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Transformers and language models
Transformers: self-attention + MLPs + residual connections

Large language models: train to predict next token on all the web (+ fine-tune)
In-context "reasoning" vs memorization: transformers seem to use a mix of
"reasoning" from context and "knowledge" from training set
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Motivating questions

Interpretability: what’s happening inside a transformer?

Training dynamics: how is this learned during training?
Role of depth: can we go beyond shallow models?
Experimental/theory setup: what is a simple setting for studying this?
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The bigram data model
Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output 

Sample each sequence z1:T ∈ [N]T as follows
Triggers: q1, . . . , qK ∼ πq (random or fixed once)
Outputs: ok ∼ πo(·|qk) (random)
Sequence-specific Markov model: z1 ∼ π1, zt |zt−1 ∼ p(·|zt−1) with

p(j |i) =
{
1{j = ok}, if i = qk , k = 1, . . . , K
πb(j |i), o/w.

πb: global bigrams model (estimated from Karpathy’s character-level Shakespeare)
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Transformers I: embeddings and residual stream
Input sequence: [z1, . . . , zT ] ∈ [N]T

Embedding layer:

xt := wE (zt) + pt ∈ Rd

▶ wE (z): token embedding of z ∈ [N]
▶ pt : positional embedding at position t ∈ [T ]

Intermediate layers: add outputs to the residual stream xt

Unembedding layer: logits for each k ∈ [N],

(ξt)k = wU(k)⊤xt

Loss for next-token prediction (ℓ: cross-entropy)

T−1∑
t=1

ℓ(zt+1, ξt)
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Transformers II: self-attention

Causal self-attention layer:

x ′
t =

t∑
s=1

βtWOWV xs , with βs = exp(xs
⊤W ⊤

K WQxt)∑t
s=1 exp(xs⊤W ⊤

K WQxt)

WK , WQ ∈ Rd×d : key and query matrices
WV , WO ∈ Rd×d : value and output matrices
βs : attention weights,

∑t
s=1 βs = 1

Single-head attention (in practice, multi-head with multiple such matrices, dh × d)
Each x ′

t is then added to the corresponding residual stream

xt := xt + x ′
t
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Transformers III: feed-forward

Feed-forward layer: apply simple transformation to each token representation
MLP (practice):

x ′
t = W2σ(W1xt), W2 ∈ Rd×D, W1 ∈ RD×d

Linear (in this work):
x ′

t = WF xt , WF ∈ Rd×d

Added to the residual stream: xt := xt + x ′
t

Some evidence that feed-forward layers store “global knowledge” (Geva et al., 2020; Meng
et al., 2022)
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Transformers on the bigram taskThe bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output 

1-layer transformer fails: ∼ 55% accuracy on in-context output predictions

2-layer transformer succeeds: ∼ 99% accuracy
Attention maps reveal a structured 2-layer “induction” mechanism (Elhage et al., 2021)

               r s a b t s L a b t s L , a b t h b n t L & C L & C a b t h

Alberto Bietti (CCM) Transformers and Associative Memories ML @ Flatiron 8 / 21



Transformers on the bigram taskThe bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output 

1-layer transformer fails: ∼ 55% accuracy on in-context output predictions
2-layer transformer succeeds: ∼ 99% accuracy

Attention maps reveal a structured 2-layer “induction” mechanism (Elhage et al., 2021)

               r s a b t s L a b t s L , a b t h b n t L & C L & C a b t h

Alberto Bietti (CCM) Transformers and Associative Memories ML @ Flatiron 8 / 21



Transformers on the bigram taskThe bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output 

1-layer transformer fails: ∼ 55% accuracy on in-context output predictions
2-layer transformer succeeds: ∼ 99% accuracy
Attention maps reveal a structured 2-layer “induction” mechanism (Elhage et al., 2021)

               r s a b t s L a b t s L , a b t h b n t L & C L & C a b t h

Alberto Bietti (CCM) Transformers and Associative Memories ML @ Flatiron 8 / 21



Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

     …            {t+1, Mr, Bacon}    …     {T, Mr} 

…      {t, Mr}          {t+1, Bacon}        …      {T, Mr}   

     …          {t+1, Mr, Bacon}    …   {T, Mr, Bacon} 

1st layer: previous-token head
▶ attends to previous token and copies it to residual stream

2nd layer: induction head
▶ attends to output of previous token head, copies attended token
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Matrices as associative memories
Consider sets of nearly orthonormal embeddings {ui}i∈I and {vj}j∈J :

∥ui∥ ≈ 1 and u⊤
i uj ≈ 0

∥vi∥ ≈ 1 and v⊤
i vj ≈ 0

Consider pairwise associations (i , j) ∈ M with weights αij and define:

W =
∑

(i ,j)∈M
αijvju⊤

i

We have v⊤
j Wui ≈ αij

Computed in Transformers for:
▶ Logits in next-token prediction (vj = wU(j), ui = xt)
▶ Logits in attention heads (vj = xk , ui = xq)

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)
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Random embeddings in high dimension
We consider embeddings ui , vj with i.i.d. N(0, 1/d) entries, d large

∥ui∥ ≈ 1 and u⊤
i uj = O(1/

√
d)

Remapping: multiply by random matrix W with N (0, 1/d) entries:

∥Wui∥ ≈ 1 and u⊤
i Wui = O(1/

√
d)

Value/Output matrices help with token remapping: Mr 7→ Mr, Bacon 7→ Bacon

     …            {t+1, Mr, Bacon}    …     {T, Mr} 

…      {t, Mr}          {t+1, Bacon}        …      {T, Mr}   

     …          {t+1, Mr, Bacon}    …   {T, Mr, Bacon} 
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Gradient associative memories
Lemma (Gradients as memories)
Let p be a data distribution over (z , y) ∈ [N]2, and consider the loss

L(W ) = E(z,y)∼p[ℓ(y , ξW (z))], ξW (z)k = vk
⊤W uz ,

with ℓ the cross-entropy loss and uz , vk input/output embeddings.

Then,

∇L(W ) =
K∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))vkuz

⊤]

Example: z ∼ Unif([N]), y = f∗(z)
After one gradient step on the population loss, assuming near-orthonormal embeddings

vk
⊤W1uz ≈ η

N

(
1{f∗(z) = k} − 1

N

)
Corollary: f̂ (z) = arg maxk vk

⊤W1uz has near-perfect accuracy
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)
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⊤W uz ,

with ℓ the cross-entropy loss and uz , vk input/output embeddings. Then,

∇L(W ) =
K∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))vkuz

⊤]

Example: z ∼ Unif([N]), y = f∗(z)
After one gradient step on the population loss, assuming near-orthonormal embeddings

vk
⊤W1uz ≈ η

N

(
1{f∗(z) = k} − 1

N

)
Corollary: f̂ (z) = arg maxk vk

⊤W1uz has near-perfect accuracy

Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

Alberto Bietti (CCM) Transformers and Associative Memories ML @ Flatiron 12 / 21



Gradient associative memories
Lemma (Gradients as memories)
Let p be a data distribution over (z , y) ∈ [N]2, and consider the loss

L(W ) = E(z,y)∼p[ℓ(y , ξW (z))], ξW (z)k = vk
⊤W uz ,

with ℓ the cross-entropy loss and uz , vk input/output embeddings. Then,

∇L(W ) =
K∑

k=1
Ez [(p̂W (y = k|z) − p(y = k|z))vkuz

⊤]

Example: z ∼ Unif([N]), y = f∗(z)
After one gradient step on the population loss, assuming near-orthonormal embeddings

vk
⊤W1uz ≈ η

N

(
1{f∗(z) = k} − 1

N

)
Corollary: f̂ (z) = arg maxk vk

⊤W1uz has near-perfect accuracy
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

Alberto Bietti (CCM) Transformers and Associative Memories ML @ Flatiron 12 / 21



Gradient associative memories with noisy inputs
Lemma (Gradients with noisy inputs)
Let p be a data distribution over (x , y) ∈ Rd × [N], and consider the loss

L(W ) = E(x ,y)∼p[ℓ(y , ξW (x))], ξW (z)k = vk
⊤W x .

Denoting µk := E[x |y = k] and µ̂k := Ex [ p̂W (k|x)
p(y=k) x ], we have

∇W L(W ) =
N∑

k=1
p(y = k)vk(µ̂k − µk)⊤.

Motivation: the residual streams are sums of embeddings, some of which are irrelevant
Example: y ∼ Unif([N]), t ∼ Unif([T ]), x = uy + pt . One gradient step:

v⊤
k W1(uy + pt) ≈ η

N 1{y = k} + O
( 1

N2

)
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Induction head with associative memories

Layer 0

Sequence

Layer 1

Layer 2

pt−1 wE(a) pt wE(b) pT−1 wE(a)

a b a b[· · · ]

∗ wE(a) w1(a) wE(b) ∗ wE(a)

∗ ∗ ∗ ∗ wU (b) wE(a)

Attn1:
∑

s ps−1p
⊤
s

W 1
OW

1
V Residual

Attn2:
∑

k w1(k)wE(k)
⊤ W 2

OW 2
V :

∑
k wU (k)wE(k)

⊤

Prediction

W 1
K =

T∑
t=2

ptp⊤
t−1, W 2

K =
∑
k∈Q

wE (k)w1(k)⊤, W 2
O =

N∑
k=1

wU(k)(W 2
V wE (k))⊤,

Random embeddings wE (k), wU(k), random matrices W 1
V , W 1

O, W 2
V , fix WQ = I

Remapped previous tokens: w1(k) := W 1
OW 1

V wE (k)

Q: Does this match practice?
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Empirically probing the dynamics
Train only W 1

K , W 2
K , W 2

O, loss on deterministic output tokens only

Figure 3: Learning the induction head alone: in-context accuracy (top) and recall probes
(bottom) with some layers frozen until iteration 300. The output matrix W 2

O can and must be learned
before the key-query matrices, but does not suffice for good accuracy. It is easier to learn W 2

K
before W 1

K , and W 1
K stores initial context positions (t < 64) much faster than late positions.

The question remains of how the model could trade-off predictions from the induction head and from229

the feed-forward layer, which are added together due to residual connections. With fixed triggers Q,230

we may simply remove all i 2 Q from the summation in (8), so that the model exclusively relies231

on the attention head for all triggers (indeed, the output of W 2
O is in the span of output embeddings,232

which are nearly orthogonal to the row space of WF ). When the triggers can vary across different233

sequences, choosing between the induction head and the feed-forward layer is more ambiguous as234

it depends on context, and WF may try to learn more complex mappings that also use the outputs235

of W 2
O. In practice, we observe that the model often prefers the induction head, unless its output236

agrees with one of the top predictions from the global bigram, in which case it tends to prefer those.237

5 Empirical Study238

In this section, we present our empirical analysis of learning dynamics on the bigram data defined in239

Section 3, for the simplified architecture defined in Section 4.2. See Appendix D for additional results.240

Experimental setup. We train our models using mini-batch SGD with momentum, where each241

batch consists of 512 fresh sequences of length T = 256 sampled from our synthetic model. We use242

a fixed learning rate and weight decay. Hyperparameters are given in Appendix D. Unless otherwise243

noted, we use d = 128, random triggers with ⇡q = ⇡u and uniform output tokens. The reported244

accuracies and losses are computed over each fresh batch before it is used for optimization, and245

are averaged over relevant tokens: “in-context accuracy/loss” numbers only consider predictions246

of output tokens on triggers starting at the second occurrence (the first is non-deterministic), while247

“global loss” refers to average loss on non-trigger tokens.248

Memory recall probes. In addition to loss and accuracy, we consider metrics to check whether249

individual matrices have learned the desired associative memories: for a desired target memory W⇤ =250 P
(i,j)2M vju

>
i , the corresponding recall metric is computed from the empirical estimate Ŵ as251

R(Ŵ , W⇤) =
1

|M|
X

(i,j)2M
{arg max

j0
v>j0Ŵui = j}. (9)

We use this for each matrix in (7) as target, and additionally test the previous token matrix W 1
K on252

smaller time windows. For the final feed-forward layer, we measure the average KL divergence253

between the predicted softmax distribution using only WF and the global bigram distribution ⇡b:254

dKL(WF ,⇡b) :=
1

N

NX

k=1

dKL(�(WUWF wE(k)),⇡b(·|k)). (10)

255
Emergence of the induction head via top-down learning. We begin our study by only training256

to minimize the loss on trigger-output token predictions after their first occurrence. This should257

7

“Memory recall probes”: for target memory W∗ =
∑

(i ,j)∈M vju⊤
i , compute

R(Ŵ , W∗) = 1
|M|

∑
(i ,j)∈M

1{j = arg max
j′

v⊤
j′ Ŵ ui}

Natural learning “order”: W 2
O first, W 2

K next, W 1
K last

Joint learning is faster
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Theoretical analysis with single gradient steps
Setting

Focus on predicting second output token
All distributions are uniform
Some simplifications to architecture

Theorem (informal)
In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss, assuming near-orthonormal embeddings: first on W 2

O, then W 2
K , then W 1

K .

Key ideas
Attention is uniform at initialization =⇒ inputs are sums of embeddings
W 2

O: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of zT

W 1/2
K : correct associations lead to more focused attention
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Global vs in-context learning and role of data

Train on all tokens, with added WF after second attention layer

Figure 4: Global vs in-context learning and data-distributional effects. (left) Loss on global
(dashed) vs in-context (solid) tokens throughout training, for fixed or random trigger tokens qk. The
red curves fixes the trigger q1 to the most frequent token, while the fixed triggers in blue curves
are less common. (center) In-context accuracy with different training and test distributions ⇡o for
output tokens. Uniform leads to better generalization than global bigrams ⇡b. (right) Probe metrics
throughout training: W 2

O and WF eventually compete and deviate from our natural estimates.

the transformer residual streams, gradients may learn associative memories that filter out irrelevant310

components of these superpositions, focusing on useful signal instead.311

Lemma 2 (Gradient associative memory with noisy inputs). Let p be a data distribution on (x, y) 2312

Rd ⇥ [N ], and consider the following classification problem, with fixed output embeddings WU :313

L(W ) = E(x,y)⇠p[`(y, WUWx)].

The gradients take the following form: denoting µk := E[x|y = k] and µ̂k := Ex[ p̂W (k|x)
p(y=k) x],314

rW L(W ) =

NX

k=1

p(y = k)wU (k)(µ̂k � µk)>.

The key takeaway from this lemma is that with enough data (here infinite data), the associative315

memory arising from gradients can learn to filter out noise from inputs, since it only depends on316

its expectations or conditional expectations. In particular, µk can isolate relevant parts of x that are317

predictive of a label k, and thus can lead to the right associations.318

An illustrative example. To gain more intuition about this result, consider the following example:319

we would like to predict y from x = wE(y) + pt, where pt is a positional embedding at a random320

position t 2 [T ], which we would like to ignore. Further assume that y is uniformly distributed321

with p(y = k) = 1/N , and consider the matrix obtained after one population gradient step with322

step-size ⌘ starting from an initialization W0 = 0 (so that p̂W0
(k|x) = 1/N ):323

W1 =
⌘

N

NX

k=1

wU (k)(µk � µ̄)>,

with µ̄ = E[x]. We show in Appendix B that when d is large enough to ensure near-orthonormal324

embeddings, we have325

wU (k)>W1(wE(y) + pt) ⇡
⌘

N
{k = y} + O

✓
1

N2

◆
,

so that for large enough N and T , we obtain a near-perfect classifier that ignores the positional326

embedding, after just one gradient step (but a highly idealized one). Understanding how this translates327

to the finite dimension and finite sample regime is an important theoretical question that we leave328

for future work. We note that data models related to the above have been useful to study gradient329

dynamics of neural networks on continuous data [2, 22, 25]. Using a single gradient step to learn330

representations has also been fruitful in other contexts [3, 10].331

Learning the induction head with gradients. In Appendix B, we use Lemma 2 in a similar manner332

to show how training W 2
O by itself at initialization, i.e., when the attention patterns are near-uniform,333

9

Global bigrams learned quickly with WF before induction mechanism

More frequent triggers =⇒ faster learning of induction head
More uniform output tokens helps OOD performance
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to the finite dimension and finite sample regime is an important theoretical question that we leave328

for future work. We note that data models related to the above have been useful to study gradient329

dynamics of neural networks on continuous data [2, 22, 25]. Using a single gradient step to learn330

representations has also been fruitful in other contexts [3, 10].331

Learning the induction head with gradients. In Appendix B, we use Lemma 2 in a similar manner332

to show how training W 2
O by itself at initialization, i.e., when the attention patterns are near-uniform,333

9

Global bigrams learned quickly with WF before induction mechanism
More frequent triggers =⇒ faster learning of induction head
More uniform output tokens helps OOD performance
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What about more complex models?
Factorizations (e.g., W ⊤

K WQ): y⊤UVx
▶ Low rank factorization can save parameters/compute
▶ One joint gradient step from random initialization still works

Non-linear MLP: y⊤Uσ(Vx)
▶ More expressive when x , y are superpositions/sums of embeddings
▶ One gradient step still ok

Layer-norm: y⊤ Wx
∥Wx∥

▶ Prevents repeated updates when Wx and y are already aligned
▶ First gradient step from random initialization is unchanged

Trained embeddings
▶ Single gradient steps capture basic co-occurrence statistics/BoW/topics
▶ Or more complex learning of structured embeddings (e.g., “grokking”)

Does it work empirically on the bigram task? Yes!
Memory recall probes → 1 as in previous experiment
But: adding heads and layers loses identifiability
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What about finite samples/width? “scaling laws”/rates
Setting

zi ∼ p(z), yi = f ∗(zi), n samples: Sn = {z1, . . . , zn}, 0/1 loss:

L(f̂n) = P(y ̸= f̂n(z))

Zipf law: p(z) ∝ z−α (up to permutation)
Random embeddings uz , vy ∈ Rd with N (0, 1/d) entries
Hutter (2021): with infinite memory, L(f̂n) ≲ n− α−1

α

Theorem (Cabannes, Dohmatob, B., 2023, informal)
Consider the estimator f̂n,d(x) = arg maxy v⊤

y Wn,duz , with Wn,d =
∑N

z=1 q(z)vf ∗(z)u⊤
z .

1 For q(z) =
∑

i 1{z = zi}: L(f̂n,d) ≲ n− α−1
α + d− α−1

2α

2 For q(z) = 1{z ∈ Sn}, and d ≫ N: L(f̂n,d) ≲ n− α−1
α + d−k for any k

3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) ≲ n− α−1
α + d−α+1
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Scaling laws with optimization algorithms

Wn,d =
N∑

z=1
q(z)vf ∗(z)u⊤

z

Different algorithms lead to different memory schemes q(z):

One step of SGD with large batch: q(z) ≈ p(z)
SGD with batch size one + large step-size, d ≫ N: q(z) ≈ 1
For d ≤ N, smaller step-sizes can help later in training
Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

101 102 103
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10−1

E
rr

or

SGD, |B|=64, T=10240
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d
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rr

or

SGD, T=1024

|B| = 16, γ = 1

|B| = 1024, γ = 10
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γ=1.0, |B|=1024, T=10240
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SGD+LN

Adam+LN

Alberto Bietti (CCM) Transformers and Associative Memories ML @ Flatiron 20 / 21



Scaling laws with optimization algorithms

Wn,d =
N∑

z=1
q(z)vf ∗(z)u⊤

z

Different algorithms lead to different memory schemes q(z):
One step of SGD with large batch: q(z) ≈ p(z)

SGD with batch size one + large step-size, d ≫ N: q(z) ≈ 1
For d ≤ N, smaller step-sizes can help later in training
Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

101 102 103

d

10−2

10−1

E
rr

or

SGD, |B|=64, T=10240

γ=0.1

γ=1.0

γ=10.0

γ=100.0

101 102 103

d

10−1

E
rr

or

SGD, T=1024

|B| = 16, γ = 1

|B| = 1024, γ = 10

101 102 103

d

10−1

E
rr

o
r

γ=1.0, |B|=1024, T=10240

SGD

Adam

SGD+LN

Adam+LN

Alberto Bietti (CCM) Transformers and Associative Memories ML @ Flatiron 20 / 21



Scaling laws with optimization algorithms

Wn,d =
N∑

z=1
q(z)vf ∗(z)u⊤

z

Different algorithms lead to different memory schemes q(z):
One step of SGD with large batch: q(z) ≈ p(z)
SGD with batch size one + large step-size, d ≫ N: q(z) ≈ 1

For d ≤ N, smaller step-sizes can help later in training
Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

101 102 103

d

10−2

10−1

E
rr

or

SGD, |B|=64, T=10240

γ=0.1

γ=1.0

γ=10.0

γ=100.0

101 102 103

d

10−1

E
rr

or

SGD, T=1024

|B| = 16, γ = 1

|B| = 1024, γ = 10

101 102 103

d

10−1

E
rr

o
r

γ=1.0, |B|=1024, T=10240

SGD

Adam

SGD+LN

Adam+LN

Alberto Bietti (CCM) Transformers and Associative Memories ML @ Flatiron 20 / 21



Scaling laws with optimization algorithms

Wn,d =
N∑

z=1
q(z)vf ∗(z)u⊤

z

Different algorithms lead to different memory schemes q(z):
One step of SGD with large batch: q(z) ≈ p(z)
SGD with batch size one + large step-size, d ≫ N: q(z) ≈ 1
For d ≤ N, smaller step-sizes can help later in training

Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

101 102 103

d

10−2

10−1

E
rr

or

SGD, |B|=64, T=10240

γ=0.1

γ=1.0

γ=10.0

γ=100.0

101 102 103

d

10−1

E
rr

or

SGD, T=1024

|B| = 16, γ = 1

|B| = 1024, γ = 10

101 102 103

d

10−1

E
rr

o
r

γ=1.0, |B|=1024, T=10240

SGD

Adam

SGD+LN

Adam+LN

Alberto Bietti (CCM) Transformers and Associative Memories ML @ Flatiron 20 / 21



Scaling laws with optimization algorithms

Wn,d =
N∑

z=1
q(z)vf ∗(z)u⊤

z

Different algorithms lead to different memory schemes q(z):
One step of SGD with large batch: q(z) ≈ p(z)
SGD with batch size one + large step-size, d ≫ N: q(z) ≈ 1
For d ≤ N, smaller step-sizes can help later in training
Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

101 102 103

d

10−2

10−1

E
rr

or

SGD, |B|=64, T=10240

γ=0.1

γ=1.0

γ=10.0

γ=100.0

101 102 103

d

10−1

E
rr

or

SGD, T=1024

|B| = 16, γ = 1

|B| = 1024, γ = 10

101 102 103

d

10−1

E
rr

o
r

γ=1.0, |B|=1024, T=10240

SGD

Adam

SGD+LN

Adam+LN

Alberto Bietti (CCM) Transformers and Associative Memories ML @ Flatiron 20 / 21



Scaling laws with optimization algorithms

Wn,d =
N∑

z=1
q(z)vf ∗(z)u⊤

z

Different algorithms lead to different memory schemes q(z):
One step of SGD with large batch: q(z) ≈ p(z)
SGD with batch size one + large step-size, d ≫ N: q(z) ≈ 1
For d ≤ N, smaller step-sizes can help later in training
Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

101 102 103

d

10−2

10−1

E
rr

or

SGD, |B|=64, T=10240

γ=0.1

γ=1.0

γ=10.0

γ=100.0

101 102 103

d

10−1
E

rr
or

SGD, T=1024

|B| = 16, γ = 1

|B| = 1024, γ = 10

101 102 103

d

10−1

E
rr

or

γ=1.0, |B|=1024, T=10240

SGD

Adam

SGD+LN

Adam+LN

Alberto Bietti (CCM) Transformers and Associative Memories ML @ Flatiron 20 / 21



Discussion and next steps
Summary

Bigram model: simple but rich toy model for discrete data
Transformer weights as associative memories
Learning via few top-down gradient steps
Better algorithms help for better scaling laws for heavy-tailed data

Future directions
More complex “reasoning” mechanisms, links with “emergence”
Learning dynamics: multiple gradient steps? joint training? embeddings?
Applications: interpretability, model editing, factual recall, efficient fine-tuning
LLM large-width scalings (links with µP)
Replace weights by hash tables?? (a.k.a. Leon’s dream)

Thank you!
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