On the Inductive Bias of Neural Tangent Kernels

Alberto Bietti Julien Mairal

Inria Grenoble

GIPSA-lab. November 7, 2019.

- ? ®
informaties #7 mathematics ORIVERSTTE
&1’7‘60/— ’f.'l glreggble ¢Microsoft Research - Inria
P JOINT CENTRE
Alberto Bietti Inductive bias of NTK November 7, 2019

1/33



Generalization and Inductive Bias

Goal of supervised learning:
Given (x1,¥1),--.,(xn,yn) ~ D, find f € F with small expected loss:

E(x,y)ND[g(yﬁ f(XI))]
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Generalization and Inductive Bias

Goal of supervised learning:

Given (x1,¥1),--.,(xn,yn) ~ D, find f € F with small expected loss:

E(x,y)ND[g(yﬁ f(XI))]

Inductive bias:
o Cannot generalize if F too large
» all functions: “no free lunch theorem”
» Lipschitz functions: “curse of dimensionality” (need O(1/eP) samples)

o Need for prior knowledge or inductive bias in the choice of F
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Generalization in deep learning

. 63 1. maps 16@10x10
- o1 feaure maps $4:1. maps 18DHG
322 52: 1. maps
b@1x14

|
| Full connection Gaussian comnections

fo(x) = W'a (WL a(Wx)- )

o Heavily over-parameterized (millions/billions of parameters)
o Trained to fit the training data (almost) perfectly

o Often specific choices of architectures (convolutions, recurrent,
attention)
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Generalization in deep learning: complexity

What controls the “complexity” of the hypothesis class F?

o Number of parameters is a poor measure of complexity!

For valid generalization, the size of the
weights is more important than the size
of the network
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Generalization in deep learning: complexity

What controls the “complexity” of the hypothesis class F?

o Number of parameters is a poor measure of complexity!
o Some kind of norm of the weights? (e.g., spectral norms)
» often too large in practice

From Bartlett et al. (2017):
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Generalization in deep learning: complexity

What controls the “complexity” of the hypothesis class F?
o Number of parameters is a poor measure of complexity!
o Some kind of norm of the weights? (e.g., spectral norms)
» often too large in practice

o Norm of the corresponding function in a functional space? ||f||#
instead of |||

» Question: what is an appropriate functional space?
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Generalization in deep learning: role of optimization

o Optimization of deep models often framed as the (non-convex)
problem:

1
mglnﬁge(yi,fa(xi)) (1)
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o Optimization of deep models often framed as the (non-convex)
problem:

1
mglnﬁge(yi,fa(xi)) (1)

o But: for over-parameterized model/deep networks, many possible
solutions with ~ 0 loss! (interpolating solution Vi, fo(x;) = yi)
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Generalization in deep learning: role of optimization

o Optimization of deep models often framed as the (non-convex)
problem:

1
mglnﬁge(yi,fa(xi)) (1)

©

But: for over-parameterized model/deep networks, many possible
solutions with ~ 0 loss! (interpolating solution Vi, fo(x;) = yi)

o — optimization algorithm selects the better, “simpler” models

Implicit bias of (stochastic) gradient descent: for which norm || - ||
does (S)GD lead to the solution of

©

min [[6]| or |
s.t. fg(X;) =y, i=1...,N
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Kernels for deep learning

Kernels?

o Map data x to high-dimensional space, ®(x) € H (H: "RKHS")
Non-linear f € H takes linear form: f(x) = (f, d(x))
Learning with a positive definite kernel K(x,x") = (®(x), ®(x"))

©

©

©

Convex optimization problem (tractable)

©

Statistical and approximation properties well understood

©

Costly (kernel matrix of size N?) but approximations are possible
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Kernels for deep learning

Kernels from deep architectures

o Can construct hierarchical kernels following a given architecture
» e.g., convolutional kernels (Mairal, 2016)

o Arise naturally from infinite-width networks at initialization

o Recent work shows that similar kernels arise for optimization of
over-parameterized networks: neural tangent kernels (NTKs, Jacot
et al., 2018)

o Leads to tractable functional spaces to study deep networks
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Kernels for deep learning

Kernels from deep architectures

o Can construct hierarchical kernels following a given architecture
» e.g., convolutional kernels (Mairal, 2016)

o Arise naturally from infinite-width networks at initialization

o Recent work shows that similar kernels arise for optimization of
over-parameterized networks: neural tangent kernels (NTKs, Jacot
et al., 2018)

o Leads to tractable functional spaces to study deep networks
This work:

o What are properties of the functional space for NTKs?
(approximation, smoothness, stability to deformations for CNNs)

o How do they compare to previous deep kernels?

Alberto Bietti Inductive bias of NTK November 7, 2019 6 /33



QOutline

@ Kernels from Optimization

2) Approximation properties (two layers)

3) Smoothness and stability for CNNs



Warmup: random features

Two-layer ReLU network, with fixed first layer (a.k.a. random features):

©

w; ~ N(0, ) fixed

o 6 =v € R"™ optimized (1/y/m scaling is standard in initializations
of V,')

o(u) = max(0, u) (ReLU)

Optimize loss with gradient descent on 6 (convex problem here)

©

©
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Warmup: random features

o Same as linear model fy(x) = (0, ¢(x)) with random features

(O’(WlTX), . ,O'(W,—an))

¢(x) =

By

o Limiting kernel:

Kax.x') = lim (6(x). 6(x)

=E,n(o,) [o(w " x)o(w'X)]

T/

X X
= [Ix]ll|x'[| 1 )
Ix[[1x"1 )

with r1(u) = 1 (u - (m — arccos(u)) + V1 — u2>.
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Warmup: random features

o Gradient descent implicitly acts as an ¢? regularizer on 6

o For m — oo and square loss, GD is implicitly solving a regularized
version of the problem

N
Z Yi, f(XI

i=1

» t — oo leads to minimum-norm interpolating solution
» smaller t (early stopping) has a stronger regularization effect

o For finite but large enough m, similar generalization properties as full
kernel (Bach, 2017b; Rudi and Rosasco, 2017).
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Training both layers: lazy training

1 m
fo(x) = —=>_vio(w; x),
N
What happens when training both layers? (or even multiple layers)
o 6 = (v, w), initialization 6y, i.i.d. N(0,1) params

o If mis (very) large, many results from past year essentially show that
model stays close to linearization throughout training:

fo(x) = fgo(x) + (0 — o, Viofy(x)o=0,)-

o weights move very little (“lazy training”, Chizat et al., 2019)

» tldr: 2nd order Taylor term remains negligible due to 1//m scaling
» not really what happens in practice... (for later)
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Training both layers: neural tangent kernel (NTK)

fo(x) ~ fay (x) + (0 — 0o, Vo fo(x) o=0,)-

o When m — oo, fa(x) = 0
o Again, linear model on random features ¢)(x) = Vyfy(x)|g=g,

o Limiting kernel:
Knti (x,x") = lim (3(x), %(x))
= (x'x") EWNN‘(O,/)[].{WTX > 0}1{w'x" > 0}]
+ Bynvo,n (W x) 4 (w X)) 4]

T/

X X

= IxIllIX'[lenre | o
Ix[[11x"11 )

with knTK(u) = uko(u) + k1(u) (k10 are arc-cosine kernels for
different activations, ReLU and threshold)
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Outline

(@ Approximation properties (two layers)
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K1 vs Kntk

Training top layer vs both layers?

o Both kernels are homogeneous dot-product kernels of the form

x T x'
K(x, x") = |IxIllIx'[|% () :

[l

©

For RF, k(u) = k1(u)
For NTK, k(u) = uko(u) + k1(u)
How do the RKHSs differ?

o = spectral description through Mercer decomposition

©

©
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Mercer's theorem (e.g., Scholkopf and Smola, 2001)

Define integral operator: Txf(x) = [ K(x,y)dv(y) for some dv
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Mercer's theorem (e.g., Scholkopf and Smola, 2001)

Define integral operator: Txf(x) = [ K(x, y)dv(y) for some dv
Theorem (Mercer)
If X is compact and K is continuous, then there exists an orthonormal

basis (¢:)ien of L2(X, dv), and non-negative eigenvalues (u;)ien such that

TK¢i:Mi¢i> ERN

(e o]

K(x,y) = uidi(x)ei(y)

i=1

2
H:{f: Z a,-gb,-:a,-eR, Z ai.<OO}7

4170 0 Hi

2
where the norm of f = ZiiuﬁfO aj; is given by HfH%-L = Zi:m?ﬁo %
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Dot-product kernels on the sphere

o When x,s’ € SP7!, K; and Ky7x are dot-product kernels
K(x,x") = k(x"x")
o Such kernels are invariant to rotations (orthogonal matrices)

o Integral operator is diagonalized in the basis of spherical harmonics

ote
NESTN
PHEOH®
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Dot-product kernels on the sphere

We have
p;k)
Zﬂk Z Yij(x)Yij(y) = ZMkN p, K)Pi(x"y)
o Yij. j=1,...,N(p, k) are spherical harmonic polynomials of
degree k

o Py is the corresponding Legendre polynomials of degree k
o i eigenvalue associated to spherical harmonics of degree k, given by

wp—2 1 2\(p—3)/2
e = / R(E)Pe(t)(1 — )P~ 3 2.

Wp—1
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Decay of 1k

o “Size" of the RKHS governed by the eigenvalue decay

o For kg and k1, the uy follow from decompositions of positively
homogeneous activations by Bach (2017a); slower decay for g

o For knTK, can use recurrence on Legendre polynomials: slower decay
similar to k9 = larger RKHS compared to 3
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Decay of 1k

o “Size" of the RKHS governed by the eigenvalue decay

o For kg and k1, the uy follow from decompositions of positively
homogeneous activations by Bach (2017a); slower decay for g

o For knTK, can use recurrence on Legendre polynomials: slower decay
similar to k9 = larger RKHS compared to 3

()

We have (for fixed dimension p)

K1 | KNtk
p | O(k=P=2) | O(k~P)
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Approximation properties

o As in Fourier, decay of coefficients <+ regularity

o Leads to approximation properties similar to Sobolev spaces,
following Bach (2017a)
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Approximation properties

o As in Fourier, decay of coefficients <+ regularity

o Leads to approximation properties similar to Sobolev spaces,
following Bach (2017a)

o For k1, p/2 is replaced by p/2 + 1 (need more regularity)

Corollary (Sufficient condition for f € Hy7k)

Let f : SP~1 — R be an even function such that all i-th order derivatives
exist and are bounded by ) for 0 < i <'s, with s > p/2. Then f € H with
Ifll% < C(p)n, where C(p) is a constant that only depends on p.
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Approximation properties

o As in Fourier, decay of coefficients <+ regularity

o Leads to approximation properties similar to Sobolev spaces,
following Bach (2017a)

o For k1, p/2 is replaced by p/2 + 1 (need more regularity)

Corollary (Approximation of Lipschitz functions)

Let f : SP~1 — R be an even function such that f(x) < n and
[f(x) — f(y)| < nllx — yl|, for all x,y € SP~L. There is a function g € H

with ||g|l < &, where ¢ is larger than a constant depending only on p,
such that

sup 1700 - 6001 < Clom (1) log ).

xeSp—1 n
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Outline

(3 Smoothness and stability for CNNs
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Interlude: infinite width beyond two-layers

o Deep network: define “pre-activations” 3! = W1lx and

1
3 = Who(a*)

vV Mi-1

o For inputs x, x’ on the sphere and infinite width, 3, 3/ are Gaussian

o Covariance follows recurrence ¥1(x, x’) = x ' x’

B o 1 Zk_l(X,X/)
T k(X)) 1

Zk(X, X/) = IE(u,v)NN(O,Bk)[o-(u)o-(v)]
= k1(Tk-1(x, x")).
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Interlude: infinite width beyond two-layers

Y i(x, x") = k1(Zre1(x, X))

o Defines hierarchical kernels

o If k1(x"x'") = (p1(x), p1(x)), then L, has feature map
®p(x) =10+ 0 p1(x)
—_————
k times
o Corresponds to training only last layer

Similar for the NTK, but a sum of such kernels, one for each layer

©
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Kernels for deep convolutional networks (CNNs)

C1: feature maps
INPUT
32632 @258 52:f. may
BiE@14x14

| Full connestian Gaussian connectians.
Canvelutions Subsampling Convolutians. Full i

Convolutional Neural Networks (CNNs):
Capture multi-scale and compositional structure in natural signals
Provide some invariance

Model local stationarity

© © o o

State-of-the-art in many applications

Alberto Bietti Inductive bias of NTK November 7, 2019 19 / 33



Smoothness and stability with kernels

Study geometry of the kernel mapping f(x) = (f, ®(x))

[F(x) = O < Nl - [[D(x) = (X[l

o ||f]| controls smoothness and complexity of the model

o ®(x) encodes CNN architecture independently of the model
(smoothness, invariance, stability to deformations)
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Smoothness and stability with kernels

Study geometry of the kernel mapping f(x) = (f, ®(x))

[F(x) = O < Nl - [[D(x) = (X[l

o ||f]| controls smoothness and complexity of the model

o ®(x) encodes CNN architecture independently of the model
(smoothness, invariance, stability to deformations)

o Training last layer of infinite-width CNN leads to a special case of
convolutional kernel networks (CKNs, Mairal, 2016; Bietti and
Mairal, 2019a)

o NTK (all layers) similar but more involved
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Convolutional kernel network (CKN)

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)
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Convolutional kernel network (CKN)

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)

o xi: Q — Hy: feature map at layer k

Piexi—1

» Py: patch extraction operator, extract small patch of feature map
Xk_1 around each point u
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Convolutional kernel network (CKN)

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)

o xi: Q — Hy: feature map at layer k

My Piexi—1

» Py: patch extraction operator, extract small patch of feature map
Xk_1 around each point u

» M. non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function ¢(-) (kernel mapping)
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Convolutional kernel network (CKN)

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)

o xi: Q — Hy: feature map at layer k

Xie = Ak My Pixic—1

» Py: patch extraction operator, extract small patch of feature map
Xk_1 around each point u

» M. non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function ¢(-) (kernel mapping)

» A (linear, Gaussian) pooling operator at scale oy
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CKN construction

T = Ak]Wkkak,l Q- Hk Jfk<’u,‘) = Akﬂ[;ﬁpk:lfk 1(’[1,‘) € Hl‘-,

linear pooling

My Prag—q - Q — Hy My Prxyy (’U) = @k(Pka—l (’U)) € Hy

non-linear mapping

Prag-1(v) € Pr (patch extraction)

Tp-1(u) € Hia 10 Q= Hi
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Patch extraction operator Py

Pka_l(U) = (V € Sk — xk_l(u + V)) e P = ,Hffl

Pyxy_y(v) € P (patch extraction)

T 1(11) € Hi Th-1 :Q — Hi1

Alberto Bietti Inductive bias of NTK November 7, 2019 23 /33



Patch extraction operator Py

Pka_l(U) = (V € Sk — xk_l(u + V)) e P = /Hffl

o Si: patch shape, e.g. box

o Py is linear, and preserves the L2 norm: ||Pix_1|| = ||xk-1]|
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Non-linear mapping operator M

/\/lkPka_l(u) = gD(Pka_l(u)) € Hy

My Py s = Hy My Pyay1(v) = or(Prar-(v) € H

non-linear mapping
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Non-linear mapping operator M

/\/lkPka_l(u) = gD(Pka_l(u)) € Hy

©

¢ : Px — Hy pointwise non-linearity on patches (kernel map)

©

For ReLU, we use 1 from arc-cosine kernel, but other kernels are
possible

o We assume non-expansivity: for z, 2/ € P

le()Il < llzIl  and  lp(z) = @(Z)I| < [lz = 2|

©

M), then satisfies, for x,x’ € L2(Q, Px)

IMix]| < x|l and  [[Mix — Mix'|| < flx = X
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Pooling operator Ay

Xk(u) = AkMkPka_l(u) = /]Rd hgk(u — V)MkPka_l(V)dV € Hy

o= ApM Pewg 1 : Q — Hy zrp(w) = A My Prag 1 (w) € Hy

linear pooling

MyPrxy 1 :Q— Hy,

Tp1 Q= Hiq
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Pooling operator Ay

Xk ( ) AkMkPka 1 / hak MkPka 1( )dV € Hy

o hy,: pooling filter at scale o
o hy(u) := o ?h(ujok) with h(u) Gaussian
o linear, non-expansive operator: ||Ax|| <1

Alberto Bietti Inductive bias of NTK November 7, 2019 25 /33



Recap: Pk, Mk, Ak

T = Ak]Wkkak,l Q- Hk Jfk<’u,‘) = Akﬂ[;ﬁpk:lfk 1(’[1,‘) € Hl‘-,

linear pooling

My Prag—q : Q — Hy My Prxyy (’U) = @k(Pka—l (’U)) € Hy

kernel mapping

Prag-1(v) € Pr (patch extraction)

Tp-1(u) € Hia 10 Q= Hi
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Final CKN kernel mapping

Assumption on xg
o X is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal,
Ao local integrator with scale o¢ (anti-aliasing).
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Final CKN kernel mapping

Assumption on xg
o X is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal,
Ao local integrator with scale o¢ (anti-aliasing).

Multilayer representation

q)(X) = AnMnPnAn—an—an_l tee A1M1P]_X0 c Lz(Q,%n)_

o Sy, ok grow exponentially in practice (i.e., fixed with subsampling).

Alberto Bietti Inductive bias of NTK November 7, 2019 27 / 33



Final CKN kernel mapping

Assumption on xg

o X is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal,
Ao local integrator with scale o¢ (anti-aliasing).

Multilayer representation

q)(X) = AnMnPnAn—an—an_l tee A1M1P]_X0 c Lz(Q,%n)_

o Sy, ok grow exponentially in practice (i.e., fixed with subsampling).
Final kernel

Kekn(x, x') = (®n(x), ®n(x)) 12(0) = /Q<Xn(U)7Xr’,(U)>du
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Convolutional NTK kernel mapping

Define

_ (pO(X(U))®y(u)
M(x,y)(U)—< p1(x(v)) >

Theorem (NTK feature map for CNN)

Ktk (%, x') = (9(x), ®(x)) 120,
with ®(x)(u) = AnM(xn, yn)(u), where y1(u) = x1(u) = Pix(u) and

xk(u) = PrAk-11(xk-1)(u)
yi(u) = PrAxa M(xi1, yi1) (u).
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Smoothness: CKN vs NTK

Weaker smoothness for NTK!
CKN: Lipschitz

[0x) = o) < [Ix = x|
NTK: ~ Holder

19(x) = S(<)| < (n+ 1) Ix = X|| + O(n**) /]| [ x — x|
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Stability to deformations: definitions

o 7:Q — Q: Cl-diffeomorphism
o Lyx(u) = x(u—7(u)): action operator

o Much richer group of transformations than translations

FHS Y qhyyyn
555555556¢
7707717777
335580 8C8 &

o Studied for wavelet-based scattering transform (Mallat, 2012; Bruna
and Mallat, 2013)
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Stability to deformations: definitions

©

Representation ®(-) is stable (Mallat, 2012) if:

[8(Lrx) = S| < (G VTlloo + CallTllo) I x]]

©

IVT|lco = sup, ||V7(u)|| controls deformation

©

I7]lcc = sup, |7(u)| controls translation

o (5 — 0: translation invariance
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Stability to deformations: CKN (Bietti and Mairal, 2019a)

Theorem
Let ®,(x) = P(Aox) and assume |V < 1/2,

C
[@(Lrx) = Sa()] < ( €3 (n+ 1) V7l + = e ) el

o translation invariance: large o,

()

stability: small patch sizes (3 & patch size, C5 = O(8®) for images)

()

signal preservation: subsampling factor ~ patch size

o = needs several layers
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Stability to deformations: NTK (Bietti and Mairal, 2019b)

Theorem (Stability of NTK)
Let ®,(x) = ®(Aox), and assume |V T||oo < 1/2

[@n(Lrx) = @a()]
C
< (o IV + Gy Ve + VAT el )l
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Stability to deformations: NTK (Bietti and Mairal, 2019b)

Theorem (Stability of NTK)
Let ®,(x) = ®(Aox), and assume ||VT| o < 1/2

[@a(Lox) — 00|
C

< (o VT2 + o2Vl + VA F T 7l ) Il
n

o o

o o

% _____ = deformations % 0.3 - o e— —

"‘7; —— deformations + translation "J‘)

L 0.2 o v

o same label o

) — = all labels ) 0.2 -

= =
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Conclusion
CKN vs NTK, last layer vs all layers

o NTK leads to a “larger” RKHS, better approximation
o NTK functions for CNNs are less smooth /stable
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CKN vs NTK, last layer vs all layers
o NTK leads to a “larger” RKHS, better approximation
o NTK functions for CNNs are less smooth /stable

Limitations: things are different for finite neurons!
o need huge number of neurons for NTK regime

o functions with finite neurons are not smooth! (e.g., adversarial
examples?)
o lazy training is limited (e.g., cannot explain learning Gabor filters)
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CKN vs NTK, last layer vs all layers
o NTK leads to a “larger” RKHS, better approximation
o NTK functions for CNNs are less smooth /stable

Limitations: things are different for finite neurons!
o need huge number of neurons for NTK regime

o functions with finite neurons are not smooth! (e.g., adversarial
examples?)
o lazy training is limited (e.g., cannot explain learning Gabor filters)

Future directions
o approximation properties for deep networks / CNNs

o a “less lazy” regime? (e.g., only first layers move)
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