DYNAMICS

We next analyze the optimization dynamics of a single-layer attention-only transformer trained on
the task from Section 4. As analyzing the GD dynamics of softmax attention poses a significant
challenge, we instead study the training dynamics of a linear transformer with orthogonal embed-
dings. That is, we let the embedding dimension be d = |V|, and assume that the embedding vectors
ω(z) for each token z → V satisfy ↑ω(z),ω(z→)↓ = 1(z = z→). Such linear attention and orthogo-
nal embeddings assumptions are common in prior works studying the gradient descent dynamics of
transformers. [EN: TODO cite papers also using linear attention]

The linear attention head is given by

Flin(X;ε) := W↑
O WV X↑XW↑

K WQxT .

Setting dh = d, and defining the combined matrices WOV = W↑
O WV , WKQ = W↑

K WQ, we
observe that the model can be rewritten as

ω(a)↑Flin(X;ε) = ω(a)↑WOV X↑XWKQxT

=
T∑

t=1

ω(a)↑WOV ω(zt) · ω(zt)
↑WKQω(EOS)

Let us define WOV (a, z) := ω(a)↑WOV ω(z).WKQ(z) := ω(z)↑WKQω(EOS). We can then
write

ω(a)↑Flin(X;ε) =

T∑

t=1

WOV (a, zt)WKQ(zt)

Due to the orthogonality assumption on the embeddings, the parameters for each token z de-
couple. That is, running gradient descent on WOV , WKQ is equivalent to running GD on the
WOV (a, z), WKQ(z). Thus letting the parameter vector be ε := {WOV (a, z)}a↓A,z↓V ↔
{WKQ}z↓V we get that the cross entropy loss is

L(ε) := Ez1:T+1

[
↗↑ω(zT+1), Flin(X;ε)↓+ log

(∑

a↓A
exp (↑ω(a), Flin(X;ε)↓)

)]
(7)
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Training dynamics
One-layer Transformer with linear attention and one-hot embeddings
Gradient flow with initialization WOV (a, z), wKQ(z) ≈ α > 0

Theorem (Nichani et al., 2024, informal)
There is global convergence to zero loss
There is an intermediate phase where the model predicts using p(a|r) instead of p(a|s, r)

Intermediate phase corresponds to hallucination (uniform over Ar , ignoring s)

Figure 5: (Left) Loss of the linear attention model with orthogonal embeddings. There is an
intermediate hallucination stage where the loss plateaus and the model predicts based on only the
relation. (Right) Loss of the softmax attention model with random embeddings. We again observe
an intermediate hallucination stage, where the relation-only loss is zero but the total loss is still
large.

Remarks. Theorem 6 tells us that at some intermediate time, the prediction of the model p̂(· |
z1:T ) is approximately equal to p→(· | r), the conditional distribution of the answer given the
relation r. At this stage, the model ignores all other tokens in the sequence z1:T – including the
useful subject token s – and predicts based only on the relation r. For example, if S is the set of
all countries and r is the relation “capital,” then on the prompt “What is the capital of France?”
the model will output a random countries’ capital. We view this as an instance of hallucination:
the model is outputting a plausible, yet ultimately incorrect, answer to the prompt. We remark
that without the assumption that S → R, it is possible for this intermediate hallucination stage to
exhibit different behavior.

Empirical Validation. We next empirically verify Theorems 5 and 6. We first train the linear
attention model with orthogonal embeddings (15) with S = 16, R = 4 and D = 8, and plot the loss
over time. In the left pane of Figure 5, we observe three distinct stages. At the start of training, the
prediction is close to uniform over all possible answers, and the model obtains a loss of log |A|.
Next, the loss plateaus at log D, and the model outputs the conditional distribution of a given
the relation r. Finally, as training continues, the model escapes the plateau and converges to zero
loss. We include the “relation-only loss” in the plot, defined as Ez1:T+1

[
↑ log

(∑
a↑Ar

p(a | z1:T )
)]

,
where any probability mass assigned to an answer which is valid for the relation r is considered to
be correct; the subject-only loss is defined analogously.

In the right pane of Figure 5, we plot the loss of a single softmax attention head with random
embeddings trained on the same factual recall task. We observe similar phenomenology as for
linear attention, and identify an intermediate “hallucination” stage where the relation-only loss
drops to zero, but the subject-only loss is still far from zero.
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Outline

1 Memorization and factual recall

2 In-context reasoning
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The bigram data model for in-context reasoning
The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr White went … then Mr ___

trigger output 

Fix trigger tokens: q1, . . . , qK
Sample each sequence z1:T ∈ [N]T as follows

Output tokens: ok ∼ πo(·|qk) (random)
Sequence-specific Markov model: z1 ∼ π1, zt |zt−1 ∼ p(·|zt−1) with

p(j |i) =
{
1{j = ok}, if i = qk , k = 1, . . . , K
πb(j |i), o/w.

πb: global bigrams model (estimated from Karpathy’s character-level Shakespeare)
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● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr White went … then Mr ___

trigger output 

Fix trigger tokens: q1, . . . , qK
Sample each sequence z1:T ∈ [N]T as follows

Output tokens: ok ∼ πo(·|qk) (random)
Sequence-specific Markov model: z1 ∼ π1, zt |zt−1 ∼ p(·|zt−1) with

p(j |i) =
{
1{j = ok}, if i = qk , k = 1, . . . , K
πb(j |i), o/w.

πb: global bigrams model (estimated from Karpathy’s character-level Shakespeare)

Alberto Bietti Mechanisms and Emergence in Transformers Flatiron 2025 12 / 21



Transformers on the bigram task

The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr White went … then Mr ___

trigger output 

1-layer transformer fails: ∼ 55% accuracy on in-context output predictions
2-layer transformer succeeds: ∼ 99% accuracy

See (Sanford, Hsu, and Telgarsky, 2023, 2024b) for representational lower bounds
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

     …            {t+1, Mr, White}    …     {T, Mr} 

…      {t, Mr}          {t+1, White}        …      {T, Mr}   

     …          {t+1, Mr, White}    …   {T, Mr, White} 

1st layer: previous-token head
▶ attends to previous token and copies it to residual stream

2nd layer: induction head
▶ attends to output of previous token head, copies attended token

Matches observed attention scores:

               r s a b t s L a b t s L , a b
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Induction head with associative memories

Layer 0

Sequence

Layer 1

Layer 2

pt−1 wE(a) pt wE(b) pT−1 wE(a)

a b a b[· · · ]

∗ wE(a) w1(a) wE(b) ∗ wE(a)

∗ ∗ ∗ ∗ wU (b) wE(a)

Attn1:
∑

s ps−1p
⊤
s

W 1
OW

1
V Residual

Attn2:
∑

k w1(k)wE(k)
⊤ W 2

OW 2
V :

∑
k wU (k)wE(k)

⊤

Prediction

W 1
KQ =

T∑
t=2

ptp⊤
t−1, W 2

KQ =
∑
k∈Q

ek ẽ⊤
k , W 2

OV =
N∑

k=1
uke⊤

k ,

Random embeddings ek , uk , random matrix W 1
OV (frozen at init)

Remapped previous tokens: ẽk := W 1
OV ek

Q: Does this match practice?
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Empirically probing the dynamics
Train only W 1

KQ, W 2
KQ, W 2

OV , loss on predictable tokens after trigger

Figure 3: Learning the induction head alone: in-context accuracy (top) and recall probes
(bottom) with some layers frozen until iteration 300. The output matrix W 2

O can and must be learned
before the key-query matrices, but does not suffice for good accuracy. It is easier to learn W 2

K
before W 1

K , and W 1
K stores initial context positions (t < 64) much faster than late positions.

The question remains of how the model could trade-off predictions from the induction head and from229

the feed-forward layer, which are added together due to residual connections. With fixed triggers Q,230

we may simply remove all i 2 Q from the summation in (8), so that the model exclusively relies231

on the attention head for all triggers (indeed, the output of W 2
O is in the span of output embeddings,232

which are nearly orthogonal to the row space of WF ). When the triggers can vary across different233

sequences, choosing between the induction head and the feed-forward layer is more ambiguous as234

it depends on context, and WF may try to learn more complex mappings that also use the outputs235

of W 2
O. In practice, we observe that the model often prefers the induction head, unless its output236

agrees with one of the top predictions from the global bigram, in which case it tends to prefer those.237

5 Empirical Study238

In this section, we present our empirical analysis of learning dynamics on the bigram data defined in239

Section 3, for the simplified architecture defined in Section 4.2. See Appendix D for additional results.240

Experimental setup. We train our models using mini-batch SGD with momentum, where each241

batch consists of 512 fresh sequences of length T = 256 sampled from our synthetic model. We use242

a fixed learning rate and weight decay. Hyperparameters are given in Appendix D. Unless otherwise243

noted, we use d = 128, random triggers with ⇡q = ⇡u and uniform output tokens. The reported244

accuracies and losses are computed over each fresh batch before it is used for optimization, and245

are averaged over relevant tokens: “in-context accuracy/loss” numbers only consider predictions246

of output tokens on triggers starting at the second occurrence (the first is non-deterministic), while247

“global loss” refers to average loss on non-trigger tokens.248

Memory recall probes. In addition to loss and accuracy, we consider metrics to check whether249

individual matrices have learned the desired associative memories: for a desired target memory W⇤ =250 P
(i,j)2M vju

>
i , the corresponding recall metric is computed from the empirical estimate Ŵ as251

R(Ŵ , W⇤) =
1

|M|
X

(i,j)2M
{arg max

j0
v>j0Ŵui = j}. (9)

We use this for each matrix in (7) as target, and additionally test the previous token matrix W 1
K on252

smaller time windows. For the final feed-forward layer, we measure the average KL divergence253

between the predicted softmax distribution using only WF and the global bigram distribution ⇡b:254

dKL(WF , ⇡b) :=
1

N

NX

k=1

dKL(�(WUWF wE(k)), ⇡b(·|k)). (10)

255
Emergence of the induction head via top-down learning. We begin our study by only training256

to minimize the loss on trigger-output token predictions after their first occurrence. This should257

7

“Memory recall probes”: for target memory W∗ =
∑M

i=1 uie⊤
i , compute

R(Ŵ , W∗) = 1
M

M∑
i=1

1{i = arg max
j

u⊤
j Ŵ ei}

Natural learning “order”: W 2
OV first, W 2

KQ next, W 1
KQ last

Joint learning is faster
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Natural learning “order”: W 2
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Gradient steps for the bigram task

Theorem (B. et al., 2023, informal)
In a simplified setup, we can recover the desired associative memories with 3 sequential
gradient steps on the population loss: first on W 2

OV , then W 2
KQ, then W 1

KQ.

Key ideas
Attention is uniform at initialization =⇒ inputs are sums of embeddings
W 2

OV : correct output appears w.p. 1, while other tokens are noisy and cond. indep. of zT

W 1/2
KQ : correct associations lead to more focused attention

see also (Snell et al., 2021; Oymak et al., 2023)
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Distributional vs in-context associations

Simplified Architecture
One-layer attention:

One-layer transformer:

Remark:

1. When learning rates are same for attn and ff, ff learns faster than attn by factor 
2. If learning rates for attn is enlarged by     , attn needs a large sample                    to control noise

Decomposition of Reasoning Tasks
Distributional association: predictions only depending on the last token
● Example: preposition often precedes a noun starting with ‘the’, so [preposition] + ‘the’ is 

high-frequency in English, like ‘in’ + ‘the’

In-context reasoning: predictions from potentially distant tokens in the context
● Example: answer the country of a given city, like ‘Madrid’ + ‘Spain’, ‘Beijing’ + ‘China’, 

‘Tokyo’ + ‘Japan’

Transformer Architecture
Attention: self-attention with key, query, value matrices

MLPs: typically two-layer feed-forward network

LayerNorm: ignored in this work

Distributional Associations vs In-Context Reasoning:
A Study of Feed-forward and Attention Layers

Lei Chena, Joan Brunaa,b, Alberto Biettic

aCourant Institute bCenter for Data Science, NYU cFlatiron Institute

lc3909@nyu.edu

Introduction

Our Contributions
We aim to understand how distributional associations arise via
● investigating when Pythia models learn to solve reasoning tasks
● fine-grained study of training dynamics on simple data and architectures with reasoning 

improved after truncating weights
○ Two-layer transformer on noisy in-context recall
○ Linear associative memory with a common noisy token

We show fast-slow dynamics of learning as
● fast: feed-forward learns distributional association
● slow: attention learns in-context reasoning

Meanwhile, truncating MLPs improves in-context reasoning

Setup

Task: noisy in-context recall.
❖ (Pure) In-context recall ([Bietti et al. 2023]): for a fixed trigger token ‘q’ and any sampled token ‘a’, 

the model is expected to predict ‘a’ after seeing its first appearance:

… q a d k i e … q a … q a … q a … q a … q a …

❖ Noisy in-context recall: the training data is ‘poisoned’, where any sampled a is replaced by a 
fixed noise token z with probability P > 0:

… q a d k i e … q a … q z … q z … q z … q a …

Architecture: two-layer single-head transformer with MLPs on both layers

Pipeline: 
➔ train the full model on noisy data
➔ Test full/truncated models on noisy/pure data

⬇ Dropping MLP on the second layer perfectly forgets the noise z !!

P = 0.5

Theoretical Analysis

self-attention

attention output

feed-forward output

attend to previous 

    : sample size (of sentences)
    : length of sentences 
    : vocabulary size

Result 2: attention attends to in-context target and avoids noise

          : trigger token
          : correct token
          : noise token

Summary: how does two-layer transformer solve noisy in-context recall?

Result 1: feed-forward layers store the generic noise

Experiments

🔍 Observation 1: Distributional associations may distract LLMs away from in-context 
predictions, hurting performance on reasoning tasks.
🔍 Observation 2: Truncation (LASER, [Sharma et al. 2024]) on MLP weights in LLMs 
helps inhibit predictions of distributional associations, thus improving in-context 
predictions.

Task 1: indirect object identification (IOI)
Different from [Wang el al. 2022],  we would like to consider whether a model proposes 
an output beyond the input x:

x = ``When Mary and John went to a store, John gave a drink to ___``

GPT-2 Small has the top 4 predictions: Mary, them, the, John

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

is the kept proportion of matrix rank

Task 2: factual recall
x = ``Madrid is located in ___``

Pythia-1B has the top 5 predictions: the, Spain, a, southern, northern

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

Task 3: GSM8K
⬇ Truncating MLPs (LASER) improves reasoning performances in few-shot CoT

When do LMs learn to solve these reasoning tasks?
🔍 Observation 3: During pre-training, distributional associations are learned earlier 
than complex reasoning.

⬇ The behavior of the Pythia models on the IOI and factual recall tasks during their 
pre-training process displays several phases

❏ Initialization: all tokens have similar logits
❏ Between 10 and 1000 steps: the models consistently output ``the''.  They cannot 

solve IOI task at all, as long as they have almost the same output for [IO] and [S]. 
After 500 steps, [IO] starts the growth towards one of the top predictions.

❏ After 2000 steps: Pythia starts to be able to solve IOI task by preferring [IO] than 
[S] and ``the''. Meanwhile, the benefit of LASER appears as enhancing the leading 
position of [IO].

[Sharma et al.] The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction.

[Wang et al.] Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small.                      ICLR 2023
[Bietti et al.] Birth of a Transformer: A Memory Viewpoint.                                                                                  NeurIPS 2023
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Figure 2: Left: average probability of tokens [IO], [S] and “the” in IOI task in the prediction by
Pythia-1B along training. Right: average probability of tokens “Spain” and “the” in a factual task
predicted by Pythia-1B along training, with input as “Madrid is located in”. In both tasks, the full
model learns to predict “the” with high probability starting from →10 steps, and then learns to solve
the tasks. LASER boosts the probability of correct answers against “the” in both tasks: the average
probability ratio of correct answers against “the” improves from 2.3↑ to 12.3↑ (in IOI) and from
0.16↑ to 11.3↑ (in factual) at 14K steps.

learned later. Conceptually, if LLMs are able to write natural text or have been trained sufficiently
with natural texts, it is not surprising for the model to predict “the” with high probability after seeing
“to”. This is verified in Appendix B.1.

Implications from experiments. We summarize our main experimental observations of this section.
Observation 1. Global associations may “distract” LLMs away from in-context predictions, hurting
performance on reasoning tasks.
Observation 2. LASER on MLP weights in LLMs helps inhibit predictions of global associations,
thus improving in-context predictions.
Observation 3. During pre-training, global associations are learned earlier than complex reasoning.

These observations raise the following questions, which we investigate in the next sections.

Q1: Why are global associations learned before than complex reasoning?

Q2: Are feed-forward layers responsible of learning global associations?

3 TWO-LAYER TRANSFORMER ON NOISY IN-CONTEXT RECALL

In this section, we consider two-layer transformers on an in-context recall task with added global
noise, which allows us to study some key properties observed in Section 2 in a controlled setting. We
empirically show how transformers solve this task by storing the noise in feed-forward layers, while
attention implements the in-context mechanism. We then provide theory showing why feed-forward
layers are more likely to store the global noise association, by studying gradients at initialization.

Data and task. The data model we consider is similar to Bietti et al. (2023), with additional noise.
Consider a vocabulary V = {1, 2, . . . , N, N + 1}. The token N + 1 is the noise token. We fix a
trigger token q ↓ [N ], which governs in-context recall, and a context length T . Each sequence of
tokens z1:T = [z1, z2, . . . , zT ] is generated as follows:

i. Sample a correct output token ȳ uniformly in [N ].
ii. Sample z1:T→1 according to the following Markov process (ωu, ωb are distributions on [N ]

defined later): z1 → ωu(·), and

zt+1|zt →
{
ωb(·|zt), if zt ↔= q,

pω,ȳ(·), otherwise,
pω,ȳ(x) =





1 ↗ ε, if x = ȳ,

ε, if x = N + 1,

0, otherwise.

5

Distributional associations (e.g., common bigrams like “in the”) are learned much
faster than in-context reasoning, tend to be stored in late MLPs:

▶ “Madrid is located in” → {the, Spain} on Pythia-1B
▶ Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context

We study this on simple induction head task + noisy bigram token z (“the”):

Simplified Architecture
One-layer attention:
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Result 2: attention attends to in-context target and avoids noise

          : trigger token
          : correct token
          : noise token

Summary: how does two-layer transformer solve noisy in-context recall?

Result 1: feed-forward layers store the generic noise

Experiments

🔍 Observation 1: Distributional associations may distract LLMs away from in-context 
predictions, hurting performance on reasoning tasks.
🔍 Observation 2: Truncation (LASER, [Sharma et al. 2024]) on MLP weights in LLMs 
helps inhibit predictions of distributional associations, thus improving in-context 
predictions.

Task 1: indirect object identification (IOI)
Different from [Wang el al. 2022],  we would like to consider whether a model proposes 
an output beyond the input x:

x = ``When Mary and John went to a store, John gave a drink to ___``

GPT-2 Small has the top 4 predictions: Mary, them, the, John

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

is the kept proportion of matrix rank

Task 2: factual recall
x = ``Madrid is located in ___``

Pythia-1B has the top 5 predictions: the, Spain, a, southern, northern

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

Task 3: GSM8K
⬇ Truncating MLPs (LASER) improves reasoning performances in few-shot CoT

When do LMs learn to solve these reasoning tasks?
🔍 Observation 3: During pre-training, distributional associations are learned earlier 
than complex reasoning.

⬇ The behavior of the Pythia models on the IOI and factual recall tasks during their 
pre-training process displays several phases

❏ Initialization: all tokens have similar logits
❏ Between 10 and 1000 steps: the models consistently output ``the''.  They cannot 

solve IOI task at all, as long as they have almost the same output for [IO] and [S]. 
After 500 steps, [IO] starts the growth towards one of the top predictions.

❏ After 2000 steps: Pythia starts to be able to solve IOI task by preferring [IO] than 
[S] and ``the''. Meanwhile, the benefit of LASER appears as enhancing the leading 
position of [IO].

[Sharma et al.] The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction.
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Simplified Architecture
One-layer attention:

One-layer transformer:

Remark:

1. When learning rates are same for attn and ff, ff learns faster than attn by factor 
2. If learning rates for attn is enlarged by     , attn needs a large sample                    to control noise

Decomposition of Reasoning Tasks
Distributional association: predictions only depending on the last token
● Example: preposition often precedes a noun starting with ‘the’, so [preposition] + ‘the’ is 

high-frequency in English, like ‘in’ + ‘the’

In-context reasoning: predictions from potentially distant tokens in the context
● Example: answer the country of a given city, like ‘Madrid’ + ‘Spain’, ‘Beijing’ + ‘China’, 

‘Tokyo’ + ‘Japan’

Transformer Architecture
Attention: self-attention with key, query, value matrices

MLPs: typically two-layer feed-forward network

LayerNorm: ignored in this work
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● slow: attention learns in-context reasoning
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❖ Noisy in-context recall: the training data is ‘poisoned’, where any sampled a is replaced by a 
fixed noise token z with probability P > 0:
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Architecture: two-layer single-head transformer with MLPs on both layers

Pipeline: 
➔ train the full model on noisy data
➔ Test full/truncated models on noisy/pure data

⬇ Dropping MLP on the second layer perfectly forgets the noise z !!

P = 0.5
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Result 2: attention attends to in-context target and avoids noise

          : trigger token
          : correct token
          : noise token

Summary: how does two-layer transformer solve noisy in-context recall?

Result 1: feed-forward layers store the generic noise

Experiments

🔍 Observation 1: Distributional associations may distract LLMs away from in-context 
predictions, hurting performance on reasoning tasks.
🔍 Observation 2: Truncation (LASER, [Sharma et al. 2024]) on MLP weights in LLMs 
helps inhibit predictions of distributional associations, thus improving in-context 
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Task 1: indirect object identification (IOI)
Different from [Wang el al. 2022],  we would like to consider whether a model proposes 
an output beyond the input x:
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GPT-2 Small has the top 4 predictions: Mary, them, the, John

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

is the kept proportion of matrix rank

Task 2: factual recall
x = ``Madrid is located in ___``

Pythia-1B has the top 5 predictions: the, Spain, a, southern, northern

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

Task 3: GSM8K
⬇ Truncating MLPs (LASER) improves reasoning performances in few-shot CoT

When do LMs learn to solve these reasoning tasks?
🔍 Observation 3: During pre-training, distributional associations are learned earlier 
than complex reasoning.

⬇ The behavior of the Pythia models on the IOI and factual recall tasks during their 
pre-training process displays several phases

❏ Initialization: all tokens have similar logits
❏ Between 10 and 1000 steps: the models consistently output ``the''.  They cannot 

solve IOI task at all, as long as they have almost the same output for [IO] and [S]. 
After 500 steps, [IO] starts the growth towards one of the top predictions.

❏ After 2000 steps: Pythia starts to be able to solve IOI task by preferring [IO] than 
[S] and ``the''. Meanwhile, the benefit of LASER appears as enhancing the leading 
position of [IO].
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Figure 2: Left: average probability of tokens [IO], [S] and “the” in IOI task in the prediction by
Pythia-1B along training. Right: average probability of tokens “Spain” and “the” in a factual task
predicted by Pythia-1B along training, with input as “Madrid is located in”. In both tasks, the full
model learns to predict “the” with high probability starting from →10 steps, and then learns to solve
the tasks. LASER boosts the probability of correct answers against “the” in both tasks: the average
probability ratio of correct answers against “the” improves from 2.3↑ to 12.3↑ (in IOI) and from
0.16↑ to 11.3↑ (in factual) at 14K steps.

learned later. Conceptually, if LLMs are able to write natural text or have been trained sufficiently
with natural texts, it is not surprising for the model to predict “the” with high probability after seeing
“to”. This is verified in Appendix B.1.

Implications from experiments. We summarize our main experimental observations of this section.
Observation 1. Global associations may “distract” LLMs away from in-context predictions, hurting
performance on reasoning tasks.
Observation 2. LASER on MLP weights in LLMs helps inhibit predictions of global associations,
thus improving in-context predictions.
Observation 3. During pre-training, global associations are learned earlier than complex reasoning.

These observations raise the following questions, which we investigate in the next sections.

Q1: Why are global associations learned before than complex reasoning?

Q2: Are feed-forward layers responsible of learning global associations?

3 TWO-LAYER TRANSFORMER ON NOISY IN-CONTEXT RECALL

In this section, we consider two-layer transformers on an in-context recall task with added global
noise, which allows us to study some key properties observed in Section 2 in a controlled setting. We
empirically show how transformers solve this task by storing the noise in feed-forward layers, while
attention implements the in-context mechanism. We then provide theory showing why feed-forward
layers are more likely to store the global noise association, by studying gradients at initialization.

Data and task. The data model we consider is similar to Bietti et al. (2023), with additional noise.
Consider a vocabulary V = {1, 2, . . . , N, N + 1}. The token N + 1 is the noise token. We fix a
trigger token q ↓ [N ], which governs in-context recall, and a context length T . Each sequence of
tokens z1:T = [z1, z2, . . . , zT ] is generated as follows:

i. Sample a correct output token ȳ uniformly in [N ].
ii. Sample z1:T→1 according to the following Markov process (ωu, ωb are distributions on [N ]

defined later): z1 → ωu(·), and

zt+1|zt →
{
ωb(·|zt), if zt ↔= q,

pω,ȳ(·), otherwise,
pω,ȳ(x) =





1 ↗ ε, if x = ȳ,

ε, if x = N + 1,

0, otherwise.

5

Distributional associations (e.g., common bigrams like “in the”) are learned much
faster than in-context reasoning, tend to be stored in late MLPs:

▶ “Madrid is located in” → {the, Spain} on Pythia-1B

▶ Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context
We study this on simple induction head task + noisy bigram token z (“the”):

Simplified Architecture
One-layer attention:

One-layer transformer:

Remark:

1. When learning rates are same for attn and ff, ff learns faster than attn by factor 
2. If learning rates for attn is enlarged by     , attn needs a large sample                    to control noise

Decomposition of Reasoning Tasks
Distributional association: predictions only depending on the last token
● Example: preposition often precedes a noun starting with ‘the’, so [preposition] + ‘the’ is 

high-frequency in English, like ‘in’ + ‘the’

In-context reasoning: predictions from potentially distant tokens in the context
● Example: answer the country of a given city, like ‘Madrid’ + ‘Spain’, ‘Beijing’ + ‘China’, 

‘Tokyo’ + ‘Japan’

Transformer Architecture
Attention: self-attention with key, query, value matrices

MLPs: typically two-layer feed-forward network

LayerNorm: ignored in this work
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Introduction

Our Contributions
We aim to understand how distributional associations arise via
● investigating when Pythia models learn to solve reasoning tasks
● fine-grained study of training dynamics on simple data and architectures with reasoning 

improved after truncating weights
○ Two-layer transformer on noisy in-context recall
○ Linear associative memory with a common noisy token

We show fast-slow dynamics of learning as
● fast: feed-forward learns distributional association
● slow: attention learns in-context reasoning

Meanwhile, truncating MLPs improves in-context reasoning

Setup

Task: noisy in-context recall.
❖ (Pure) In-context recall ([Bietti et al. 2023]): for a fixed trigger token ‘q’ and any sampled token ‘a’, 

the model is expected to predict ‘a’ after seeing its first appearance:

… q a d k i e … q a … q a … q a … q a … q a …

❖ Noisy in-context recall: the training data is ‘poisoned’, where any sampled a is replaced by a 
fixed noise token z with probability P > 0:

… q a d k i e … q a … q z … q z … q z … q a …

Architecture: two-layer single-head transformer with MLPs on both layers

Pipeline: 
➔ train the full model on noisy data
➔ Test full/truncated models on noisy/pure data

⬇ Dropping MLP on the second layer perfectly forgets the noise z !!

P = 0.5

Theoretical Analysis

self-attention

attention output

feed-forward output

attend to previous 

    : sample size (of sentences)
    : length of sentences 
    : vocabulary size

Result 2: attention attends to in-context target and avoids noise

          : trigger token
          : correct token
          : noise token

Summary: how does two-layer transformer solve noisy in-context recall?

Result 1: feed-forward layers store the generic noise

Experiments

🔍 Observation 1: Distributional associations may distract LLMs away from in-context 
predictions, hurting performance on reasoning tasks.
🔍 Observation 2: Truncation (LASER, [Sharma et al. 2024]) on MLP weights in LLMs 
helps inhibit predictions of distributional associations, thus improving in-context 
predictions.

Task 1: indirect object identification (IOI)
Different from [Wang el al. 2022],  we would like to consider whether a model proposes 
an output beyond the input x:

x = ``When Mary and John went to a store, John gave a drink to ___``

GPT-2 Small has the top 4 predictions: Mary, them, the, John

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

is the kept proportion of matrix rank

Task 2: factual recall
x = ``Madrid is located in ___``

Pythia-1B has the top 5 predictions: the, Spain, a, southern, northern

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

Task 3: GSM8K
⬇ Truncating MLPs (LASER) improves reasoning performances in few-shot CoT

When do LMs learn to solve these reasoning tasks?
🔍 Observation 3: During pre-training, distributional associations are learned earlier 
than complex reasoning.

⬇ The behavior of the Pythia models on the IOI and factual recall tasks during their 
pre-training process displays several phases

❏ Initialization: all tokens have similar logits
❏ Between 10 and 1000 steps: the models consistently output ``the''.  They cannot 

solve IOI task at all, as long as they have almost the same output for [IO] and [S]. 
After 500 steps, [IO] starts the growth towards one of the top predictions.

❏ After 2000 steps: Pythia starts to be able to solve IOI task by preferring [IO] than 
[S] and ``the''. Meanwhile, the benefit of LASER appears as enhancing the leading 
position of [IO].

[Sharma et al.] The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction.

[Wang et al.] Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small.                      ICLR 2023
[Bietti et al.] Birth of a Transformer: A Memory Viewpoint.                                                                                  NeurIPS 2023
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● fast: feed-forward learns distributional association
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➔ Test full/truncated models on noisy/pure data

⬇ Dropping MLP on the second layer perfectly forgets the noise z !!

P = 0.5
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Result 2: attention attends to in-context target and avoids noise

          : trigger token
          : correct token
          : noise token

Summary: how does two-layer transformer solve noisy in-context recall?

Result 1: feed-forward layers store the generic noise

Experiments

🔍 Observation 1: Distributional associations may distract LLMs away from in-context 
predictions, hurting performance on reasoning tasks.
🔍 Observation 2: Truncation (LASER, [Sharma et al. 2024]) on MLP weights in LLMs 
helps inhibit predictions of distributional associations, thus improving in-context 
predictions.

Task 1: indirect object identification (IOI)
Different from [Wang el al. 2022],  we would like to consider whether a model proposes 
an output beyond the input x:

x = ``When Mary and John went to a store, John gave a drink to ___``

GPT-2 Small has the top 4 predictions: Mary, them, the, John

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

is the kept proportion of matrix rank

Task 2: factual recall
x = ``Madrid is located in ___``

Pythia-1B has the top 5 predictions: the, Spain, a, southern, northern

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

Task 3: GSM8K
⬇ Truncating MLPs (LASER) improves reasoning performances in few-shot CoT

When do LMs learn to solve these reasoning tasks?
🔍 Observation 3: During pre-training, distributional associations are learned earlier 
than complex reasoning.

⬇ The behavior of the Pythia models on the IOI and factual recall tasks during their 
pre-training process displays several phases

❏ Initialization: all tokens have similar logits
❏ Between 10 and 1000 steps: the models consistently output ``the''.  They cannot 

solve IOI task at all, as long as they have almost the same output for [IO] and [S]. 
After 500 steps, [IO] starts the growth towards one of the top predictions.

❏ After 2000 steps: Pythia starts to be able to solve IOI task by preferring [IO] than 
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Figure 2: Left: average probability of tokens [IO], [S] and “the” in IOI task in the prediction by
Pythia-1B along training. Right: average probability of tokens “Spain” and “the” in a factual task
predicted by Pythia-1B along training, with input as “Madrid is located in”. In both tasks, the full
model learns to predict “the” with high probability starting from →10 steps, and then learns to solve
the tasks. LASER boosts the probability of correct answers against “the” in both tasks: the average
probability ratio of correct answers against “the” improves from 2.3↑ to 12.3↑ (in IOI) and from
0.16↑ to 11.3↑ (in factual) at 14K steps.

learned later. Conceptually, if LLMs are able to write natural text or have been trained sufficiently
with natural texts, it is not surprising for the model to predict “the” with high probability after seeing
“to”. This is verified in Appendix B.1.

Implications from experiments. We summarize our main experimental observations of this section.
Observation 1. Global associations may “distract” LLMs away from in-context predictions, hurting
performance on reasoning tasks.
Observation 2. LASER on MLP weights in LLMs helps inhibit predictions of global associations,
thus improving in-context predictions.
Observation 3. During pre-training, global associations are learned earlier than complex reasoning.

These observations raise the following questions, which we investigate in the next sections.

Q1: Why are global associations learned before than complex reasoning?

Q2: Are feed-forward layers responsible of learning global associations?

3 TWO-LAYER TRANSFORMER ON NOISY IN-CONTEXT RECALL

In this section, we consider two-layer transformers on an in-context recall task with added global
noise, which allows us to study some key properties observed in Section 2 in a controlled setting. We
empirically show how transformers solve this task by storing the noise in feed-forward layers, while
attention implements the in-context mechanism. We then provide theory showing why feed-forward
layers are more likely to store the global noise association, by studying gradients at initialization.

Data and task. The data model we consider is similar to Bietti et al. (2023), with additional noise.
Consider a vocabulary V = {1, 2, . . . , N, N + 1}. The token N + 1 is the noise token. We fix a
trigger token q ↓ [N ], which governs in-context recall, and a context length T . Each sequence of
tokens z1:T = [z1, z2, . . . , zT ] is generated as follows:

i. Sample a correct output token ȳ uniformly in [N ].
ii. Sample z1:T→1 according to the following Markov process (ωu, ωb are distributions on [N ]

defined later): z1 → ωu(·), and

zt+1|zt →
{
ωb(·|zt), if zt ↔= q,

pω,ȳ(·), otherwise,
pω,ȳ(x) =





1 ↗ ε, if x = ȳ,

ε, if x = N + 1,

0, otherwise.
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Distributional associations (e.g., common bigrams like “in the”) are learned much
faster than in-context reasoning, tend to be stored in late MLPs:

▶ “Madrid is located in” → {the, Spain} on Pythia-1B
▶ Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context

We study this on simple induction head task + noisy bigram token z (“the”):
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One-layer attention:
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Remark:

1. When learning rates are same for attn and ff, ff learns faster than attn by factor 
2. If learning rates for attn is enlarged by     , attn needs a large sample                    to control noise
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Distributional association: predictions only depending on the last token
● Example: preposition often precedes a noun starting with ‘the’, so [preposition] + ‘the’ is 

high-frequency in English, like ‘in’ + ‘the’

In-context reasoning: predictions from potentially distant tokens in the context
● Example: answer the country of a given city, like ‘Madrid’ + ‘Spain’, ‘Beijing’ + ‘China’, 

‘Tokyo’ + ‘Japan’
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the model is expected to predict ‘a’ after seeing its first appearance:
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fixed noise token z with probability P > 0:
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Result 2: attention attends to in-context target and avoids noise

          : trigger token
          : correct token
          : noise token

Summary: how does two-layer transformer solve noisy in-context recall?

Result 1: feed-forward layers store the generic noise

Experiments
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predictions, hurting performance on reasoning tasks.
🔍 Observation 2: Truncation (LASER, [Sharma et al. 2024]) on MLP weights in LLMs 
helps inhibit predictions of distributional associations, thus improving in-context 
predictions.

Task 1: indirect object identification (IOI)
Different from [Wang el al. 2022],  we would like to consider whether a model proposes 
an output beyond the input x:
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is the kept proportion of matrix rank

Task 2: factual recall
x = ``Madrid is located in ___``

Pythia-1B has the top 5 predictions: the, Spain, a, southern, northern

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

Task 3: GSM8K
⬇ Truncating MLPs (LASER) improves reasoning performances in few-shot CoT

When do LMs learn to solve these reasoning tasks?
🔍 Observation 3: During pre-training, distributional associations are learned earlier 
than complex reasoning.

⬇ The behavior of the Pythia models on the IOI and factual recall tasks during their 
pre-training process displays several phases

❏ Initialization: all tokens have similar logits
❏ Between 10 and 1000 steps: the models consistently output ``the''.  They cannot 

solve IOI task at all, as long as they have almost the same output for [IO] and [S]. 
After 500 steps, [IO] starts the growth towards one of the top predictions.

❏ After 2000 steps: Pythia starts to be able to solve IOI task by preferring [IO] than 
[S] and ``the''. Meanwhile, the benefit of LASER appears as enhancing the leading 
position of [IO].
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Remark:

1. When learning rates are same for attn and ff, ff learns faster than attn by factor 
2. If learning rates for attn is enlarged by     , attn needs a large sample                    to control noise

Decomposition of Reasoning Tasks
Distributional association: predictions only depending on the last token
● Example: preposition often precedes a noun starting with ‘the’, so [preposition] + ‘the’ is 

high-frequency in English, like ‘in’ + ‘the’

In-context reasoning: predictions from potentially distant tokens in the context
● Example: answer the country of a given city, like ‘Madrid’ + ‘Spain’, ‘Beijing’ + ‘China’, 

‘Tokyo’ + ‘Japan’

Transformer Architecture
Attention: self-attention with key, query, value matrices

MLPs: typically two-layer feed-forward network

LayerNorm: ignored in this work
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Our Contributions
We aim to understand how distributional associations arise via
● investigating when Pythia models learn to solve reasoning tasks
● fine-grained study of training dynamics on simple data and architectures with reasoning 

improved after truncating weights
○ Two-layer transformer on noisy in-context recall
○ Linear associative memory with a common noisy token

We show fast-slow dynamics of learning as
● fast: feed-forward learns distributional association
● slow: attention learns in-context reasoning

Meanwhile, truncating MLPs improves in-context reasoning
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Task: noisy in-context recall.
❖ (Pure) In-context recall ([Bietti et al. 2023]): for a fixed trigger token ‘q’ and any sampled token ‘a’, 

the model is expected to predict ‘a’ after seeing its first appearance:

… q a d k i e … q a … q a … q a … q a … q a …

❖ Noisy in-context recall: the training data is ‘poisoned’, where any sampled a is replaced by a 
fixed noise token z with probability P > 0:

… q a d k i e … q a … q z … q z … q z … q a …

Architecture: two-layer single-head transformer with MLPs on both layers

Pipeline: 
➔ train the full model on noisy data
➔ Test full/truncated models on noisy/pure data

⬇ Dropping MLP on the second layer perfectly forgets the noise z !!

P = 0.5

Theoretical Analysis

self-attention

attention output

feed-forward output

attend to previous 

    : sample size (of sentences)
    : length of sentences 
    : vocabulary size

Result 2: attention attends to in-context target and avoids noise

          : trigger token
          : correct token
          : noise token

Summary: how does two-layer transformer solve noisy in-context recall?

Result 1: feed-forward layers store the generic noise

Experiments

🔍 Observation 1: Distributional associations may distract LLMs away from in-context 
predictions, hurting performance on reasoning tasks.
🔍 Observation 2: Truncation (LASER, [Sharma et al. 2024]) on MLP weights in LLMs 
helps inhibit predictions of distributional associations, thus improving in-context 
predictions.

Task 1: indirect object identification (IOI)
Different from [Wang el al. 2022],  we would like to consider whether a model proposes 
an output beyond the input x:

x = ``When Mary and John went to a store, John gave a drink to ___``

GPT-2 Small has the top 4 predictions: Mary, them, the, John

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

is the kept proportion of matrix rank

Task 2: factual recall
x = ``Madrid is located in ___``

Pythia-1B has the top 5 predictions: the, Spain, a, southern, northern

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

Task 3: GSM8K
⬇ Truncating MLPs (LASER) improves reasoning performances in few-shot CoT

When do LMs learn to solve these reasoning tasks?
🔍 Observation 3: During pre-training, distributional associations are learned earlier 
than complex reasoning.

⬇ The behavior of the Pythia models on the IOI and factual recall tasks during their 
pre-training process displays several phases

❏ Initialization: all tokens have similar logits
❏ Between 10 and 1000 steps: the models consistently output ``the''.  They cannot 

solve IOI task at all, as long as they have almost the same output for [IO] and [S]. 
After 500 steps, [IO] starts the growth towards one of the top predictions.

❏ After 2000 steps: Pythia starts to be able to solve IOI task by preferring [IO] than 
[S] and ``the''. Meanwhile, the benefit of LASER appears as enhancing the leading 
position of [IO].
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Figure 2: Left: average probability of tokens [IO], [S] and “the” in IOI task in the prediction by
Pythia-1B along training. Right: average probability of tokens “Spain” and “the” in a factual task
predicted by Pythia-1B along training, with input as “Madrid is located in”. In both tasks, the full
model learns to predict “the” with high probability starting from →10 steps, and then learns to solve
the tasks. LASER boosts the probability of correct answers against “the” in both tasks: the average
probability ratio of correct answers against “the” improves from 2.3↑ to 12.3↑ (in IOI) and from
0.16↑ to 11.3↑ (in factual) at 14K steps.

learned later. Conceptually, if LLMs are able to write natural text or have been trained sufficiently
with natural texts, it is not surprising for the model to predict “the” with high probability after seeing
“to”. This is verified in Appendix B.1.

Implications from experiments. We summarize our main experimental observations of this section.
Observation 1. Global associations may “distract” LLMs away from in-context predictions, hurting
performance on reasoning tasks.
Observation 2. LASER on MLP weights in LLMs helps inhibit predictions of global associations,
thus improving in-context predictions.
Observation 3. During pre-training, global associations are learned earlier than complex reasoning.

These observations raise the following questions, which we investigate in the next sections.

Q1: Why are global associations learned before than complex reasoning?

Q2: Are feed-forward layers responsible of learning global associations?

3 TWO-LAYER TRANSFORMER ON NOISY IN-CONTEXT RECALL

In this section, we consider two-layer transformers on an in-context recall task with added global
noise, which allows us to study some key properties observed in Section 2 in a controlled setting. We
empirically show how transformers solve this task by storing the noise in feed-forward layers, while
attention implements the in-context mechanism. We then provide theory showing why feed-forward
layers are more likely to store the global noise association, by studying gradients at initialization.

Data and task. The data model we consider is similar to Bietti et al. (2023), with additional noise.
Consider a vocabulary V = {1, 2, . . . , N, N + 1}. The token N + 1 is the noise token. We fix a
trigger token q ↓ [N ], which governs in-context recall, and a context length T . Each sequence of
tokens z1:T = [z1, z2, . . . , zT ] is generated as follows:

i. Sample a correct output token ȳ uniformly in [N ].
ii. Sample z1:T→1 according to the following Markov process (ωu, ωb are distributions on [N ]

defined later): z1 → ωu(·), and

zt+1|zt →
{
ωb(·|zt), if zt ↔= q,

pω,ȳ(·), otherwise,
pω,ȳ(x) =





1 ↗ ε, if x = ȳ,

ε, if x = N + 1,

0, otherwise.

5

Distributional associations (e.g., common bigrams like “in the”) are learned much
faster than in-context reasoning, tend to be stored in late MLPs:

▶ “Madrid is located in” → {the, Spain} on Pythia-1B
▶ Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context

We study this on simple induction head task + noisy bigram token z (“the”):

Simplified Architecture
One-layer attention:

One-layer transformer:

Remark:

1. When learning rates are same for attn and ff, ff learns faster than attn by factor 
2. If learning rates for attn is enlarged by     , attn needs a large sample                    to control noise

Decomposition of Reasoning Tasks
Distributional association: predictions only depending on the last token
● Example: preposition often precedes a noun starting with ‘the’, so [preposition] + ‘the’ is 

high-frequency in English, like ‘in’ + ‘the’

In-context reasoning: predictions from potentially distant tokens in the context
● Example: answer the country of a given city, like ‘Madrid’ + ‘Spain’, ‘Beijing’ + ‘China’, 

‘Tokyo’ + ‘Japan’

Transformer Architecture
Attention: self-attention with key, query, value matrices

MLPs: typically two-layer feed-forward network

LayerNorm: ignored in this work
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Introduction

Our Contributions
We aim to understand how distributional associations arise via
● investigating when Pythia models learn to solve reasoning tasks
● fine-grained study of training dynamics on simple data and architectures with reasoning 

improved after truncating weights
○ Two-layer transformer on noisy in-context recall
○ Linear associative memory with a common noisy token

We show fast-slow dynamics of learning as
● fast: feed-forward learns distributional association
● slow: attention learns in-context reasoning

Meanwhile, truncating MLPs improves in-context reasoning

Setup

Task: noisy in-context recall.
❖ (Pure) In-context recall ([Bietti et al. 2023]): for a fixed trigger token ‘q’ and any sampled token ‘a’, 

the model is expected to predict ‘a’ after seeing its first appearance:

… q a d k i e … q a … q a … q a … q a … q a …

❖ Noisy in-context recall: the training data is ‘poisoned’, where any sampled a is replaced by a 
fixed noise token z with probability P > 0:

… q a d k i e … q a … q z … q z … q z … q a …

Architecture: two-layer single-head transformer with MLPs on both layers

Pipeline: 
➔ train the full model on noisy data
➔ Test full/truncated models on noisy/pure data

⬇ Dropping MLP on the second layer perfectly forgets the noise z !!

P = 0.5

Theoretical Analysis

self-attention

attention output

feed-forward output

attend to previous 

    : sample size (of sentences)
    : length of sentences 
    : vocabulary size

Result 2: attention attends to in-context target and avoids noise

          : trigger token
          : correct token
          : noise token

Summary: how does two-layer transformer solve noisy in-context recall?

Result 1: feed-forward layers store the generic noise

Experiments

🔍 Observation 1: Distributional associations may distract LLMs away from in-context 
predictions, hurting performance on reasoning tasks.
🔍 Observation 2: Truncation (LASER, [Sharma et al. 2024]) on MLP weights in LLMs 
helps inhibit predictions of distributional associations, thus improving in-context 
predictions.

Task 1: indirect object identification (IOI)
Different from [Wang el al. 2022],  we would like to consider whether a model proposes 
an output beyond the input x:

x = ``When Mary and John went to a store, John gave a drink to ___``

GPT-2 Small has the top 4 predictions: Mary, them, the, John

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

is the kept proportion of matrix rank

Task 2: factual recall
x = ``Madrid is located in ___``

Pythia-1B has the top 5 predictions: the, Spain, a, southern, northern

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

Task 3: GSM8K
⬇ Truncating MLPs (LASER) improves reasoning performances in few-shot CoT

When do LMs learn to solve these reasoning tasks?
🔍 Observation 3: During pre-training, distributional associations are learned earlier 
than complex reasoning.

⬇ The behavior of the Pythia models on the IOI and factual recall tasks during their 
pre-training process displays several phases

❏ Initialization: all tokens have similar logits
❏ Between 10 and 1000 steps: the models consistently output ``the''.  They cannot 

solve IOI task at all, as long as they have almost the same output for [IO] and [S]. 
After 500 steps, [IO] starts the growth towards one of the top predictions.

❏ After 2000 steps: Pythia starts to be able to solve IOI task by preferring [IO] than 
[S] and ``the''. Meanwhile, the benefit of LASER appears as enhancing the leading 
position of [IO].

[Sharma et al.] The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction.

[Wang et al.] Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small.                      ICLR 2023
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⬇ Dropping MLP on the second layer perfectly forgets the noise z !!
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Result 2: attention attends to in-context target and avoids noise

          : trigger token
          : correct token
          : noise token

Summary: how does two-layer transformer solve noisy in-context recall?

Result 1: feed-forward layers store the generic noise

Experiments

🔍 Observation 1: Distributional associations may distract LLMs away from in-context 
predictions, hurting performance on reasoning tasks.
🔍 Observation 2: Truncation (LASER, [Sharma et al. 2024]) on MLP weights in LLMs 
helps inhibit predictions of distributional associations, thus improving in-context 
predictions.

Task 1: indirect object identification (IOI)
Different from [Wang el al. 2022],  we would like to consider whether a model proposes 
an output beyond the input x:

x = ``When Mary and John went to a store, John gave a drink to ___``

GPT-2 Small has the top 4 predictions: Mary, them, the, John

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

is the kept proportion of matrix rank

Task 2: factual recall
x = ``Madrid is located in ___``

Pythia-1B has the top 5 predictions: the, Spain, a, southern, northern

⬇ Low-rank truncation on some layers’ MLP reduces P(‘the’|x) !!

Task 3: GSM8K
⬇ Truncating MLPs (LASER) improves reasoning performances in few-shot CoT

When do LMs learn to solve these reasoning tasks?
🔍 Observation 3: During pre-training, distributional associations are learned earlier 
than complex reasoning.

⬇ The behavior of the Pythia models on the IOI and factual recall tasks during their 
pre-training process displays several phases

❏ Initialization: all tokens have similar logits
❏ Between 10 and 1000 steps: the models consistently output ``the''.  They cannot 

solve IOI task at all, as long as they have almost the same output for [IO] and [S]. 
After 500 steps, [IO] starts the growth towards one of the top predictions.

❏ After 2000 steps: Pythia starts to be able to solve IOI task by preferring [IO] than 
[S] and ``the''. Meanwhile, the benefit of LASER appears as enhancing the leading 
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Figure 2: Left: average probability of tokens [IO], [S] and “the” in IOI task in the prediction by
Pythia-1B along training. Right: average probability of tokens “Spain” and “the” in a factual task
predicted by Pythia-1B along training, with input as “Madrid is located in”. In both tasks, the full
model learns to predict “the” with high probability starting from →10 steps, and then learns to solve
the tasks. LASER boosts the probability of correct answers against “the” in both tasks: the average
probability ratio of correct answers against “the” improves from 2.3↑ to 12.3↑ (in IOI) and from
0.16↑ to 11.3↑ (in factual) at 14K steps.

learned later. Conceptually, if LLMs are able to write natural text or have been trained sufficiently
with natural texts, it is not surprising for the model to predict “the” with high probability after seeing
“to”. This is verified in Appendix B.1.

Implications from experiments. We summarize our main experimental observations of this section.
Observation 1. Global associations may “distract” LLMs away from in-context predictions, hurting
performance on reasoning tasks.
Observation 2. LASER on MLP weights in LLMs helps inhibit predictions of global associations,
thus improving in-context predictions.
Observation 3. During pre-training, global associations are learned earlier than complex reasoning.

These observations raise the following questions, which we investigate in the next sections.

Q1: Why are global associations learned before than complex reasoning?

Q2: Are feed-forward layers responsible of learning global associations?

3 TWO-LAYER TRANSFORMER ON NOISY IN-CONTEXT RECALL

In this section, we consider two-layer transformers on an in-context recall task with added global
noise, which allows us to study some key properties observed in Section 2 in a controlled setting. We
empirically show how transformers solve this task by storing the noise in feed-forward layers, while
attention implements the in-context mechanism. We then provide theory showing why feed-forward
layers are more likely to store the global noise association, by studying gradients at initialization.

Data and task. The data model we consider is similar to Bietti et al. (2023), with additional noise.
Consider a vocabulary V = {1, 2, . . . , N, N + 1}. The token N + 1 is the noise token. We fix a
trigger token q ↓ [N ], which governs in-context recall, and a context length T . Each sequence of
tokens z1:T = [z1, z2, . . . , zT ] is generated as follows:

i. Sample a correct output token ȳ uniformly in [N ].
ii. Sample z1:T→1 according to the following Markov process (ωu, ωb are distributions on [N ]

defined later): z1 → ωu(·), and

zt+1|zt →
{
ωb(·|zt), if zt ↔= q,

pω,ȳ(·), otherwise,
pω,ȳ(x) =





1 ↗ ε, if x = ȳ,

ε, if x = N + 1,

0, otherwise.
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Distributional associations (e.g., common bigrams like “in the”) are learned much
faster than in-context reasoning, tend to be stored in late MLPs:

▶ “Madrid is located in” → {the, Spain} on Pythia-1B
▶ Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context

We study this on simple induction head task + noisy bigram token z (“the”):
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One-layer attention:
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1. When learning rates are same for attn and ff, ff learns faster than attn by factor 
2. If learning rates for attn is enlarged by     , attn needs a large sample                    to control noise
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Distributional association: predictions only depending on the last token
● Example: preposition often precedes a noun starting with ‘the’, so [preposition] + ‘the’ is 

high-frequency in English, like ‘in’ + ‘the’

In-context reasoning: predictions from potentially distant tokens in the context
● Example: answer the country of a given city, like ‘Madrid’ + ‘Spain’, ‘Beijing’ + ‘China’, 

‘Tokyo’ + ‘Japan’
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Summary: how does two-layer transformer solve noisy in-context recall?

Result 1: feed-forward layers store the generic noise
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🔍 Observation 1: Distributional associations may distract LLMs away from in-context 
predictions, hurting performance on reasoning tasks.
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helps inhibit predictions of distributional associations, thus improving in-context 
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Task 1: indirect object identification (IOI)
Different from [Wang el al. 2022],  we would like to consider whether a model proposes 
an output beyond the input x:

x = ``When Mary and John went to a store, John gave a drink to ___``

GPT-2 Small has the top 4 predictions: Mary, them, the, John
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than complex reasoning.
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pre-training process displays several phases

❏ Initialization: all tokens have similar logits
❏ Between 10 and 1000 steps: the models consistently output ``the''.  They cannot 

solve IOI task at all, as long as they have almost the same output for [IO] and [S]. 
After 500 steps, [IO] starts the growth towards one of the top predictions.

❏ After 2000 steps: Pythia starts to be able to solve IOI task by preferring [IO] than 
[S] and ``the''. Meanwhile, the benefit of LASER appears as enhancing the leading 
position of [IO].

[Sharma et al.] The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction.

[Wang et al.] Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small.                      ICLR 2023
[Bietti et al.] Birth of a Transformer: A Memory Viewpoint.                                                                                  NeurIPS 2023
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Theorem (Chen, Bruna, and B., 2024, informal)
In toy model above, feed-forward layer learns global bigram after O(1) samples, attention
after O(N) samples due to noise.
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Multi-step reasoning
Composition of multiple statements given in context. Example:

John holds the apple. John is in the kitchen. Where is the apple?

▶ composition of 2 hops: (apple → John) and (John → kitchen)
▶ harder than the (1-hop) induction head task: (Mr → White)

More generally, consider k-hop reasoning: compose k functions given in context
Can be solved wih only log k transformer layers (Liu et al., 2023; Sanford et al., 2024a)

Q: what about training dynamics?
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Training dynamics for k-hop reasoning
Failure of gradient descent (based on statistical query model)

Theorem (Wang, Nichani, et al., 2025+, informal)
Gradient descent requires either exp(k) samples or exp(k) compute to solve the k-hop task.

Easy-to-hard data to the rescue

Theorem (Wang, Nichani, et al., 2025+, informal)
When using easy-to-hard curriculum learning, or training on a mixture of hops, gradient
descent solves k-hop with O(k) samples/compute.

Hops 1, 2, 4, etc. are learned incrementally (layer-wise)
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Concluding remarks
Mechanisms in Transformers

Weights as associative memories
(Multi-hop) reasoning with attention circuits
distributional associations vs reasoning in MLPs vs attention

Training dynamics elucidate phenomena
Hallucinations as an intermediate training phase
Multi-hop reasoning can be solved only with curriculum
MLPs learn faster than attention

Future directions
Learning embeddings
Continuous data
Scientific problems (simulation, astrophysics, biology, ...)

Thank you!
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