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Generalization and Inductive Bias

Goal of supervised learning:
Given (x1, y1), . . . , (xN , yN) ∼ D, find f ∈ F with small expected loss:

E(x ,y)∼D[`(yi , f (xi))]

Inductive bias:
Cannot generalize if F too large

I all functions: “no free lunch theorem”
I Lipschitz functions: “curse of dimensionality” (need O(1/εp) samples)

Need for prior knowledge or inductive bias in the choice of F
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Generalization in deep learning
Paradigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

fθ(x) = W nσ(W n−1 · · ·σ(W 1x) · · · )

Heavily over-parameterized (millions/billions of parameters)
Trained to fit the training data (almost) perfectly
Often specific choices of architectures (convolutions, recurrent,
attention)
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Generalization in deep learning: complexity

What controls the “complexity” of the hypothesis class F?
Number of parameters is a poor measure of complexity!

Some kind of norm of the weights? (e.g., spectral norms)
I often too large in practice

Norm of the corresponding function in a functional space? ‖fθ‖H
instead of ‖θ‖

I Question: what is an appropriate functional space?
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From Bartlett et al. (2017):

(a) Margins. (b) Normalized margins.

Figure 2: Margin distributions at the end of training AlexNet on cifar10, with and without random
labels. With proper normalization, random labels demonstrably correspond to a harder problem.

let FA denote the function computed by the corresponding network:

FA(x) := �L(AL�L�1(AL�1 · · ·�1(A1x) · · · )).

Whenever data (x1, . . . , xn) are given, collect them as rows of a matrix X 2 Rn⇥d. Occasionally, notation
will be overloaded to discuss FA(XT ), a matrix whose ith column is FA(xi). The l2 norm k · k2 is always
computed entry-wise; thus, for a matrix, it corresponds to the Frobenius norm.

Next, define a collection of reference matrices (M1, . . . , ML) with each dimension at most W ; for
instance, to obtain a good bound for ResNet (He et al., 2016), it is sensible to set Mi := I, the identity
map, and the bound below will worsen as the network moves farther from the identity map; for AlexNet
(Krizhevsky et al., 2012), the simple choice Mi = 0 suffices. Finally, letting k · k� and k · k1 respectively
denote spectral norm and the unrolled l1 vector norm, the spectral complexity RFA = RA of a network
FA with weights A is

RA :=

0
@

LY

i=1

⇢ikAik�

1
A
0
@

LX

i=1

kAi � Mik2/3
1

kAik2/3
�

1
A

3/2

. (1.1)

The following theorem provides a generalization bound for neural networks whose nonlinearities are
fixed but whose weight matrices A have bounded spectral complexity RA.

Theorem 1.1. Let nonlinearities (�1, . . . ,�L) and reference matrices (M1, . . . , ML) be given as above
(i.e., �i is ⇢i-Lipschitz and �i(0) = 0). Then with probability at least 1� � over an iid draw of n examples
((xi, yi))

n
i=1, every margin � > 0 and network FA : Rd ! Rk with weight matrices A = (A1, . . . , AL)

satisfy

Pr
h
arg max

j
FA(x)j 6= y

i
 bR�(FA) + eO

 
kXk2RA

�n
ln(n) ln(W ) +

r
ln(1/�)

n

!
,

where bR�(f)  n�1
P

i 1
⇥
f(xi)yi

 � + maxj 6=yi
f(xi)j

⇤
and kXk2 =

pP
i kxik2

2.

The full proof (based on metric entropy) is relegated to the appendix, but a sketch is provided in
Section 3, along with a more general form (not limited to spectral norms), along with a (non-matching!)
lower bound. Section 3 also gives a discussion of related work, but briefly it’s essential to note that
margin and Lipschitz-sensitive bounds have a long history in the neural networks literature (Bartlett,
1996; Anthony and Bartlett, 1999; Neyshabur et al., 2015); the distinction here is the sensitivity to
specifically the spectral norm, as well as no explicit appearance of combinatorial quantities such as
numbers of parameters or layers (outside of log terms, and indices to summations and products).

To close, miscellaneous observations and open problems are collected in Section 4.

3
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Generalization in deep learning: role of optimization

Optimization of deep models often framed as the (non-convex)
problem:

min
θ

1
N

N∑
i=1

`(yi , fθ(xi)) (1)

But: for over-parameterized model/deep networks, many possible
solutions with ≈ 0 loss! (interpolating solution ∀i , fθ(xi) = yi)
=⇒ optimization algorithm selects the better, “simpler” models
Implicit bias of (stochastic) gradient descent: for which norm ‖ · ‖
does (S)GD lead to the solution of

min ‖θ‖ or ‖fθ‖
s.t. fθ(xi) = yi , i = 1, . . . ,N
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Kernels for deep learning

Kernels?
Map data x to high-dimensional space, Φ(x) ∈ H (H: “RKHS”)
Non-linear f ∈ H takes linear form: f (x) = 〈f ,Φ(x)〉
Learning with a positive definite kernel K (x , x ′) = 〈Φ(x),Φ(x ′)〉
Convex optimization problem (tractable)
Statistical and approximation properties well understood
Costly (kernel matrix of size N2) but approximations are possible
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Kernels for deep learning

Kernels from deep architectures
Can construct hierarchical kernels following a given architecture

I e.g., convolutional kernels (Mairal, 2016)
Arise naturally from infinite-width networks at initialization
Recent work shows that similar kernels arise for optimization of
over-parameterized networks: neural tangent kernels (NTKs, Jacot
et al., 2018)
Leads to tractable functional spaces to study deep networks

This work:
What are properties of the functional space for NTKs?
(approximation, smoothness, stability to deformations for CNNs)
How do they compare to previous deep kernels?
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Outline

1 Kernels from Optimization

2 Approximation properties (two layers)

3 Smoothness and stability for CNNs
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Warmup: random features

Two-layer ReLU network, with fixed first layer (a.k.a. random features):

fθ(x) = 1√
m

m∑
i=1

viσ(w>i x),

wi ∼ N(0, I) fixed
θ = v ∈ Rm optimized (1/

√
m scaling is standard in initializations

of vi)
σ(u) = max(0, u) (ReLU)
Optimize loss with gradient descent on θ (convex problem here)
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Warmup: random features

Same as linear model fθ(x) = 〈θ, φ(x)〉 with random features

φ(x) = 1√
m (σ(w>1 x), . . . , σ(w>m x))

Limiting kernel:

K1(x , x ′) = lim
m→∞

〈φ(x), φ(x ′)〉

= Ew∼N(0,I)[σ(w>x)σ(w>x ′)]

= ‖x‖‖x ′‖κ1
(

x>x ′
‖x‖‖x ′‖

)
,

with κ1(u) = 1
π

(
u · (π − arccos(u)) +

√
1− u2

)
.
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Warmup: random features

Gradient descent implicitly acts as an `2 regularizer on θ
For m→∞ and square loss, GD is implicitly solving a regularized
version of the problem

min
f ∈H

1
N

N∑
i=1

`(yi , f (xi)),

I t →∞ leads to minimum-norm interpolating solution
I smaller t (early stopping) has a stronger regularization effect

For finite but large enough m, similar generalization properties as full
kernel (Bach, 2017b; Rudi and Rosasco, 2017).
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Training both layers: lazy training

fθ(x) = 1√
m

m∑
i=1

viσ(w>i x),

What happens when training both layers? (or even multiple layers)
θ = (v ,w), initialization θ0, i.i.d. N(0, 1) params
If m is (very) large, many results from past year essentially show that
model stays close to linearization throughout training:

fθ(x) ≈ fθ0(x) + 〈θ − θ0,∇θfθ(x)|θ=θ0〉.

weights move very little (“lazy training”, Chizat et al., 2019)
I tldr: 2nd order Taylor term remains negligible due to 1/

√
m scaling

I not really what happens in practice... (for later)

Alberto Bietti Inductive bias of NTK November 7, 2019 9 / 33



Training both layers: neural tangent kernel (NTK)

fθ(x) ≈ fθ0(x) + 〈θ − θ0,∇θfθ(x)|θ=θ0〉.

When m→∞, fθ0(x) ≈ 0
Again, linear model on random features ψ(x) = ∇θfθ(x)|θ=θ0
Limiting kernel:

KNTK (x , x ′) = lim
m→∞

〈ψ(x), ψ(x ′)〉

= (x>x ′)Ew∼N (0,I)[1{w>x ≥ 0}1{w>x ′ ≥ 0}]
+ Ew∼N (0,I)[(w>x)+(w>x ′)+]

= ‖x‖‖x ′‖κNTK

(
x>x ′
‖x‖‖x ′‖

)
,

with κNTK (u) = uκ0(u) + κ1(u) (κ1/0 are arc-cosine kernels for
different activations, ReLU and threshold)
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Outline

1 Kernels from Optimization

2 Approximation properties (two layers)

3 Smoothness and stability for CNNs
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K1 vs KNTK

Training top layer vs both layers?
Both kernels are homogeneous dot-product kernels of the form

K (x , x ′) = ‖x‖‖x ′‖κ
(

x>x ′
‖x‖‖x ′‖

)
.

For RF, κ(u) = κ1(u)
For NTK, κ(u) = uκ0(u) + κ1(u)
How do the RKHSs differ?
=⇒ spectral description through Mercer decomposition
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Mercer’s theorem (e.g., Schölkopf and Smola, 2001)

Define integral operator: TK f (x) =
∫

K (x , y)dν(y) for some dν

Theorem (Mercer)
If X is compact and K is continuous, then there exists an orthonormal
basis (φi)i∈N of L2(X , dν), and non-negative eigenvalues (µi)i∈N such that

TKφi = µiφi , i = 1, 2, . . .

K (x , y) =
∞∑
i=1

µiφi(x)φi(y)

H =

f =
∑

i :µi 6=0
aiφi : ai ∈ R,

∑
i :µi 6=0

a2i
µi

<∞

 ,
where the norm of f =

∑
i :µi 6=0 aiφi is given by ‖f ‖2H =

∑
i :µi 6=0

a2i
µi

.
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Dot-product kernels on the sphere

When x , s ′ ∈ Sp−1, K1 and KNTK are dot-product kernels
K (x , x ′) = κ(x>x ′)
Such kernels are invariant to rotations (orthogonal matrices)
Integral operator is diagonalized in the basis of spherical harmonics

Example (3/6)

Definition (Spherical harmonics)

A homogeneous polynomial of degree k � 0 in Rd whose Laplacian
vanishes is called a homogeneous harmonic of order k .

A spherical harmonic of order k is a homogeneous harmonic of order
k on the unit sphere Sd�1

The set Yk(d) of spherical harmonics is a vector space of dimension

N(n, k) = dim (Yk(d)) =
(2k + d � 2)(k + d � 3)!

k!(d � 2)!
.

237 / 652
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Dot-product kernels on the sphere

We have

κ(x>y) =
∞∑
k=0

µk

N(p,k)∑
j=1

Yk,j(x)Yk,j(y) =
∞∑
k=0

µkN(p, k)Pk(x>y)

Yk,j , j = 1, . . . ,N(p, k) are spherical harmonic polynomials of
degree k
Pk is the corresponding Legendre polynomials of degree k
µk eigenvalue associated to spherical harmonics of degree k, given by

µk = ωp−2
ωp−1

∫ 1

−1
κ(t)Pk(t)(1− t2)(p−3)/2dt.
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Decay of µk

“Size” of the RKHS governed by the eigenvalue decay
For κ0 and κ1, the µk follow from decompositions of positively
homogeneous activations by Bach (2017a); slower decay for κ0
For κNTK , can use recurrence on Legendre polynomials: slower decay
similar to κ0 =⇒ larger RKHS compared to κ1

We have (for fixed dimension p)

κ1 κNTK
µk O(k−p−2) O(k−p)
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Approximation properties

As in Fourier, decay of coefficients ↔ regularity
Leads to approximation properties similar to Sobolev spaces,
following Bach (2017a)

For κ1, p/2 is replaced by p/2 + 1 (need more regularity)
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Approximation properties

As in Fourier, decay of coefficients ↔ regularity
Leads to approximation properties similar to Sobolev spaces,
following Bach (2017a)
For κ1, p/2 is replaced by p/2 + 1 (need more regularity)

Corollary (Sufficient condition for f ∈ HNTK )
Let f : Sp−1 → R be an even function such that all i -th order derivatives
exist and are bounded by η for 0 ≤ i ≤ s, with s ≥ p/2. Then f ∈ H with
‖f ‖H ≤ C(p)η, where C(p) is a constant that only depends on p.
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Approximation properties

As in Fourier, decay of coefficients ↔ regularity
Leads to approximation properties similar to Sobolev spaces,
following Bach (2017a)
For κ1, p/2 is replaced by p/2 + 1 (need more regularity)

Corollary (Approximation of Lipschitz functions)
Let f : Sp−1 → R be an even function such that f (x) ≤ η and
|f (x)− f (y)| ≤ η‖x − y‖, for all x , y ∈ Sp−1. There is a function g ∈ H
with ‖g‖H ≤ δ, where δ is larger than a constant depending only on p,
such that

sup
x∈Sp−1

|f (x)− g(x)| ≤ C(p)η
(
δ

η

)−1/(p/2−1)
log
(
δ

η

)
.
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Outline

1 Kernels from Optimization

2 Approximation properties (two layers)

3 Smoothness and stability for CNNs
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Interlude: infinite width beyond two-layers

Deep network: define “pre-activations” ã1 = W 1x and

ãk = 1
√mk–1

W kσ(ãk–1)

For inputs x , x ′ on the sphere and infinite width, ãki , ã′ki are Gaussian
Covariance follows recurrence Σ1(x , x ′) = x>x ′

Bk =
(

1 Σk–1(x , x ′)
Σk–1(x , x ′) 1

)
Σk(x , x ′) = E(u,v)∼N(0,Bk)[σ(u)σ(v)]

= κ1(Σk–1(x , x ′)).
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Interlude: infinite width beyond two-layers

Σk(x , x ′) = κ1(Σk–1(x , x ′))

Defines hierarchical kernels
If κ1(x>x ′) = 〈ϕ1(x), ϕ1(x ′)〉, then Σk has feature map

Φk(x) = ϕ1 ◦ · · · ◦ ϕ1︸ ︷︷ ︸
k times

(x)

Corresponds to training only last layer
Similar for the NTK, but a sum of such kernels, one for each layer
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Kernels for deep convolutional networks (CNNs)
Paradigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

Convolutional Neural Networks (CNNs):
Capture multi-scale and compositional structure in natural signals
Provide some invariance
Model local stationarity
State-of-the-art in many applications
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Smoothness and stability with kernels

Study geometry of the kernel mapping f (x) = 〈f ,Φ(x)〉

|f (x)− f (x ′)| ≤ ‖f ‖H · ‖Φ(x)− Φ(x ′)‖H

‖f ‖H controls smoothness and complexity of the model
Φ(x) encodes CNN architecture independently of the model
(smoothness, invariance, stability to deformations)

Training last layer of infinite-width CNN leads to a special case of
convolutional kernel networks (CKNs, Mairal, 2016; Bietti and
Mairal, 2019a)
NTK (all layers) similar but more involved
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Convolutional kernel network (CKN)

x0 : Ω→ H0: initial (continuous) signal
I u ∈ Ω = Rd : location (d = 2 for images)
I x0(u) ∈ H0: value (H0 = R3 for RGB images)

xk : Ω→ Hk : feature map at layer k

xk = AkMkPkxk−1

I Pk : patch extraction operator, extract small patch of feature map
xk−1 around each point u

I Mk : non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function ϕ(·) (kernel mapping)

I Ak : (linear, Gaussian) pooling operator at scale σk
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I u ∈ Ω = Rd : location (d = 2 for images)
I x0(u) ∈ H0: value (H0 = R3 for RGB images)

xk : Ω→ Hk : feature map at layer k

xk = AkMkPkxk−1

I Pk : patch extraction operator, extract small patch of feature map
xk−1 around each point u

I Mk : non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function ϕ(·) (kernel mapping)

I Ak : (linear, Gaussian) pooling operator at scale σk
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CKN construction

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Patch extraction operator Pk

Pkxk–1(u) := (v ∈ Sk 7→ xk–1(u + v)) ∈ Pk = HSk
k–1

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)
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Patch extraction operator Pk

Pkxk–1(u) := (v ∈ Sk 7→ xk–1(u + v)) ∈ Pk = HSk
k–1

Sk : patch shape, e.g. box
Pk is linear, and preserves the L2 norm: ‖Pkxk–1‖ = ‖xk–1‖
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕ(Pkxk–1(u)) ∈ Hk

xk–1 : Ω → Hk–1

Pkxk–1(v) ∈ Pk

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕ(Pkxk–1(u)) ∈ Hk

ϕ : Pk → Hk pointwise non-linearity on patches (kernel map)
For ReLU, we use ϕ1 from arc-cosine kernel, but other kernels are
possible
We assume non-expansivity: for z , z ′ ∈ Pk

‖ϕ(z)‖ ≤ ‖z‖ and ‖ϕ(z)− ϕ(z ′)‖ ≤ ‖z − z ′‖

Mk then satisfies, for x , x ′ ∈ L2(Ω,Pk)

‖Mkx‖ ≤ ‖x‖ and ‖Mkx −Mkx ′‖ ≤ ‖x − x ′‖
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

xk–1 : Ω → Hk–1

MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

hσk : pooling filter at scale σk
hσk (u) := σ−dk h(u/σk) with h(u) Gaussian
linear, non-expansive operator: ‖Ak‖ ≤ 1
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Recap: Pk , Mk , Ak

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Final CKN kernel mapping

Assumption on x0
x0 is typically a discrete signal aquired with physical device.
Natural assumption: x0 = A0x , with x the original continuous signal,
A0 local integrator with scale σ0 (anti-aliasing).

Multilayer representation

Φ(x) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

Sk , σk grow exponentially in practice (i.e., fixed with subsampling).
Final kernel

KCKN(x , x ′) = 〈Φn(x),Φn(x ′)〉L2(Ω) =
∫

Ω
〈xn(u), x ′n(u)〉du
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Convolutional NTK kernel mapping

Define
M(x , y)(u) =

(
ϕ0(x(u))⊗ y(u)

ϕ1(x(u))

)

Theorem (NTK feature map for CNN)

KNTK (x , x ′) = 〈Φ(x),Φ(x ′)〉L2(Ω),

with Φ(x)(u) = AnM(xn, yn)(u), where y1(u) = x1(u) = P1x(u) and

xk(u) = PkAk–1ϕ1(xk–1)(u)
yk(u) = PkAk–1M(xk–1, yk–1)(u).
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Smoothness: CKN vs NTK

Weaker smoothness for NTK!
CKN: Lipschitz

‖Φ(x)− Φ(x ′)‖ ≤ ‖x − x ′‖

NTK: ≈ Hölder

‖Φ(x)− Φ(x ′)‖ ≤ (n + 1)‖x − x ′‖+ O(n5/4)
√
‖x‖‖x− x′‖.
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Stability to deformations: definitions

τ : Ω→ Ω: C1-diffeomorphism
Lτx(u) = x(u − τ(u)): action operator
Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Studied for wavelet-based scattering transform (Mallat, 2012; Bruna
and Mallat, 2013)
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Stability to deformations: definitions

Representation Φ(·) is stable (Mallat, 2012) if:

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation
‖τ‖∞ = supu |τ(u)| controls translation
C2 → 0: translation invariance

Alberto Bietti Inductive bias of NTK November 7, 2019 30 / 33



Stability to deformations: CKN (Bietti and Mairal, 2019a)

Theorem
Let Φn(x) = Φ(A0x) and assume ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτx)− Φn(x)‖ ≤
(

Cβ (n + 1) ‖∇τ‖∞ + C
σn
‖τ‖∞

)
‖x‖

translation invariance: large σn
stability: small patch sizes (β ≈ patch size, Cβ = O(β3) for images)
signal preservation: subsampling factor ≈ patch size
=⇒ needs several layers
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Stability to deformations: NTK (Bietti and Mairal, 2019b)
Theorem (Stability of NTK)
Let Φn(x) = Φ(A0x), and assume ‖∇τ‖∞ ≤ 1/2

‖Φn(Lτx)− Φn(x)‖

≤
(

Cβn7/4‖∇τ‖1/2∞ + C ′βn2‖∇τ‖∞ +
√

n + 1 C
σn
‖τ‖∞

)
‖x‖,
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Conclusion

CKN vs NTK, last layer vs all layers
NTK leads to a “larger” RKHS, better approximation
NTK functions for CNNs are less smooth/stable

Limitations: things are different for finite neurons!
need huge number of neurons for NTK regime
functions with finite neurons are not smooth! (e.g., adversarial
examples?)
lazy training is limited (e.g., cannot explain learning Gabor filters)

Future directions
approximation properties for deep networks / CNNs
a “less lazy” regime? (e.g., only first layers move)
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