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Structure for Neural Networks

Properties of usual deep learning problems (e.g., images, text, graphs, proteins)
High-dimensional data, representation learning
Optimization with gradient descent works
Expressive models (e.g., zero training error)

Data structure: consider regression problems with

y = F ∗(x) + noise

What are good structural assumptions on F ∗ for common problems?
How can neural networks learn efficiently with such structure?
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Prior Work

y = F ∗(x) + noise

Non-parametric classes: F ∗ is Lipschitz, β-smooth, etc.
I Efficient learning even in kernel regimes (Caponnetto and De Vito, 2007)
I but: curse of dimensionality

Teacher-student/planted models: F ∗(x) = φ(〈θ∗, x〉)
I Efficient optimization and recovery (Ben Arous et al., 2021; Soltanolkotabi, 2017)
I but: not expressive, need to know the right activation φ

Single-index models: F ∗(x) = f∗(〈θ∗, x〉), with f∗ in non-parametric class
I Break the curse of dimensionality with convex NNs/mean field regime (Bach, 2017a; Chizat

and Bach, 2018; Mei et al., 2019)
I but: intractable (mean-field), or complex dedicated algorithms (Dudeja and Hsu, 2018)

Others: multi-index models, symmetries/invariances, hierarchy, ...

This work: efficient learning of single-index models with shallow networks
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Example motivation: CNN filters

Multi-index model: F ∗(x) = f∗(〈θ∗1, x〉, . . . , 〈θ∗k , x〉), where θ∗j are well-chosen filters

Convolutional Neural Networks in Front of the Scene

The keywords: multi-scale, compositional, invariant, local features.
Picture from Y. LeCun’s tutorial:

Julien Mairal Data Science in the Alps 5/21
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Problem Setting
Data model

Gaussian inputs: x ∼ N (0, Id )
Single-index target model:

y = f∗(〈θ∗, x〉) + ξ, with ξ ∼ N (0, σ2), ‖θ∗‖ = 1

Network architecture

fc,θ(x) = c>Φ(〈θ, x〉) = 1√
N

N∑
i=1

ciφ(〈θ, x〉 − bi ), ‖θ‖ = 1

φ(u) = max(0, u): ReLU activation
bi ∼ N (0, τ2): fixed, random biases

Training algorithm: (projected) gradient descent on empirical loss

Ln(c, θ) = 1
n

n∑
i=1

(yi − fc,θ(xi ))2 + λ‖c‖2

Alberto Bietti Learning Single-Index Models ICTP, June 30, 2022 5 / 13



Problem Setting
Data model

Gaussian inputs: x ∼ N (0, Id )
Single-index target model:

y = f∗(〈θ∗, x〉) + ξ, with ξ ∼ N (0, σ2), ‖θ∗‖ = 1

Network architecture

fc,θ(x) = c>Φ(〈θ, x〉) = 1√
N

N∑
i=1

ciφ(〈θ, x〉 − bi ), ‖θ‖ = 1

φ(u) = max(0, u): ReLU activation
bi ∼ N (0, τ2): fixed, random biases

Training algorithm: (projected) gradient descent on empirical loss

Ln(c, θ) = 1
n

n∑
i=1

(yi − fc,θ(xi ))2 + λ‖c‖2

Alberto Bietti Learning Single-Index Models ICTP, June 30, 2022 5 / 13



Problem Setting
Data model

Gaussian inputs: x ∼ N (0, Id )
Single-index target model:

y = f∗(〈θ∗, x〉) + ξ, with ξ ∼ N (0, σ2), ‖θ∗‖ = 1

Network architecture

fc,θ(x) = c>Φ(〈θ, x〉) = 1√
N

N∑
i=1

ciφ(〈θ, x〉 − bi ), ‖θ‖ = 1

φ(u) = max(0, u): ReLU activation
bi ∼ N (0, τ2): fixed, random biases

Training algorithm: (projected) gradient descent on empirical loss

Ln(c, θ) = 1
n

n∑
i=1

(yi − fc,θ(xi ))2 + λ‖c‖2

Alberto Bietti Learning Single-Index Models ICTP, June 30, 2022 5 / 13



Warmup: landscape for teacher-student (Ben Arous et al., 2021)

Consider f∗ = φ =
∑

j αjhj known
hj : Hermite polynomials, with 〈hj , hj′〉γ = δjj′

Population loss:

L(θ) = Ex [(f∗(〈θ, x〉)− f∗(〈θ∗, x〉))2]
= cst− 2Ex [f∗(〈θ, x〉)f∗(〈θ∗, x〉)]
= cst− 2

∑
j
αj

2mj , with m := 〈θ, θ∗〉
1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

m

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Information exponent s: first non-zero j such that αj 6= 0
Initialization near the “equator” (m = 0), m ∼ 1/

√
d , m > 0 w.p. 1/2

The initial saddle ms can be escaped with n & d s samples
Recovery m→ 1 is easy after that
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What if we don’t know f∗?

f∗ =
∑

j αjhj unknown
φ =

∑
j βjhj known

Population loss

L(θ) = Ex [(g(〈θ, x〉)− f∗(〈θ∗, x〉))2]
= cst− 2

∑
j
αjβjmj , with m := 〈θ, θ∗〉

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
m

2.0

1.5

1.0

0.5

0.0

0.5

1.0

If αjβj < 0 for some j , may not recover m→ 1
If αsβs > 0, we may still reach m→ γ ∈ (0, 1)

This work: learn the βj using random features! Hopefully βj → αj
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Population Landscape with Random Features
f∗ =

∑
j αjhj

fc,θ(x) = c>Φ(〈θ, x〉) = 1√
N
∑N

i=1 ciφ(〈θ, x〉 − bi )

Population loss

L(c, θ) = Ex [(fc,θ(x)− f∗(〈θ∗, x〉))2] + λ‖c‖2

= cst + c>(Q + λI)c − 2
∑

j
αjc>Tjmj

m = 〈θ, θ∗〉
Tj = T hj , where the operator T : L2(γ)→ RN is given by

T g = 1√
N

[〈φ(· − bi ), g〉γ ]i ∈ RN

Q = T T ∗ ∈ RN×N : covariance matrix
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Population landscape: Critical points

Theorem (Critical points)
Assume λ < (sα2

s/Cf∗)2/β and N & C/λ. The first-order critical points of L(c, θ) satisfy one
of the following:

m = 0, i.e., 〈θ, θ∗〉 = 0, and c = 0
m ∈ {±1}, i.e., θ ∈ {±θ∗}, and c = arg minc L(c, θ)

Uses approximation properties of the kernel k(x , x ′) = Eb[φ(x − b)φ(x ′ − b)]:

‖(I − P̂λ)f ‖2γ ≤ λβ‖f ′′‖2γ if N & C/λ

I β := τ 2

τ 2+1
I P̂λ = T ∗T (T ∗T + λI)−1 is a regularized projection operator on the RKHS of the random

feature kernel (extends Bach, 2017b)
When λ is small enough, we may have αjc>Tj > 0 for all j .
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Gradient descent algorithm: intuition on population loss

L(c, θ) = cst + c>(Q + λI)c − 2
∑

j
αjc>Tjmj

Random initialization θ ∈ Sd−1 and c ∈ ρSN−1

Anti-concentration at initialization: |m| & 1/
√
d , |c>Ts | & ‖c‖‖Ts‖/

√
N.

Assume αsc>Tsms > 0 (prob. 1/2 event)

First phase: train only θ =⇒ m→ γ ∈ (0, 1]

L(c, θ) ≈ cst− O(αsc>Tsms)

Initialization norm ρ = ‖c‖ chosen to escape the level set of bad critical points

Second phase: joint training of θ and c to a stationary point

=⇒ must reach |m| ≈ 1 by previous theorem!

Final fine-tuning phase: re-train second layer c on n′ fresh samples with suitable λn′

optional, but needed for better rates
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Generalization Guarantees

Theorem (Excess risk bound (informal))
First/second phase: n samples, assume λ ≈ (sα2

s/Cf∗)2/β, n & d s/λ.
Fine-tuning phase: n′ samples, assume λn′ ≤ (1/n′)

1
β+1 , and set N & C max{1/λ, 1/λn′}.

With probability close to 1/2, the final F̂ = fĉ,θ̂ satisfies

Ex [(F̂ (x)− F ∗(x))2] .
(d
n

)2
+
( 1
n′
) β

β+1

Dynamics on empirical loss rely on landscape concentration results (Mei et al., 2016).
Recovery of θ∗ is near-optimal: n & d s almost matches (Ben Arous et al., 2021).
Fine-tuning recovers 1D non-parametric rates from kernel methods for fitting f∗.
Without fine-tuning, we can still obtain vanishing excess risk, but at slower rate.
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Preliminary Experiments
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Conclusions and Perspectives

Efficient learning of single-index models
Shallow networks with tied neuron directions and random biases
Combines feature learning of θ∗ with non-parametric 1D estimation of f∗

Further questions
What if we train (c, θ) jointly from the start?
SGD on the population loss?
Untied neuron directions?
Training the biases?
Multi-index models?
Is fine-tuning necessary for good rates?

Thank you!
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