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Mechanisms inside Transformer LLMs

Reasoning over context
o Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
o A “biology" of circuits found by mechanistic interpretability (e.g., Anthropic, 2025)
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Mechanisms inside Transformer LLMs

Reasoning over context

o Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)

o A “biology" of circuits found by mechanistic interpretability (e.g., Anthropic, 2025)

Knowledge storage
o Memorization, factual recall, parameter scaling

» (Geva et al., 2020; Meng et al., 2022; Allen-Zhu and Li, 2024)

o Learn rules that help higher-level reasoning

6 Dan Hendrycks € @DanHendrycks - Mar 14, 2023

It knows many esoteric facts (e.g., the meaning of obscure songs, knows
what area a researcher works in, can contrast ML optimizers like Adam vs
AdamW like in a PhD oral exam, and so on).

My rule-of-thumb is that

"if it's on the internet 5 or more times, GPT-4 remembers it."
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Mechanisms inside Transformer LLMs

Reasoning over context
o Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
o A “biology" of circuits found by mechanistic interpretability (e.g., Anthropic, 2025)

Knowledge storage
o Memorization, factual recall, parameter scaling
» (Geva et al., 2020; Meng et al., 2022; Allen-Zhu and Li, 2024)

o Learn rules that help higher-level reasoning

Q: How do these arise during training?
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Emergence and training dynamics

Emergent capabilities and sequential learning (Wei et al. 2022; Power et al., 2022; Saxe et al. 2013)

(A) Math word (B) Instruction
problems following (C) 8-digit addition 53 (D) Calibration
= 70 100 'z
I % Instruction Scratchpad 5 100
~ 90 < tuning 210
> Chair 5 60 < 80 g
g h H X ]
£ 15 ; 5 5
=1 A >, 60 5}
15 [ Q =
S s 50 o & 8
<< 10 - instruction = 40 2
v =) tuning g &
Z 5 g 10 < 20 =
= No chain No = 10
0 30 0 . . & . . .
102! 1022 1023 1024 102! 1022 1023 1024 101 1020 102 1022 10%  10%*

Model scale (training FLOPs)

Alberto Bietti Memory Mechanisms and Emergence in Transformers ICCV MemVis 2025 3/22



Emergence and training dynamics

Emergent capabilities and sequential learning (Wei et al. 2022; Power et al., 2022; Saxe et al. 2013)

Modular Division (training on 50% of data)
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Emergence and training dynamics

Emergent capabilities and sequential learning (Wei et al. 2022; Power et al., 2022; Saxe et al. 2013)

Modular Division (training on 50% of data)

100 — train 10
— val
0 0.8
06
> 80 w
g a
3 =
g 2 0.4
20 0.2
o 0.0
10! 107 100 106 108 108 0 50 100 150 200 250
Optimization Steps Epoch

Why do we care about understanding?

o Highlight role of data, training algorithm, architecture
o = improve training methodology
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What about computer vision?

A mix of continuous and discrete (?)
o Low-level processing usually involves continuous operations (e.g., Gabor filters)
o Some evidence for learned circuits
o Models also involve discrete semantic concepts and knowledge (especially VLMs)
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What about computer vision?

A mix of continuous and discrete (?)

o Low-level processing usually involves continuous operations (e.g., Gabor filters)

o Some evidence for learned circuits

o Models also involve discrete semantic concepts and knowledge (especially VLMs)

Alberto Bietti
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What about computer vision?

A mix of continuous and discrete (?)
o Low-level processing usually involves continuous operations (e.g., Gabor filters)
o Some evidence for learned circuits

o Models also involve discrete semantic concepts and knowledge (especially VLMs)
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Transformer setup

Input: sequence of discrete tokens (z1,...,z7) € [N]
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Transformer setup

Input: sequence of discrete tokens (z1,...,z7) € [N]
Embeddings

o input e, positional p;, output Uy, in R4
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Transformer setup

Input: sequence of discrete tokens (z1,...,z7) € [N]
Embeddings

o input e, positional p;, output Uy, in R4

Residual streams (Elhage et al., 2021)
o embed each token z; € [N] as x; := e,, + p;
o (causal) self-attention x; := x¢ + MHSA(x¢, x1.¢)

t exp(. ' WET Wix:)

H
MHSA(X s ) = Bh WhT Wh , with Bh —
t 2, 2o S Sy exp( T WET W)

where Wy, Wo, Wy, Wo € R%*9 (key/query/value/output matrices)
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Transformer setup

Input: sequence of discrete tokens (z1,...,z7) € [N]
Embeddings

o input e, positional p;, output Uy, in R4

Residual streams (Elhage et al., 2021)
o embed each token z; € [N] as x; := e,, + p;
o (causal) self-attention x; := x¢ + MHSA(x¢, x1.¢)
o feed-forward x; := x; + MLP(x;)

MLP(x:) = Vo (Ux:)

where U, V € R™*9 often m = 4d

Alberto Bietti Memory Mechanisms and Emergence in Transformers ICCV MemVis 2025

5/22



Transformer setup

Input: sequence of discrete tokens (z1,...,z7) € [N]
Embeddings

o input e, positional p;, output Uy, in R4

Residual streams (Elhage et al., 2021)
o embed each token z; € [N] as x; := e,, + p;
o (causal) self-attention x; := x¢ + MHSA(x¢, x1.¢)
o feed-forward x; := x; + MLP(x;)

o residual stream x; is a sum of embeddings/"features”
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Transformer setup

Input: sequence of discrete tokens (z1,...,z7) € [N]
Embeddings

o input e, positional p;, output Uy, in R4

Residual streams (Elhage et al., 2021)

o embed each token z; € [N] as x; := e,, + p;
(causal) self-attention x; := x; + MHSA(x¢, x1:¢)
feed-forward x; := x; + MLP(x;)

residual stream x; is a sum of embeddings/“features”

©

©

©

Next-token prediction

o cross-entropy loss

Z U(zt11; (UJTXt)j)

t<T
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QOutline

(@ Weights as memories

2) Context as memory



Weights as associative memories
o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

le. =1 and e e =0

|uy||~1 and wu,"u, =0
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Weights as associative memories
o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

le. =1 and e e =0

|uy||~1 and wu,"u, =0
o For pairwise associations z — f(z) with z € M, define:

W= 3 ue:’
zeM
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Weights as associative memories
o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:
le. =1 and e e =0
|uy||~1 and wu,"u, =0
o For pairwise associations z — f(z) with z € M, define:

W = Z uf(z)eZT = u},—l—WeZ ~ 1{y =f(2)}
zeM
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Weights as associative memories
o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

le. =1 and e e =0

|uy||~1 and wu,"u, =0

o For pairwise associations z — f(z) with z € M, define:

W = Z uf(z)eZT = u},—l—WeZ ~ 1{y =f(2)}
zeM

o Examples in Transformers:
» Logits in attention heads: x, Wikqgxq
» Logits in next-token prediction: uyT Uo(Vx;) or uyT Wov xk
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Weights as associative memories
o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

le. =1 and e e =0

|uy||~1 and wu,"u, =0

o For pairwise associations z — f(z) with z € M, define:

W = Z uf(z)eZT = uyTWeZ ~ 1{y =f(2)}
zeM

o Examples in Transformers:
» Logits in attention heads: x, Wikqgxq
» Logits in next-token prediction: uyT Uo(Vx;) or uyT Wov xk
o For random embeddings, capacity ~ number of parameters
» See Cabannes et al. (2024); Nichani et al. (2025), extends to MLPs
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Weights as associative memories
o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

le. =1 and e e =0

|uy||~1 and wu,"u, =0

o For pairwise associations z — f(z) with z € M, define:

W = Z uf(z)eZT = u},—l—WeZ ~ 1{y =f(2)}
zeM

o Examples in Transformers:
» Logits in attention heads: x, Wikqgxq
» Logits in next-token prediction: uyT Uo(Vx;) or uyT Wov xk
o For random embeddings, capacity ~ number of parameters
» See Cabannes et al. (2024); Nichani et al. (2025), extends to MLPs

o Related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969); Iscen et al. (2017)

Alberto Bietti Memory Mechanisms and Emergence in Transformers ICCV MemVis 2025 7/22



Gradients lead to associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTWGZ?

with ¢ the cross-entropy loss and e,, uy input/output embeddings.
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Gradients lead to associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1
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Gradients lead to associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
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Gradients lead to associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings

W, = ;\7/; (]1{;‘*(2) =k} — /{/) me,' = u Wie, ~ % (]l{f*(Z) =k} — ,{,)
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Gradients lead to associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings

W, = ;\7/; (]1{;‘*(2) =k} — /{/) me,' = u Wie, ~ % (]l{f*(Z) =k} — ,{,)

» Corollary: f(z) = arg maxy u, " Whe, has near-perfect accuracy
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Gradients lead to associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings

W, = ;\7/; (]1{;‘*(2) =k} — /{/) me,' = u Wie, ~ % (]l{f*(Z) =k} — ,{,)

» Corollary: f(z) = arg maxy u, " Whe, has near-perfect accuracy

o More generally, replace vy by “backward” vector

Alberto Bietti Memory Mechanisms and Emergence in Transformers ICCV MemVis 2025 8/22



Gradients lead to associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(Z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings

W, = ;\7/; (]1{;‘*(2) =k} — /{/) me,' = u Wie, ~ % (]l{f*(Z) =k} — ,{,)

» Corollary: ?(z) = arg maxy ;| Wie, has near-perfect accuracy
o More generally, replace vy by “backward” vector
Note: related to (Ba et al., 2022; Damian et al., 2022; Oymak et al., 2023; Yang and Hu, 2021)
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Application to factual recall: toy model

The capital of France is Paris

©

s € §: subject token
o r € R: relation token
a*(s,r) € A,: attribute/fact to be stored
zi € N: noise tokens

()

©
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Application to factual recall: toy model

The capital of France is Paris

©

s € §: subject token
o r € R: relation token
a*(s,r) € A,: attribute/fact to be stored
zi € N noise tokens

()

©

Q: How do Transformers solve this?
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Two mechanisms

o One-layer Transformer, with or without MLP, random embeddings
o Embedding dimension d, head dimension d,, MLP width m, H heads
Theorem (Nichani et al., 2025, informal)

A one-layer Transformer with or without MLP can achieve perfect factual recall with O(SR)
parameters. (note: attention-only needs large enough d)
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Two mechanisms

o One-layer Transformer, with or without MLP, random embeddings

o Embedding dimension d, head dimension d,, MLP width m, H heads

Theorem (Nichani et al., 2025, informal)

A one-layer Transformer with or without MLP can achieve perfect factual recall with O(SR)

parameters. (note: attention-only needs large enough d)

Attention-only Construction

|:| Head A (attends to s)
|z| XTS(XWEWoxr) —» (s) —» WTW
Rest of heads attend to EOS

L] -~~
D Head £, (attends to l)
XT5<XWTWQxT) —>¢(r)—> WTWV

El -1 1:]

)

]
=
&

Do, ¥@ + X,y $@)

Alberto Bietti Memory Mechanisms and Emergence in Transformers

e ]

ICCV MemVis 2025 10 /22



Two mechanisms

o One-layer Transformer, with or without MLP, random embeddings
o Embedding dimension d, head dimension d,, MLP width m, H heads

Theorem (Nichani et al., 2025, informal)

A one-layer Transformer with or without MLP can achieve perfect factual recall with O(SR)
parameters. (note: attention-only needs large enough d)

Attention + MLP Construction

[d/d, | heads attends to s -
&(s)

SO
Rest of heads attend Io EOS E—» MLP Associative Memory
XTS(XWTWQXT) —» ¢(EOS —>| WTWV (r] X VT(F(WX) -

[d/d,|heads attends to r
XTS(XWEWpxy) [—> —»

[
[]
]

EOS
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Two mechanisms

o One-layer Transformer, with or without MLP, random embeddings

o Embedding dimension d, head dimension d,, MLP width m, H heads

Theorem (Nichani et al., 2025, informal)

A one-layer Transformer with or without MLP can achieve perfect factual recall with O(SR)
parameters. (note: attention-only needs large enough d)
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Training dynamics
o One-layer Transformer with linear attention and one-hot embeddings
o Gradient flow with initialization Woy(a, z), wkq(z) = a > 0

Theorem (Nichani et al., 2025, informal)
o There is global convergence to zero loss

o There is an intermediate phase where the model predicts using p(a|r) instead of p(als, r)
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Training dynamics

o One-layer Transformer with linear attention and one-hot embeddings
o Gradient flow with initialization Woy(a, z), wkq(z) = a > 0

Theorem (Nichani et al., 2025, informal)

o There is global convergence to zero loss
o There is an intermediate phase where the model predicts using p(a|r) instead of p(als, r)

o Intermediate phase corresponds to hallucination (uniform over A,, ignoring s)
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(@ Context as memory



A toy data model for in-context retrieval

When White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.
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A toy data model for in-context retrieval

When White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix trigger tokens: qi,...,qk
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A toy data model for in-context retrieval

When White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix trigger tokens: qi,...,qk
Sample each sequence zi.7 € [N]7 as follows

o Output tokens: oy ~ mo(+|gx) (random)

Alberto Bietti Memory Mechanisms and Emergence in Transformers ICCV MemVis 2025 13 /22



A toy data model for in-context retrieval

When White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix e P
Sample each sequence zi.7 € [N]7 as follows
o Output tokens: oy ~ mo(+|gx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(:|z¢—1) with

1{j=o}, ifi=q, k=1,... K

PUD=\motil), opw.
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A toy data model for in-context retrieval

When White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a
output

Fix e P
Sample each sequence zi.7 € [N]7 as follows
o Output tokens: oy ~ mo(+|gx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(:|z¢—1) with

1{j=o}, ifi=q, k=1,... K

PUD=\motil), opw.

7p: global bigrams model (estimated from Karpathy's character-level Shakespeare)
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Transformers on the bigram task
When IVir White went ... then

T

output
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Transformers on the bigram task

When Vir White went ... then Vir
output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions
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Transformers on the bigram task

When Vir White went ... then Vir
output
o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions

o 2-layer transformer succeeds: ~ 99% accuracy

See (Sanford, Hsu, and Telgarsky, 2023, 2024b) for representational lower bounds
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, White} ... {T, Vr, White}
. {t+1, Mr, White} ... {T, Vir}
/ k_/
{t, M} {t+1, White} o AT

o

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
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/ k_/
{t, M} {t+1, White} o AT

o

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
o 2nd layer: induction head
» attends to output of previous token head, copies attended token
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, White} ... {T, Vr, White}
. {t+1, Mr, White} ... {T, Vir}
/ k_/
{t, M} {t+1, White} o AT

o

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
o 2nd layer: induction head
» attends to output of previous token head, copies attended token

o Matches observed attention scores:
1
", ',
| |
l.

n "

rsabtslLabtsl, ab
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Induction head with associative memory weights

bz [ ] [+ ]

wg(a)
Attn2: >, wy (k)wg (k)" 2172,

Layer 1 ‘ * ‘ wg(a) ‘

wy(a) [ wg(b)

IVIII‘I, -

Attnl: > ps_1p] Residual | Predlctmn

/\
Layer 0 ‘ Pt—1 ‘ wg(a) ‘ ‘ ‘ ub(b
Sequence ’—2—‘ b fi

.

1 T T

Wiq = ZPrPt—lv WKQ = Z exdr, Wiy = Z Uk »
t=2 keqQ k=1

o Random embeddings ek, g, random matrix W}, (frozen at init)

o Remapped previous tokens: & := W}, ek
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Induction head with associative memory weights

Layer 2 ‘ * ‘ * ‘ ‘ * ‘ * ‘

Attn2: 3, wi(b)wp(k)" _.--* WZH‘ S wu(k)wp(k)T

Layer 1 ‘ * ‘ wg(a) ‘

wi(a) [u:E(b) ‘
P

WAW 7"

Attnl: 3 ps_1p,] Residual | Predlctmn

/\
Layer 0 ‘ Pi—1 ‘ wg(a) ‘ ‘ ‘ wg(b) ‘
Sequence a b ’77

.

1 T T

Wiq = ZPrPt—lv WKQ = Z g, Wiy = Z Uk »
t=2 keqQ k=1

o Random embeddings ek, g, random matrix W}, (frozen at init)

o Remapped previous tokens: & := W}, ek
Q: Does this match practice?
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Empirically probing the dynamics

Train only W,%Q, W,%Q, W(%V, loss on predictable tokens after trigger

2
. freeze W3 freeze W} and W2 freeze W3 freeze W}
10 10- 10- 1o0-
9
£ 08 0.8- 08- 0.8-
g os- 06- 06- 06-
% 0a- 04- 04- 04 ]
S 02 02- 02- 02-
00 ; i ; e 0.0 e e e e 0 e e = e
0 200 400 600 800 1000 O 200 400 600 80 1000 0 200 400 600 800 1000 O 200 400 600 800 1000
10- 10- 10- 10-
p— Jp———
=08 0s e o 0 /
o - o - -
H 06 06 / 06
Soa 0a- 04- 0a- — woz
g — w2
£o2 02- / 02- 02- WKL (t<64)
— wa
00 00- 00- 00-

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration iteration iteration

o “Memory recall probes”: for target memory W, = Z,{\il u,-e,-T, compute

M

1 N
R(W,W,) = o 1{i = arg max uJ-T We;}
1 J

i=
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Train only W,%Q, W,%Q, W(%V, loss on predictable tokens after trigger

2
) freeze W3 freeze W} and W2 freeze W3 freeze W}
10 10- 10- 1o0-
9
£ 08 0.8- 08- 0.8-
g os- 06- 06- 06-
% 0a- 04- 0a- 04 ]
So2- 0.2- 02- 0.2-
00 ; i ; e 0.0 e e e e 0 e e = e
0 200 400 600 800 1000 O 200 400 600 80 1000 0 200 400 600 800 1000 O 200 400 600 800 1000
10- 10- 10- 10-
— s p—_— e
5 o8- 08 o 0.8+ /
o - o - -
H 06 06 / 06
Soa 0a- 04- 0a- — woz
g — w2
E 02 02- /l 02- 02- WKL (t<64)
— wa
00 00- 00- 00-

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration iteration iteration

o “Memory recall probes”: for target memory W, = Z,{\il u,-e,-T, compute

M

1 N
R(W,W,) = o 1{i = arg max uJ-T We;}
1 J

i=

o Natural learning “order": W(%V first, W,%Q next, W&Q last
o Joint learning is faster

Alberto Bietti Memory Mechanisms and Emergence in Transformers ICCV MemVis 2025 17 /22



Gradient steps for the bigram task

Theorem (B. et al., 2023, informal)

In a simplified setup, we can recover the desired associative memories with 3 sequential
gradient steps on the population loss: first on Wg,,, then W, then Wi,.
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Gradient steps for the bigram task

Theorem (B. et al., 2023, informal)

In a simplified setup, we can recover the desired associative memories with 3 sequential
gradient steps on the population loss: first on Wg,,, then W, then Wi,.

Key ideas
o Attention is uniform at initialization = inputs are sums of embeddings
o W(%V: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z7

1/2 . .
o WKé . correct associations lead to more focused attention
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Gradient steps for the bigram task

Theorem (B. et al., 2023, informal)

In a simplified setup, we can recover the desired associative memories with 3 sequential
gradient steps on the population loss: first on Wg,,, then W, then Wi,.

Key ideas
o Attention is uniform at initialization = inputs are sums of embeddings
o W(%V: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z7

1/2 . .
o WKé . correct associations lead to more focused attention

see also (Snell et al., 2021; Oymak et al., 2023)
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Distributional vs in-context associations

the
Madrid is located in {
Spain

S

X y

o Distributional associations (e.g., common bigrams like “in the”) are learned much
faster than in-context reasoning, tend to be stored in late MLPs:
» “Madrid is located in" — {the, Spain} on Pythia-1B
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Distributional vs in-context associations

-is located

- in-context reasoning
S

X y

o Distributional associations (e.g., common bigrams like “in the") are learned much
faster than in-context reasoning, tend to be stored in late MLPs:
» “Madrid is located in" — {the, Spain} on Pythia-1B
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Distributional vs in-context associations

Factual: average probability

the
(Madrid)is located in {
-

S

X y

—— 'Spain" full
S == 'Spain': LASER

10° 10’ 10" 10°
training steps

10

o Distributional associations (e.g., common bigrams like “in the") are learned much
faster than in-context reasoning, tend to be stored in late MLPs:
» “Madrid is located in" — {the, Spain} on Pythia-1B
» Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context
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Distributional vs in-context associations

Factual: average probability

the
(Madrid)is located in {
-

S == 'Spain": LASER

S

X y

! 10° 10° 10* 10°

training steps

10

o Distributional associations (e.g., common bigrams like “in the") are learned much
faster than in-context reasoning, tend to be stored in late MLPs:
» “Madrid is located in" — {the, Spain} on Pythia-1B
» Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context
o We study this on simple induction head task + noisy bigram token z (“the"):

~BBdkie. . BE. . EE. . BE. 2. -EE..
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Distributional vs in-context associations

Factual: average probability

10
the
(Madrid)is located in
=
o —— 'Spain: LASER
i e
. —,—y 10 10 10 10 10 10

training steps

o Distributional associations (e.g., common bigrams like “in the") are learned much
faster than in-context reasoning, tend to be stored in late MLPs:
» “Madrid is located in" — {the, Spain} on Pythia-1B
» Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context
o We study this on simple induction head task + noisy bigram token z (“the"):

~BBdkie. . BE. . EE. . BE. 2. -EE..

Theorem (Chen, Bruna, and B., 2024, informal)

In toy model above, feed-forward layer learns global bigram after O(1) samples, attention
after O(N) samples due to noise.
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Multi-step reasoning (Wang et al., 2025)
o Composing in-context and in-weights knowledge:

John is in the . Mary is in the . He holds the apple.
She holds the ball. Where is the fruit?
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Multi-step reasoning (Wang et al., 2025)

o Composing in-context and in-weights knowledge:

John is in the . Mary is in the . He holds the apple.
She holds the ball. Where is the fruit?
» In-context associations: (apple — He) and (John — )

» In-weights associations: (apple — fruit) and (John — He)
» Composition of 2 hops, harder than the (1-hop) induction head task: (Mr — White)
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Multi-step reasoning (Wang et al., 2025)

o Composing in-context and in-weights knowledge:

John is in the . Mary is in the . He holds the apple.
She holds the ball. Where is the fruit?
» In-context associations: (apple — He) and (John — )

» In-weights associations: (apple — fruit) and (John — He)
» Composition of 2 hops, harder than the (1-hop) induction head task: (Mr — White)

o We consider k-hop reasoning: compose k in-context and k in-weights functions

o Can be solved wih just log k transformer layers (see also Liu et al., 2023; Sanford et al.,
2024a)
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Multi-step reasoning (Wang et al., 2025)

o Composing in-context and in-weights knowledge:

John is in the . Mary is in the . He holds the apple.
She holds the ball. Where is the fruit?
» In-context associations: (apple — He) and (John — )

» In-weights associations: (apple — fruit) and (John — He)
» Composition of 2 hops, harder than the (1-hop) induction head task: (Mr — White)

o We consider k-hop reasoning: compose k in-context and k in-weights functions

o Can be solved wih just log k transformer layers (see also Liu et al., 2023; Sanford et al.,
2024a)

(- ,018)
t ¢ ¢ 1
T
A
e
AAANA
|

6, 6, 03 0y 05 O 07 Oy

Q: what about training dynamics?
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Training dynamics for k-hop reasoning
Failure of gradient descent (“statistical query” model)

Theorem (Wang, Nichani, et al., 2025+, informal) J

Gradient descent requires exponential in k samples or compute to solve the k-hop task.

Alberto Bietti Memory Mechanisms and Emergence in Transformers ICCV MemVis 2025 21/22
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Failure of gradient descent (“statistical query” model)

Gradient descent requires exponential in k samples or compute to solve the k-hop task.

Theorem (Wang, Nichani, et al., 2025+, informal) J

Easy-to-hard data to the rescue

Theorem (Wang, Nichani, et al., 2025+, informal)

When using easy-to-hard curriculum learning, or training on a mixture of hops, gradient
descent solves k-hop with O(k) samples/compute.
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Training dynamics for k-hop reasoning
Failure of gradient descent (“statistical query” model)

Theorem (Wang, Nichani, et al., 2025+, informal)

Gradient descent requires exponential in k samples or compute to solve the k-hop task. J

Easy-to-hard data to the rescue

Theorem (Wang, Nichani, et al., 2025+, informal)

When using easy-to-hard curriculum learning, or training on a mixture of hops, gradient

descent solves k-hop with O(k) samples/compute.

o Hops 1, 2, 4, etc. are learned incrementally (layer-wise)

hop) (No Mixing)

0 100 200 300 400 500 600
Epoch
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Concluding remarks
Mechanisms in Transformers
o Weights as associative memories
o (Multi-hop) reasoning with attention circuits
o Distributional associations vs reasoning in MLPs vs attention
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o Hallucinations as an intermediate training phase
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o MLPs learn faster than attention
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o (Multi-hop) reasoning with attention circuits
o Distributional associations vs reasoning in MLPs vs attention

Training dynamics elucidate phenomena
o Hallucinations as an intermediate training phase
o Multi-hop reasoning can be solved only with curriculum

o MLPs learn faster than attention

Future directions
o Reasoning vs knowledge in computer vision and physical sciences
o Learning embeddings
o External / agentic memory (Zhu et al., 2025)
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Concluding remarks
Mechanisms in Transformers
o Weights as associative memories
o (Multi-hop) reasoning with attention circuits
o Distributional associations vs reasoning in MLPs vs attention

Training dynamics elucidate phenomena
o Hallucinations as an intermediate training phase
o Multi-hop reasoning can be solved only with curriculum

o MLPs learn faster than attention

Future directions
o Reasoning vs knowledge in computer vision and physical sciences
o Learning embeddings
o External / agentic memory (Zhu et al., 2025)

Thank you!
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