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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)
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Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

F(x) = Wy (Wiy - o(Wix) - --)

Recipe: huge models + lots of data + compute + simple algorithms
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Convolutional networks

Exploiting structure of natural images (LeCun et al., 1989)

Low-Level| |Mid-Level| |High-Level Trainable
— — —
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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Convolutional networks

- feat 3 maps15@|l}x1& sa
INBUT - leature maps 1. maps 18@5x5
3033 B@28x28

| |
| Full connection | Gaussian connections
li Full i

Ganvelutions Subsampling Convolutians

(LeCun et al., 1998)
Convolutional networks
o Model local neighborhoods at different scales
o Provide some invariance through pooling

o Useful inductive bias for learning efficiently on natural images
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Convolutional networks

224x224x3
224x224x64

112x112x128

56x56%256

28x28x512 14x14x512  7x7x512

1x1x4096 1x1x4096 1x1x1000 1x1x1000

(Simonyan and Zisserman, 2014)

Convolutional networks
o Model local neighborhoods at different scales
o Provide some invariance through pooling

o Useful inductive bias for learning efficiently on natural images
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Understanding deep learning

The challenge of deep learning theory
o Over-parameterized (millions of parameters)
Expressive (can approximate any function)

Complex architectures for exploiting problem structure

©

©

Yet, easy to optimize with (stochastic) gradient descent!

©
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Understanding deep learning

The challenge of deep learning theory
o Over-parameterized (millions of parameters)

©

Expressive (can approximate any function)

Complex architectures for exploiting problem structure

©

Yet, easy to optimize with (stochastic) gradient descent!

©

A functional space viewpoint
o View deep networks as functions in some functional space

o Non-parametric models, natural measures of complexity (e.g., norms)
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Understanding deep learning

The challenge of deep learning theory

o Over-parameterized (millions of parameters)

©

Expressive (can approximate any function)

Complex architectures for exploiting problem structure

©

Yet, easy to optimize with (stochastic) gradient descent!

©

A functional space viewpoint
o View deep networks as functions in some functional space

o Non-parametric models, natural measures of complexity (e.g., norms)

What is an appropriate functional space?
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Kernels to the rescue
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Kernels?
o Map data x to high-dimensional space, ®(x) € H (H: “RKHS")
o Functions f € H are linear in features: f(x) = (f, ®(x)) (f can be non-linear in x!)
o Learning with a positive definite kernel K(x,x") = (®(x), ®(x’))
» H can be infinite-dimensional! (kernel trick)
» Need to compute kernel matrix K = [K(x;, x;)]; € RV*N
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Kernels to the rescue

Clean and well-developed theory

o Tractable methods (convex optimization)

Vv

o Statistical and approximation properties well understood for many kernels

o Costly (kernel matrix of size N?) but approximations are possible
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Kernels for deep models: deep kernel machines

Hierarchical kernels (Cho and Saul, 2009)

o Kernels can be constructed hierarchically
K(x,x") = (®(x), ®(x')) with &(x) = p2(p1(x))
o e.g., dot-product kernels on the sphere

K(x,x") = ra({p1(x), 1(x'))) = ka(k1(x X))
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Kernels for deep models: deep kernel machines

Convolutional kernels networks (CKNs) for images (Mairal et al., 2014; Mairal, 2016)

zp = Ap My Prxgq - Q — Hy o (w) = Ag My Py (w) € Hy,

linear pooling

My Prxg-q: Q — Hy My, Prxiq (v) = @p(Prag-1(v)) € Hy

non-linear mapping

Prri-1(v) € P (patch extraction)

Zp1(u) € Hia Tpo1 Q= Hi

o Good empirical performance with tractable approximations (Nystrém)
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Kernels for deep models: infinite-width networks

1 m
Bx) = —= 3 vio(w]
9(x) i 2 vio(w;' x), m — 0o

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
o 0 =(v;);, fixed random weights w; ~ N(0, /)

Kre(x,x') = Ew~no,1) [O’(WTX)O'(WTX/)]
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Kernels for deep models: infinite-width networks

1 m
Bx) = —= 3 vio(w]
9(x) i 2 vio(w;' x), m — 0o

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
o 0 =(v;);, fixed random weights w; ~ N(0, /)

Kre(x,x') = Ew~no,1) [O’(WTX)O'(WTX/)]

Neural tangent kernels (NTK, Jacot et al., 2018)
o 0 = (vj,w;);, initialization 6y ~ N(0, /)
o Lazy training (Chizat et al., 2019): 6 stays close to 6y when training with large m

fo(x) = fgo(x) + (0 — o, Vafy(x)|o=0, )-
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Kernels for deep models: infinite-width networks

1 m
Bx) = —= 3 vio(w]
9(x) i 2 vio(w;' x), m — 0o

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
o 0 =(v;);, fixed random weights w; ~ N(0, /)
Kre(x,x') = Ew~no,1) [O’(WTX)O'(WTX/)]
Neural tangent kernels (NTK, Jacot et al., 2018)

o 0 = (vj,w;);, initialization 6y ~ N(0, /)
o Lazy training (Chizat et al., 2019): 6 stays close to 6y when training with large m

fo(x) = fao(x) + (6 — 6o, Vfa(x)[o=6,)-
o Gradient descent for m — oo = kernel ridge regression with neural tangent kernel

Kt (x,x) (Vofa(x), Vofay(x'))

= lim
m—00
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Kernels for deep models: infinite-width networks

1 m
Bx) = —= 3 vio(w]
9(x) i 2 vio(w;' x), m — 0o

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
o 0 =(v;);, fixed random weights w; ~ N(0, /)

Kre(x,x') = Ew~no,1) [U(WTX)U(WTX/)]

Neural tangent kernels (NTK, Jacot et al., 2018)
o 0 = (vj,w;);, initialization 6y ~ N(0, /)
o Lazy training (Chizat et al., 2019): 6 stays close to 6y when training with large m

fo(x) = fao(x) + (6 — 6o, Vfa(x)[o=6,)-
o Gradient descent for m — oo =~ kernel ridge regression with neural tangent kernel

Kt (x,x) (Vofa(x), Vofay(x'))

= lim
m—>00
RF and NTK extend to deep architectures
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Outline

(@ Convolutional kernels and their stability

(@ Approximation and regularization properties
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(@ Convolutional kernels and their stability

2) Approximation and regularization properties



Folklore properties of convolutional models

C3: 1, maps 16@10x10
C1: feature maps S4:1. 16@5x5
G228 maps 152

52:f. maps

INPUT
F2x32 .
GER14x14

! | Full connection Gaussian connections
Canvelutions Subsampling Convelutions  Subsampling Full connection

Convolutional architectures:
o Capture multi-scale and compositional structure in natural signals
o Model local stationarity

o Provide some translation invariance
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Folklore properties of convolutional models

C3: 1, maps 16@10x10
C1: feature maps S4:1. 16@5x5
G228 maps 152

S2:f. maps

INPUT
F2x32 .
GE@14x14

! | Full connection Gaussian connections
Canvelutions Subsampling Convelutions  Subsampling Full connection

Convolutional architectures:
o Capture multi-scale and compositional structure in natural signals
o Model local stationarity
o Provide some translation invariance

Beyond translation invariance?

Alberto Bietti Foundations of DL through kernel methods Feb. 16, 2021

10/37



Stability to deformations

Deformations
o 7:Q — Q: Cl-diffeomorphism
o Lyx(u) = x(u—7(u)): action operator

o Much richer group of transformations than translations

EUS Y qhyyyn
555555556¢
77717717777
2355¢43¢C8 &

o Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Stability to deformations

Deformations
o 7:Q — Q: Cl-diffeomorphism
o Lyx(u) = x(u—7(u)): action operator

o Much richer group of transformations than translations

Definition of stability
o Representation ®(-) is stable (Mallat, 2012) if:

[8(Lrx) = *(x)]| < (G| VTloo + Cof|Tllo0) 1]l

0 |V7|loo = sup, ||V7(u)| controls deformation
0 ||7]|co = sup, |7(u)| controls translation

o ( — 0: translation invariance
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Smoothness and stability with kernels

Geometry of the kernel mapping: f(x) = (f, ®(x))

[F(x) = FON < Nl - [[D(x) = (X[

o ||f]| controls complexity of the model

o ®(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)
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Smoothness and stability with kernels

Geometry of the kernel mapping: f(x) = (f, ®(x))

[F(x) = FON < Nl - [[D(x) = (X[

o ||f]| controls complexity of the model

o ®(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)

Useful kernels in practice:
o Convolutional kernel networks (CKNs, Mairal, 2016) with efficient approximations

o Extends to neural tangent kernels (NTKs, Jacot et al., 2018) of infinitely wide
CNNs (Bietti and Mairal, 2019b)
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Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xp : Q — Ho: initial (continuous) signal
» u € Q=R location (d = 2 for images)
> xo(u) € Ho: value (Ho = R3 for RGB images)
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Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xp : Q — Ho: initial (continuous) signal
» u € Q=R location (d = 2 for images)
> xo(u) € Ho: value (Ho = R3 for RGB images)

o xx : Q — Hy: feature map at layer k

Piexi—1

» Py: patch extraction operator, extract small patch of feature map x,_; around each point u
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Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xp : Q — Ho: initial (continuous) signal
» u € Q=R location (d = 2 for images)
> xo(u) € Ho: value (Ho = R3 for RGB images)

o xx : Q — Hy: feature map at layer k

My Prexi—1

» Py: patch extraction operator, extract small patch of feature map x,_; around each point u
» M. non-linear mapping operator, maps each patch to a new point with a pointwise
non-linear function @k (-) (kernel mapping)
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Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xp : Q — Ho: initial (continuous) signal
» u € Q=R location (d = 2 for images)
> xo(u) € Ho: value (Ho = R3 for RGB images)

o xx : Q — Hy: feature map at layer k
Xk = Ak M Piexic—1
» Py: patch extraction operator, extract small patch of feature map x,_; around each point u
» M. non-linear mapping operator, maps each patch to a new point with a pointwise

non-linear function @k (-) (kernel mapping)
» Ag: (linear, Gaussian) pooling operator at scale oy
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Construction of convolutional kernels

Construct a sequence of feature maps xi, ..., x,
o xp : Q — Ho: initial (continuous) signal
» u € Q=R location (d = 2 for images)
> xo(u) € Ho: value (Ho = R3 for RGB images)

o xx : Q — Hy: feature map at layer k

X = AkM Pixic—1

» Py: patch extraction operator, extract small patch of feature map x,_; around each point u

» M. non-linear mapping operator, maps each patch to a new point with a pointwise
non-linear function @k (-) (kernel mapping)

» Ag: (linear, Gaussian) pooling operator at scale oy

Goal: control stability of these operators through their norms
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CKN construction

Ty = A M Pz : Q — Hy xp(w) = A My Prxy1(w) € Hy,

linear pooling

M. Prxy 1 : Q— Hy My, Prxy, 1(1}) = L,Q],;(Pk.T}; 1(1))) € Hy

non-linear mapping

Pyxy1(v) € P (patch extraction)

Tp1(u) € Hi Tp1: Q= Hia
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Patch extraction operator Py

Pixia(u) = (xk—1(u + v))ves, € Pk = 7{251

Pyxj1(v) € Py (patch extraction)

Ll'}\v]<U)EH1\‘] IkltgﬁHkl
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Patch extraction operator Py

Pixia(u) = (xk—1(u + v))ves, € Pk = Hfﬁ

o Si: patch shape, e.g. box

o Py is linear, and preserves the L2 norm: ||Pix1|| = ||xk-1]|
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Non-linear mapping operator M

I\/IkPka_l(u) = ng(Pka_l(u)) € Hy

My Prxy 1 : Q— Hy My, Prxy. 4 (’U) = ;,9]<¢(Pk;£lfk;,1(L'>) € Hp

non-linear mapping

Pk.Tk 1(7,‘) S 77/;,
L1 - Q— Hi
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Non-linear mapping operator M

/\/lkPka_l(u) = gok(Pka_l(u)) € Hy

0 ¢k : Px — Hy pointwise non-linearity on patches (kernel map)
o We assume non-expansivity: for z,z' € Py

lex(2) < llzll - and  low(z) = wu(Z)] < [z = 2|
o My then satisfies, for x, x" € L2(Q, Py)

IMx|| < [Ix]l - and [[Mix = Mix'|| < [lx = X'
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i from kernels

Kernel mapping of homogeneous dot-product kernels:

(z,7)

Koz #) = 2l () = (oula) oul))

ki(u) = Y320 bjud with b >0, k(1) =1

o Commonly used for hierarchical kernels
o [le(2)]| = Ki(z,2)"* = | 2|
o |le(z) = er(Z) < llz = 2] if w (1) < 1

© = non-expansive
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i from kernels

Kernel mapping of homogeneous dot-product kernels:

(z,7)

Kl ) = Ll I (1250 ) = (ou(a). oul2))

ki(u) = Y320 bjud with b >0, k(1) =1

Examples
0 Kexp((z,2)) = elzz)-1 (Gaussian kernel on the sphere)
© Finv-poly((z,2')) = ﬁ

o ko({z,2")) = Eyfo(w'2)o(w'Z')] (Random features)
» arc-cosine kernels for the ReLU o(u) = max(0, u)
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Pooling operator Ay

Xk(u) = AkMkPka_l(u) = /]Rd hak(u — V)MkPka_l(V)dV S Hk

zp = AgMp Prxpq 0 Q — Hy v (w) = A My Prag1(w) € Hy,

linear pooling

My Prxyq: Q — Hy
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Pooling operator Ay

Xk ( ) AkMkPka 1 / hgk MkPka 1( )dV S Hk

o h,,: pooling filter at scale o
o hy(u) := o h(u/ok) with h(u) Gaussian

o linear, non-expansive operator: ||Ax|| <1
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Pooling operator Ay

Xk ( ) AkMkPka 1 / hgk MkPka 1( )dV S Hk

o h,,: pooling filter at scale o
ho, (1) == 0 ?h(u/oy) with h(u) Gaussian

linear, non-expansive operator: |Ag|| <1

©

©

©

In practice: discretization, sampling at resolution oy after pooling

o “Preserves information” when subsampling < patch size
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Recap: Pk, Mk, Ak

Ty = A M Pz : Q — Hy xp(w) = A My Prxy1(w) € Hy,

linear pooling

M Prxy 1 : Q— Hy My, Prxy, 1(1}) = L,Q],;(Pk.T}; 1(1))) € Hy

kernel mapping

Pyxy1(v) € P (patch extraction)

Tp1(u) € Hi Tp1: Q= Hia
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Multilayer construction

Assumption on xg
o X is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal, Ag local integrator
with scale o (anti-aliasing).
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Multilayer construction

Assumption on xg
o X is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal, Ag local integrator
with scale o (anti-aliasing).

Multilayer representation

O(x0) = AsMpPrAn 1My 1Py_1 - AIMIPixy € L%(Q,H,).

o Sy, ok grow exponentially in practice (i.e., fixed with subsampling).
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Multilayer construction

Assumption on xg

o X is typically a discrete signal aquired with physical device.

o Natural assumption: xg = Agx, with x the original continuous signal, Ag local integrator
with scale o (anti-aliasing).

Multilayer representation
O(x0) = AsMpPrAn 1My 1Py_1 - AIMIPixy € L%(Q,H,).

o Sy, ok grow exponentially in practice (i.e., fixed with subsampling).

Final kernel
Kern(x,x") = (®(x), ®(x')) 12(0) = /Q<Xn(U)aXA(U)>du
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Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a))
Let ®,(x) = ®(Aox) and assume |VT|oo < 1/2,

C
[9(Lr) = @40l < (G5 (1+ 1) [Vl + =l ) el

o Translation invariance: large o,
o Stability: small patch sizes (3 ~ patch size, C5 = O(3®) for images)
o Signal preservation: subsampling factor = patch size
—> need several layers with small patches n = O(log(c,/00)/log )
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Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019b))
Let ®,(x) = ®NTK(Agx), and assume ||V 7o < 1/2

[®n(Lrx) — n(x)
C
< (o VT2 + o2Vl + v+ T 7l ) Il
n

Comparison with random feature CKN on deformed MNIST digits:

Foundations of DL through kernel methods
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Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019b))
Let ®,(x) = ®NTK(Agx), and assume ||V 7|00 < 1/2

[®n(Lrx) — ®n(x)]l

C
< (o VT2 + o2Vl + v+ T 7l ) Il
n

Comparison with random feature CKN on deformed MNIST digits:

Q [}
|9 o
% _____ —— deformations % 0.3 - g e E— E—
i —— deformations + translation 9
6 0.2 - same label _5
o == all labels ) 0.2
2 =
- -
@ 0.1 ©
2 / o 0.1- /
2 L
c / c //
8 0.0-, ‘ : : g 00-, : : :
S 0 1 2 3 1S 0 1 2 3
deformation size deformation size
(a) CKN (b) NTK
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Experiments with convolutional kernels on Cifarl0

Convolutional kernels with 3x3 patches + kernel ridge regression (danger: lots of compute!)

Conv. layers ‘ subsampling ‘ kernel ‘ test acc.
2 2-5 ReLU RF 86.63%
2 2-5 ReLU NTK | 87.19%
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Convolutional kernels with 3x3 patches + kernel ridge regression (danger: lots of compute!)

Conv. layers subsampling ‘ kernel ‘ test acc.
2 2-5 ReLU RF 86.63%
2 2-5 ReLU NTK | 87.19%
2 2-5 exp, o = 0.6 | 87.93%
3 2-2-2 exp, c = 0.6 | 88.2%
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Experiments with convolutional kernels on Cifarl0

Convolutional kernels with 3x3 patches + kernel ridge regression (danger: lots of compute!)

Conv. layers subsampling kernel test acc.

2 2-5 ReLU RF 86.63%

2 2-5 ReLU NTK | 87.19%

2 2-5 exp, o = 0.6 | 87.93%

3 2-2-2 exp, c = 0.6 | 88.2%

16 (Li et al., 2019) | last layer only ReLU RF 87.28%
16 (Li et al., 2019) | last layer only | ReLU NTK | 86.77%
10 every 3 layers exp 88.2%

Li et al. (2019): no pooling before last layer, more complicated pre-processing
Shankar et al. (2020): similar performance to us (88.2%), reaches 90% when adding flips

Alberto Bietti Foundations of DL through kernel methods Feb. 16, 2021 23 /37



Outline

(@ Approximation and regularization properties
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Approximation with convolutional networks

o What functions does the RKHS contain? What is their norm?
o Role of convolution vs fully-connected?
o Role of depth?
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Approximation with convolutional networks

o What functions does the RKHS contain? What is their norm?
o Role of convolution vs fully-connected?
Role of depth?

Limitations of kernels?

©

©
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Prelude: “teacher” CNNs with smooth activations are in the RKHS

©

Consider a CNN with filters W/ (u), u € Si
o Smooth activations o with smoothness controlled by some C; ,(-)
o The CNN can be constructed hierarchically in Hcxp

©

Complexity is controlled by the RKHS norm:

115 < IWaiall3 CEo(IWall3 CEo(IWanall3 C2o(-)))

(Bietti and Mairal, 2019a)
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Prelude: “teacher” CNNs with smooth activations are in the RKHS

©

Consider a CNN with filters W/ (u), u € Si
o Smooth activations o with smoothness controlled by some C; ,(-)
o The CNN can be constructed hierarchically in Hcxp

©

Complexity is controlled by the RKHS norm (linear layers):

113, < [IWasall3 - [IWall3 - [ Wa-sl3 - [ WA3

©

Linear layers: product of spectral norms

(Bietti and Mairal, 2019a)
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Prelude: “teacher” CNNs with smooth activations are in the RKHS

©

Consider a CNN with filters W/ (u), u € Si
o Smooth activations o with smoothness controlled by some C; ,(-)
o The CNN can be constructed hierarchically in Hcxp

©

Complexity is controlled by the RKHS norm (linear layers):

113, < [IWasall3 - [IWall3 - [ Wa-sl3 - [ WA3

©

Linear layers: product of spectral norms

©

Can we give a more precise characterization of the RKHS?

(Bietti and Mairal, 2019a)
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The fully-connected case

Fully-connected models — dot-product kernels
K(x,y) = k(x"y) for x,y € S971

o Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
o NTK for infinitely wide networks (Jacot et al., 2018)
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The fully-connected case

Fully-connected models — dot-product kernels
K(x,y) = k(x"y) for x,y € S971
o Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)

o NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
o Rotation-invariant kernel on the sphere
o = RKHS description in the L2(S9~1) basis of spherical harmonics Y ;

ote
HESTN
HESH0
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The fully-connected case

Fully-connected models — dot-product kernels
K(x,y) = k(x"y) for x,y € S971

o Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
o NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
o Rotation-invariant kernel on the sphere

o = RKHS description in the L2(S9~1) basis of spherical harmonics Y ;

N(d,k)
Zﬂk Z Yij(x) Y (y), for x,y e S71
Jj=
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The fully-connected case

Fully-connected models — dot-product kernels

K(x,y) = k(x"y) for x,y € S971

o Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al.,

o NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)

o Rotation-invariant kernel on the sphere

o = RKHS description in the L2(S9~1) basis of spherical harmonics Y ;

oo N(d,k)
{f_z Z akJYk,J s.t. Hf”%{ :Z'L:(J<OO}

k=0 j=1 k.j
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Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)

©

Decay of ux <+ regularity of functions in the RKHS

Polynomial decays jux ~ k=25: similar to Sobolev space of order /3, norm:

©

2
1112 = [|A50% ] 2ga1y

©

Leads to sufficient conditions for RKHS membership

©

Rates of approximation for Lipschitz functions
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Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)
o Decay of uy <> regularity of functions in the RKHS

o Polynomial decays i, ~ k—22: similar to Sobolev space of order /3, norm:
8/2
| Flls ~ I1AZ2 Al

o Leads to sufficient conditions for RKHS membership

o Rates of approximation for Lipschitz functions

NTK vs random features (Bietti and Mairal, 2019b)
o f has 8 = p/2 n-bounded derivatives = f € Hntxk, ||f |2y < O(n)
o 3= p/2+ 1 needed for RF (Bach, 2017)
o = Hprk is (slightly) “larger” than Hgr

o Similar improvement for approximation of Lipschitz functions
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Deep fully-connected RelLU networks: limitations

ki(xTy)=ro---ok(x"y)
L times
Deep = Shallow (Bietti and Bach, 2021)
o RF or NTK kernels for deep and shallow networks have the same decay! (thus same H)

kd—2z/+1

o Proof using differentiability of x: we have uyx ~ when

k(1 —t) = poly(t) + cit” + o(t")
k(=14 t) = poly(t) + c_1t” + o(t").

o Such expansions are preserved when taking composition with ReLU/arc-cosine kernel
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Deep fully-connected RelLU networks: limitations

ki(xTy)=ro---ok(x"y)
L times
Deep = Shallow (Bietti and Bach, 2021)
o RF or NTK kernels for deep and shallow networks have the same decay! (thus same H)

o Proof using differentiability of x: we have px ~ k9=2**1 when

k(1 —t) = poly(t) + cit” + o(t")
k(=14 t) = poly(t) + c_1t” + o(t").

o Such expansions are preserved when taking composition with ReLU/arc-cosine kernel

Consequences
—> kernel regime cannot explain power of depth in fully-connected nets
— power of deep kernels comes from architecture
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Deep = shallow: numerical experiments

KRR, Amin = 1e-9 ReLU random features
KRR, Amin = 1e-5

—— rf_b 2-layer
3§ — rf_b 2-layer
—— rf 3-layer i
el 6x1072 \ — rf 3-layer
~ —==- ntk_b 2-layer iy HEVE? ]
— X\ ~_ 4%x1077 } === ntk_b 2-layer —
(sl ntk 3-layer Lo ntk 3-layer b Y
1 ntk 4-layer 3x1072 \ v ! : RV
> ayel )
- ntk 4-layer S 101 \ NA N
W& \ o ., = 10 —-= 2-layer, m=sqrt(n) (S
’ 2x10 , _ —== 3-layer (sqrt(n), sqrt(n))
102- . N --- 3dayer (10,sqrt(n) s
- S Wemne —== 3-layer (sqrt(n), 10) Sl
I EEEE—————_—— 1072 -, ! ! ) ; ] ]
10! 102 103 10! 102 10° 10* 10? 10® 10
n n n

Figure 1: (left, middle) expected squared error vs sample size n for kernel ridge regression estimators
with different kernels on f{ and with two different budgets on optimization difficulty Amin (the minimum
regularization parameter allowed). (right) ridge regression with one or two layers of random ReLU features
on fy, with different scalings of the number of “neurons” at each layer in terms of n.
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Deep = shallow: numerical experiments

MNIST F-MNIST
L RF NTK L RF NTK
2 | 98.60 = 0.03 | 98.49 £ 0.02 2 1 90.75 £ 0.11 | 90.65 £+ 0.07
3 | 98.67 £ 0.03 | 98.53 £ 0.02 3 1 90.87 £0.16 | 90.62 £ 0.08
4 | 98.66 &+ 0.02 | 98.49 + 0.01 4 | 90.89 £ 0.13 | 90.55 £ 0.07
5 | 98.65 £ 0.04 | 98.46 £ 0.02 5 | 90.88 £ 0.08 | 90.50 £ 0.05

Alberto Bietti

(on 50k samples)

Foundations of DL through kernel methods

Feb

. 16, 2021
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Approximating functions on signals: motivation

Curse of dimensionality
o Natural signals are very high-dimensional (d ~ ||, where Q is the domain)

o Approximating general f* requires exponentially large norm or very high smoothness
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Approximating functions on signals: motivation

Curse of dimensionality
o Natural signals are very high-dimensional (d ~ ||, where Q is the domain)

o Approximating general f* requires exponentially large norm or very high smoothness

Adding structure: localized functions e.g., f*(x) = g*(Px|[uo])
o With fully-connected kernel, still need norm exp. large in d

o For basic convolutional kernel, norm only scales with the dimension of the patch Px|[up]:

K(x,x") = (MPx, MPx') = Z k(Px[u], Px'[u])
ueQ

o See also Ciliberto et al. (2019) for similar part-based kernels for structured prediction
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Warmup: one layer with pooling

K(x,x") = (AMPx, AMPX) 12(q 1)
(H: RKHS of patch kernels)
o RKHS consists of functions of the form (patches denoted x, = Px|[u] € RP)

f(x) = Z Glu](xu), Glul e H

ue
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Warmup: one layer with pooling

K(x,x") = (AMPx, AMPX) 12(q 1)

(H: RKHS of patch kernels)
o RKHS consists of functions of the form (patches denoted x, = Px|[u] € RP)

f(x) = Z Glu](xu), Glul e H

ue

o Squared RKHS norm given by the minimum over such decompositions of

1A~ GliEa@0 = (AT @ NGl @eie1)

» G viewed in L?(Q) ® L2(SP71) as (u, z) = G[u](2)

» [ = T~/ regularization operator of #, e.g., I = NP2

o = A (pooling) encourages smoothness of u — G[u](z)
o = [ (kernel) encourages smoothness of z — G[u](z)
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Beyond one layer: empirical study

Cifar10 with full kernel (or Nystrém in parentheses)

K1 K2 Test acc. (10k) | Test acc. (full)
Exp Exp 80.5% 87.9% (84.1%)
Exp | Poly3 80.5% 87.7% (84.1%)
Exp | Poly2 79.4% 86.9% (83.4%)
Poly2 | Exp 77.4% - (81.5%)
Poly2 | Poly2 75.1% - (81.2%)
Exp | - (Lin) 74.2% - (76.3%)

One layer is not enough

Polynomial kernel can be enough for second layer
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Interlude: kernel tensor products

k2 polynomial — products of patch kernels

K((x1,%2), (51, %)) = k(x1, x1)k(x2, 35) = ((x1) @ (x2), (x1) ® () o

o RKHS H ® H contains closure of functions f(xi,xp) = Zj’ll fij(x1)fj(x2)
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Interlude: kernel tensor products

k2 polynomial — products of patch kernels

K((x1, %), (X1, %)) = k(x1, x1)k(x2, x3) = (p(x1) ® p(x2), p(x1) © 0(%0)) Haon

o RKHS H ® H contains closure of functions f(xi,xp) = Zj’ll frj(x1) o j(x2)
o RKHS is often much smaller than a dot-product kernel on x = (x1, x2)

o Helpful for modeling interactions between variables/patches (Wahba, 1990; Lin, 2000;
Scetbon and Harchaoui, 2020)
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Interlude: kernel tensor products

k2 polynomial — products of patch kernels

K((x1, %), (X1, %)) = k(x1, x1)k(x2, x3) = (p(x1) ® p(x2), p(x1) © 0(%0)) Haon

o RKHS H ® H contains closure of functions f(xi,xp) = Zj’ll frj(x1) o j(x2)

o RKHS is often much smaller than a dot-product kernel on x = (x1, x2)

Helpful for modeling interactions between variables/patches (Wahba, 1990; Lin, 2000;
Scetbon and Harchaoui, 2020)

Here, the architecture determines which interactions matter, and pooling will further
encourage spatial regularities among interaction terms

©

©
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RKHS of two-layer CKN with quadratic second layer
Kernel K(x,x") = (®(x), ®(x')), with

P(x) = AMa Py AL M Pyx € L (Q, (H® %)\SQIX\&I)
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RKHS of two-layer CKN with quadratic second layer
Kernel K(x,x") = (®(x), ®(x')), with

O(x) = Ao My PrALM Pix € L2 (9, (H & H)/%XI%1)
RKHS functions of the form

f(x) = Z Z Gpglu, v](xu, xv)

P,gES> u,veQ
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RKHS of two-layer CKN with quadratic second layer
Kernel K(x,x") = (®(x), ®(x')), with
O(x) = Ao My PrALM Pix € L2 (9, (H & H)/%XI%1)

RKHS functions of the form

f(x) = Z Z Gpglu, v](xu, xv)

P,gES> u,veQ

Under localization constraint: Gpq € Range((LpA1 ® LgA1) T diag(+))

Figure 2. Display of the response of the operator E, to Dirac
inputs 2 = &, centered at two different locations u. These are
bumps centered on points of the p — g diagonal, corresponding to
interactions between two patches, at distance around p — ¢.
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RKHS of two-layer CKN with quadratic second layer
Kernel K(x,x") = (®(x), ®(x')), with

P(x) = AMa Py AL M Pyx € L (Q, (H® %)\SQIX\&I)

RKHS functions of the form

f(x) = Z Z Gpglu, v](xu, xv)

P,gES> u,veQ

Under localization constraint: Gpq € Range((LpA1 ® LgA1) T diag(+))
RKHS norm given by the penalty

> 1Ay T diag((LpAr ® LaA1) ™" Gpg) 2 pienny-
P,q€S2

o (LpA1 ® LgA1)~ T G encourages 2D smoothness of (u,v) — Glu, v](z,2')
o AZ_T imposes even stronger 1D smoothness on diagonal u — v =p—¢q
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Extensions

o Higher-order polynomials = higher-order interactions
o More layers: also capture higher-order interactions, with different structure
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Extensions

o Higher-order polynomials = higher-order interactions
o More layers: also capture higher-order interactions, with different structure

o Empirically, on Cifarl0, 2 layers with degree-4 kernels at 2nd layer suffice for best
performance
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Conclusions

Benefits of convolutional kernels

©

Translation invariance + deformation stability with small patches and pooling
o = benefits of depth for stability

o Approximation benefits of > 2 layers by efficiently capturing interactions

©

Limitations of depth for fully-connected models in kernel regimes
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Benefits of convolutional kernels

©

Translation invariance + deformation stability with small patches and pooling
o = benefits of depth for stability

o Approximation benefits of > 2 layers by efficiently capturing interactions

©

Limitations of depth for fully-connected models in kernel regimes

Future directions
o Empirically, any benefits of depth beyond 2 layers?
o Statistical analysis through covariance operator
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Conclusions

Benefits of convolutional kernels

©

Translation invariance + deformation stability with small patches and pooling
o = benefits of depth for stability

o Approximation benefits of > 2 layers by efficiently capturing interactions

©

Limitations of depth for fully-connected models in kernel regimes

Future directions
o Empirically, any benefits of depth beyond 2 layers?
o Statistical analysis through covariance operator

Perspectives: beyond kernels
o Kernels provide a nice tractable model, but a limited picture of deep learning
o Feature selection through mean-field/“active” regime, at least at first layer

o Benefits of depth beyond simple interaction models, e.g., through hierarchy
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Convolutional NTK kernel mapping

Define

_ (o(x(v)) @ y(u)
I\/I(X,)/)(“)_< p1(x(u)) >

Theorem (NTK feature map for CNN)

Kt (x, x) = (®(x), o(x)) 12(q),
with ®(x)(u) = ApM(xn, yn)(u), where y1(u) = x1(u) = Pix(u) and

xk(u) = PrAk-11(xk-1)(u)
yi(u) = PrAxa M(Xi-1, yi1) (u).
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Discretization and signal preservation

o Xk: subsampling factor sy after pooling with scale o) =~ si:

)_(k[n] = AkMkPk)_(k—l[nsk]
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o) = si:

)_(k[n] = AkMkPk)_(k—l[nsk]

o Claim: We can recover xx_1 from X, if subsampling s, < patch size
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o) = si:

)_(k[n] = AkMkPk)_(k—l[nsk]
o Claim: We can recover xx_1 from X, if subsampling s, < patch size

o How? Kernels! Recover patches with linear functions (contained in RKHS)

(fw, Mk Pix(u)) = fu(Prx(u)) = (w, Pgx(u))

Alberto Bietti Foundations of DL through kernel methods Feb. 16, 2021 42 /37



Signal recovery: example in 1D

e |
deconvolution
Apxp_y | |
recovery with linear measurements
[ | ] |

downsampling

A,CM;V,.P;‘-LE;‘-4| | | | | | |

/
linear pooling ;

My | ] T |

dot-product kernel

S I |

Pyxj—1(u) € Py
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Beyond the translation group

Global invariance to other groups?
o Rotations, reflections, roto-translations, ...
o Group action Lgx(u) = x(g7u)
o Equivariance in inner layers + (global) pooling in last layer
o Similar construction to Cohen and Welling (2016); Kondor and Trivedi (2018)
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G-equivariant layer construction

©

Feature maps x(u) defined on u € G (G: locally compact group)
» Input needs special definition when G # Q

Patch extraction:

©

Px(u) = (x(uv))ves

Non-linear mapping: equivariant because pointwise!

©

Pooling (y: left-invariant Haar measure):

©

Ax(u) = /G x(uv)h(v)dp(v) = /G <(V)h(u~ V) dp(v)
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Group invariance and stability

Roto-translation group G = R? x SO(2) (translations + rotations)

o Stability w.r.t. translation group
o Global invariance to rotations (only global pooling at final layer)

» Inner layers: patches and pooling only on translation group

» Last layer: global pooling on rotations

» Cohen and Welling (2016): pooling on rotations in inner layers hurts performance on Rotated
MNIST
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