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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)
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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

f (x) = Wnσ(Wn–1 · · ·σ(W1x) · · · )

Recipe: huge models + lots of data + compute + simple algorithms
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Exploiting data structure through architecturesParadigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

(LeCun et al., 1998)

Modern architectures (CNNs, GNNs, ...)
Provide some invariance through pooling
Model (local) interactions at different scales, hierarchically
Useful inductive biases for learning efficiently on structured data
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Understanding deep learning
The challenge of deep learning theory

Over-parameterized (millions of parameters)
Expressive (can approximate any function)
Complex architectures for exploiting problem structure
Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint
View deep networks as functions in some functional space
Non-parametric models, natural measures of complexity (e.g., norms)
Optimization performs implicit regularization towards

min
f

Ω(f ) s.t. yi = f (xi ), i = 1, . . . , n

What is an appropriate functional space / norm Ω?
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Kernels to the rescue

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Kernels?
Map data x to high-dimensional space, Φ(x) ∈ H (H: “RKHS”)
Functions f ∈ H are linear in features: f (x) = 〈f ,Φ(x)〉 (f can be non-linear in x !)
Learning with a positive definite kernel K (x , x ′) = 〈Φ(x),Φ(x ′)〉

I H can be infinite-dimensional! (kernel trick)
I Need to compute kernel matrix K = [K (xi , xj)]ij ∈ RN×N , or approximations
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Why kernels?

Clean and well-developed theory
Tractable methods (convex optimization)
Statistical and approximation properties well understood for many kernels

I e.g., smooth functions (Caponnetto and De Vito, 2007), interaction splines (Wahba, 1990)

This talk:
Formal study of convolutional kernels and their RKHS
Benefits of (deep) convolutional structure
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Outline

1 Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)

2 Locality and depth (B., 2021)
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Geometric priors

Invariant Function Classes

• These domain transformations are lifted to linear transformations (a.k.a. 
group representations):

$ " ! = "($"#!)
' ∶ Ω → Ω ' ∶ #(Ω) → #(Ω)

Functions f : X → R that are “smooth” along known transformations of input x
e.g., translations, rotations, permutations, deformations
We consider: permutations σ ∈ G

(σ · x)[u] = x [σ−1(u)]

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

f (σ · x) = f (x), σ ∈ G

Geometric stability: For other sets G (e.g., local shifts, deformations), we want

f (σ · x) ≈ f (x), σ ∈ G
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Interlude: Kernels for Wide Shallow Networks

f (x) = 1√
m

m∑
i=1

viρ(〈wi , x〉)

= 〈v , ϕ(x)〉, with ϕ(x) = 1√
mρ(Wx) ∈ Rm

Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): wi ∼ N (0, I), learn v

KRF (x , x ′) = lim
m→∞

〈ϕ(x), ϕ(x ′)〉

= Ew [ρ(〈w , x〉)ρ(〈w , x ′〉)] = κρ(〈x , x ′〉) when x , x ′ ∈ Sd−1

A related kernel: Neural Tangent Kernel (NTK, Jacot et al., 2018): train both wi
and vi near random initialization
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Group-Invariant Models through Pooling
Pooling operator

SG f (x) := 1
|G |

∑
σ∈G

f (σ · x)

Convolutional network with pooling (group averaging)

fG(x) = 〈v , 1
|G |

∑
σ∈G

ϕ(σ · x)︸ ︷︷ ︸
Φ(x)

〉, with ϕ(x) = 1√
mρ(Wx)

Invariant kernel (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

KG(x , x ′) = 1
|G |

∑
σ∈G

κ(〈σ · x , x ′〉), when x , x ′ ∈ Sd−1

When κ = κρ, this corresponds to Random Features kernel for fG

Alberto Bietti Benefits of Convolutional Kernels Harvard, March 8, 2022 10 / 29



Group-Invariant Models through Pooling
Pooling operator

SG f (x) := 1
|G |

∑
σ∈G

f (σ · x)

Convolutional network with pooling (group averaging)

fG(x) = 〈v , 1
|G |

∑
σ∈G

ϕ(σ · x)︸ ︷︷ ︸
Φ(x)

〉, with ϕ(x) = 1√
mρ(Wx)

Invariant kernel (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

KG(x , x ′) = 1
|G |

∑
σ∈G

κ(〈σ · x , x ′〉), when x , x ′ ∈ Sd−1

When κ = κρ, this corresponds to Random Features kernel for fG

Alberto Bietti Benefits of Convolutional Kernels Harvard, March 8, 2022 10 / 29



Harmonic analysis on the sphere

τ : uniform distribution on the sphere Sd−1

L2(τ) basis of spherical harmonics Yk,j

N(d , k) harmonics of degree k, form a basis of Vd ,k

Example (3/6)

Definition (Spherical harmonics)

A homogeneous polynomial of degree k � 0 in Rd whose Laplacian
vanishes is called a homogeneous harmonic of order k .

A spherical harmonic of order k is a homogeneous harmonic of order
k on the unit sphere Sd�1

The set Yk(d) of spherical harmonics is a vector space of dimension

N(n, k) = dim (Yk(d)) =
(2k + d � 2)(k + d � 3)!

k!(d � 2)!
.

237 / 652

Dot-product kernels and their RKHS K (x , x ′) = κ(〈x , x ′〉)

H =

f =
∞∑

k=0

N(d ,k)∑
j=1

ak,jYk,j(·) s.t. ‖f ‖2H :=
∑
k,j

a2k,j
µk

<∞


integral operator: TK f (x) =

∫
κ(〈x , y〉)f (y)dτ(y)

µk = cd
∫ 1
−1 κ(t)Pd ,k(t)(1−t2)

d−3
2 dt: eigenvalues of TK , with multiplicity N(d , k)

Pd ,k : Legendre/Gegenbauer polynomial

decay ↔ regularity: µk � k−2β ↔ ‖f ‖H = ‖T−1/2K f ‖L2(τ) ≈ ‖∆
β/2
Sd−1f ‖L2(τ)
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Invariant harmonics
Key properties of SG for group-invariant case (Mei, Misiakiewicz, and Montanari, 2021)

SG acts as projection from Vd ,k (dim N(d , k)) to V d ,k (dim N(d , k))

The number of invariant spherical harmonics N can be estimated using:

γd (k) := N(d , k)
N(d , k) = 1

|G |
∑
σ∈G

Ex [Pd ,k(〈σ · x , x〉)].

We have TKG = SGTK

Previous work (Mei et al., 2021)
High-dimensional regime d →∞ with n � d s

γd (k) = Θd (d−α) =⇒ sample complexity gain by factor dα

Studied for translations: gains by a factor d
Beyond translations? What about groups/sets G exponential in d?
tl;dr: we consider d fixed, n→∞, show (asymptotic) gains by a factor |G |
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Counting invariant harmonics

γd (k) := N(d , k)
N(d , k) = 1

|G |
∑
σ∈G

Ex [Pd ,k(〈σ · x , x〉)].

Proposition ((B., Venturi, and Bruna, 2021))
As k →∞, we have

γd (k) = 1
|G | + O(k−d+χ),

where χ is the maximal number of cycles of any permutation σ ∈ G \ {Id}.

Relies on singularity analysis of density of 〈σ · x , x〉 (Saldanha and Tomei, 1996)
I Decay ↔ nature of singularities ↔ eigenvalue multiplicities ↔ cycle statistics

χ can be large (= d − 1) for some groups (e.g., σ = (1 2))
Can use upper bounds with faster decays but larger constants
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Counting invariant harmonics: examples
Translations (cyclic group)

γd (k) = d−1 + O(k−d/2+6)

Only linear gain in d , but with a fast rate

Block translations: d = s · r , with r cycles of length s

γd (k) = 1
sr + O(k−s/2+1)

For s = 2, exponential gains (|G | = 2d/2) but slow rate

Full permutation group: For any s,

γd (k) ≤ 2
(s + 1)! + O(k−d/2+max(s/2,6))

For s = d/2, exponential gains with fast rate
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Sample complexity of invariant kernel: assumptions

Kernel Ridge Regression

f̂λ := arg min
f ∈HG

1
n

n∑
i=1

(yi − f (xi ))2 + λ‖f ‖2HG

Problem assumptions
(data) x ∼ τ , E[y |x ] = f ∗(x), Var(y |x) ≤ σ2

(G-invariance) f ∗ is G-invariant

(capacity) λm(TK ) ≤ CK m−α
I e.g., α = 2s

d−1 for Sobolev space of order s with s > d−1
2

(source) ‖T−r
K f ∗‖L2 ≤ Cf ∗

I e.g., if 2αr = 2s
d−1 , f ∗ belongs to Sobolev space of order s
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Sample complexity of invariant kernel: assumptions
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Sample complexity of invariant kernel: generalization

Theorem ((B., Venturi, and Bruna, 2021))

Let `n := sup{` :
∑

k≤` N(d , k) . νd (`)
2αr

2αr+1 n
1

2αr+1 }, where νd (`) := supk≥` γd (k).

E ‖f̂ − f ∗‖2L2(dτ) ≤ C
(
νd (`n)

n

) 2αr
2αr+1

Replace νd (`n) by 1 for non-invariant kernel.

We have νd (`n) = 1
|G| + O

(
n

−β
(d−1)(2αr+1)+2βαr

)
when γd (k) = 1/|G |+ O(k−β)

=⇒ Improvement in sample complexity by a factor |G |!
C may depend on d , but is optimal in a minimax sense over non-invariant f ∗
Main ideas:

I Approximation error: same as non-invariant kernel
I Estimation error: pick `n such that NKG (λn) . νd (`n)NK (λn) (N (λn): degrees of freedom)
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Synthetic experiments
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Figure: Comparison of KRR with invariant and non-invariant kernels.
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Geometric stability to deformations

Deformations
φ : Ω→ Ω: C1-diffeomorphism (e.g., Ω = R2)
φ · x(u) = x(φ−1(u)): action operator
Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Deformations
φ : Ω→ Ω: C1-diffeomorphism (e.g., Ω = R2)
φ · x(u) = x(φ−1(u)): action operator
Much richer group of transformations than translations

Geometric stability
A function f (·) is stable (Mallat, 2012) if:

f (φ · x) ≈ f (x) when ‖∇φ− I‖∞ ≤ ε

In particular, near-invariance to translations (∇φ = I)
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Geometric stability to deformations

Deformations
φ : Ω→ Ω: C1-diffeomorphism (e.g., Ω = R2)
φ · x(u) = x(φ−1(u)): action operator
Much richer group of transformations than translations

Toy model for deformations (“small ‖∇σ − Id‖”)

Gε := {σ ∈ Sd : |σ(u)− σ(u′)− (u − u′)| ≤ ε|u − u′|}

For ε = 2, we have γd (k) ≤ τd + O(k−Θ(d)), with τ < 1
I gains by a factor exponential in d with a fast rate
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Stability

SG is no longer a projection, but its eigenvalues λk,j on Vd ,k satisfy

γd (k) :=
∑N(d ,k)

j=1 λk,j

N(d , k) = 1
|G |

∑
σ∈G

Ex [Pd ,k(〈σ · x , x〉)]

Source condition adapted to SG : f ∗ = Sr
GT r

K g∗ with ‖g∗‖L2 ≤ Cf ∗

Theorem ((B., Venturi, and Bruna, 2021))

Let `n := sup{` :
∑

k≤` N(d , k) . νd (`)
2r

2αr+1 n
1

2αr+1 }, where νd (`) := supk≥` γd (k).

E ‖f̂ − f ∗‖2L2(τ) ≤ C
(
νd (`n)1/α

n

) 2αr
2αr+1
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Discussion

Curse of dimensionality
For Lipschitz targets, cursed rate n−

2αr
2αr+1 = n−

2
2+d−1 (unimprovable)

Improving this rate requires more structural assumptions, which may be exploited with
adaptivity (Bach, 2017), or better architectures (up next!)

Gains are asymptotic, can we get non-asymptotic?
For large groups, pooling is computationally costly

I More structure may help, e.g., stability through depth (B. and Mairal, 2019; Bruna and
Mallat, 2013; Mallat, 2012)
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Outline

1 Sample complexity under invariance and stability (B., Venturi, and Bruna, 2021)

2 Locality and depth (B., 2021)
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Locality

Q: Can locality improve statistical efficiency?
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One-Layer Convolutional Kernels on Patches

x

xu

ϕ

1D signal: x [u], u ∈ Ω
Patches: xu = (x [u], . . . , x [u + p − 1]) ∈ Rp, features ϕ(xu) = 1√

mρ(Wxu), m→∞

Convolutional network:

with

f (x) =
∑
u∈Ω
〈vu, ϕ(xu)〉 =: 〈v ,Φ(x)〉

Convolutional kernel (with k(z , z ′) = 〈ϕ(z), ϕ(z ′)〉 the RF patch kernel)

K (x , x ′) =
∑
u∈Ω

k(xu, x ′u)
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One-Layer Convolutional Kernels on Patches

x

xu

ϕ

h

1D signal: x [u], u ∈ Ω
Patches: xu = (x [u], . . . , x [u + p − 1]) ∈ Rp, features ϕ(xu) = 1√

mρ(Wxu), m→∞
Convolutional network: with pooling filter h

fh(x) =
∑
u∈Ω
〈vu,

∑
v

h[u − v ]ϕ(xv )〉

Convolutional kernel (with k(z , z ′) = 〈ϕ(z), ϕ(z ′)〉 the RF patch kernel)

Kh(x , x ′) =
∑
u∈Ω

∑
v ,v ′

h[u − v ]h[u − v ′]k(xv , x ′v ′)
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One-Layer Convolutional Kernels on Patches

x

xu

ϕ

h = 1/|Ω|

1D signal: x [u], u ∈ Ω
Patches: xu = (x [u], . . . , x [u + p − 1]) ∈ Rp, features ϕ(xu) = 1√

mρ(Wxu), m→∞
Convolutional network: with global pooling (h = 1/|Ω|)

fh(x) =
∑
u∈Ω
〈vu, |Ω|−1

∑
v
ϕ(xv )〉

Convolutional kernel (with k(z , z ′) = 〈ϕ(z), ϕ(z ′)〉 the RF patch kernel)

Kh(x , x ′) = |Ω|−1
∑
v ,v ′

k(xv , x ′v ′)

Alberto Bietti Benefits of Convolutional Kernels Harvard, March 8, 2022 23 / 29



One-Layer Convolutional Kernels on Patches

x

xu

ϕ

h = δ

1D signal: x [u], u ∈ Ω
Patches: xu = (x [u], . . . , x [u + p − 1]) ∈ Rp, features ϕ(xu) = 1√

mρ(Wxu), m→∞
Convolutional network: with no pooling (Dirac h = δ)

fh(x) =
∑
u∈Ω
〈vu, ϕ(xu)〉

Convolutional kernel (with k(z , z ′) = 〈ϕ(z), ϕ(z ′)〉 the RF patch kernel)

Kh(x , x ′) =
∑
u∈Ω

k(xu, x ′u)
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Benefits of Locality and Pooling

Assume additive, invariant target f ∗(x) =
∑

u∈Ω g∗(xu)
Consider the kernels:
(global pool) Kg (x , x ′) =

∑
v ,v ′

k(xv , x ′v ′) vs (no pool) Kδ(x , x ′) =
∑

u
k(xu, x ′u)

Theorem (Statistical rates with one-layer (B., 2021))
Assume g∗ is s-smooth, non-overlapping patches on Sp−1. KRR with Kh yields

ER(f̂g ,n)− R(f ∗) ≤ Cp

(1
n

) 2s
2s+p−1

vs ER(f̂δ,n)− R(f ∗) ≤ Cp

( |Ω|
n

) 2s
2s+p−1

Patch dimension p � d = p|Ω| in the rate (breaks the curse!)
With localized pooling, we can also learn f ∗(x) =

∑
u∈Ω g∗u (xu) with different g∗u

For overlapping patches, see (Favero et al., 2021; Misiakiewicz and Mei, 2021)
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Long-Range Interactions

Q: How to capture interactions between multiple patches?

→ “add more layers”! Hierarchical kernels (Cho and Saul, 2009):

K (x , x ′) =
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Long-Range Interactions

Q: How to capture interactions between multiple patches?

→ “add more layers”! Hierarchical kernels (Cho and Saul, 2009):

K (x , x ′) = 〈ϕ2(ϕ1(x)), ϕ2(ϕ1(x ′))〉
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Long-Range Interactions

Q: How to capture interactions between multiple patches?

→ “add more layers”! Hierarchical kernels (Cho and Saul, 2009):

K (x , x ′) = κ2(κ1(〈x , x ′〉))
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RKHS of Two-Layer Convolutional Kernels (B., 2021)

x

xu ∈ H|S1|
0

u 7→ ϕ1(xu)

κ1

h1

Φ1(x)

∈ H|S2|
1

κ2

h2

Φ2(x)

ϕ2/κ2 captures interactions between patches

Take κ2(u) = u2. RKHS contains

f (x) =
∑
|u−v |≤r

gu,v (xu, xv )

Receptive field r depends on h1 and s2
gu,v ∈ H1 ⊗H1

Pooling h1: invariance to relative position
Pooling h2: invariance to global position
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Is it a Good Model for Cifar10? (B., 2021)

2-layers, patch sizes (3, 5), Gaussian pooling factors (2,5).
κ1 κ2 Test acc.

Gauss Gauss 88.3%
Gauss Poly4 88.3%
Gauss Poly3 88.2%
Gauss Poly2 87.4%
Gauss Linear 80.9%

Polynomial kernels at second layer suffice!
State-of-the-art for kernels on Cifar10 (at a large computational cost...)

I Shankar et al. (2020): 88.2% with 10 layers (90% with data augmentation)
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Statistical Benefits with Two Layers (B., 2021)

Consider invariant f ∗(x) =
∑

u,v∈Ω g∗(xu, xv )
Assume Ex [k(xu, xu′)k(xv , xv ′)] ≤ ε if u 6= u′ or v 6= v ′

Compare different pooling layers (h1, h2 ∈ {global, δ}) and patch sizes (s2):

Excess risk bounds when g∗ ∈ Hk ⊗Hk

h1 h2 s2 R(f̂n)− R(f ∗) (for ε→ 0)
δ δ |Ω| ‖g∗‖|Ω|2.5/

√
n

δ global |Ω| ‖g∗‖|Ω|2/
√

n
global global |Ω| ‖g∗‖|Ω|/

√
n

global global or δ 1 ‖g∗‖/
√

n

Polynomial gains in |Ω| when using the right architecture!
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Conclusion and perspectives

Summary
Improved sample complexity for invariance and stability through pooling
Locality breaks the curse of dimensionality
Depth and pooling in convolutional models captures rich interaction models with
invariances

Future directions
Empirical benefits for kernels beyond two-layers?
Invariance groups need to be built-in, can we adapt to them?
Adaptivity to structures in multi-layer models:

I Low-dimensional structures (Gabor) at first layer?
I More structured interactions at second layer?
I Can optimization achieve these?

Thank you!
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