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Success of deep convolutional networks
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regularization

empirical risk

o Neural networks: f(x) = W,r10(W,ao(Wp—1...0(Wao(Wix))...))

o Convolutional structure in the linear operations W

Alberto Bietti Deep Convolutional Representations SMAI-MODE 2018 2 /25



Success of deep convolutional networks
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Convolutional Neural Networks (CNNs):
o Capture multi-scale and compositional structure in natural signals
o Provide some invariance
o Model local stationarity
Qo

State-of-the-art in many applications
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Understanding deep convolutional representations

©

Are they stable to deformations?

o How can we achieve invariance to transformation groups?

©

Do they preserve signal information?

o How can we measure model complexity?
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A kernel perspective

Kernels?
o Map data x to high-dimensional space, ®(x) € H (H: "RKHS")
o Non-linear function f € H becomes linear: f(x) = (f, ®(x))
o Learning with a positive definite kernel K(x,x") = (®(x), ®(x’))
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A kernel perspective

Kernels?
o Map data x to high-dimensional space, ®(x) € H (H: "RKHS")
o Non-linear function f € H becomes linear: f(x) = (f, ®(x))
o Learning with a positive definite kernel K(x,x") = (®(x), ®(x’))
o CKN kernels (Mairal, 2016) satisfy:

F(x) = Wpr10(Wao(Wa1...0(Wao(Wix))...)) = (f, &(x))
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A kernel perspective

Why? Separate learning from representation: f(x) = (f, ®(x))
o ®(x): CNN architecture (stability, invariance, signal preservation)

o f: CNN model, learning, generalization through RKHS norm || f||
) = FN) < - 190x) = (x|

o ||f]| controls both stability and generalization!
— discriminating small deformations requires large ||f]|

— learning stable functions is “easier”
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Outline

(D Construction of the Convolutional Representation
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A generic deep convolutional representation

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)
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A generic deep convolutional representation

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)

o xi : Q — Hy: feature map at layer k

Piexi—1

» Py: patch extraction operator, extract small patch of feature map
Xk_1 around each point u
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A generic deep convolutional representation

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)

o xi : Q — Hy: feature map at layer k

My Piexi—1

» Py: patch extraction operator, extract small patch of feature map
Xk_1 around each point u

» My non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function ¢y (-)
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A generic deep convolutional representation

o xp : Q — Ho: initial (continuous) signal
» u€ Q=R location (d = 2 for images)
» xo(u) € Ho: value (Ho = R® for RGB images)

o xi : Q — Hy: feature map at layer k

Xie = AkMyPixic—1

» Py: patch extraction operator, extract small patch of feature map
Xk_1 around each point u

» My non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function ¢y (-)

» A (linear, Gaussian) pooling operator at scale oy
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A generic deep convolutional representation

Ty = Ap M Prxy 1 : Q — Hy J?/v<’u,‘) = AL M. P.x), 1(’[11) € Hy

linear pooling

A[kPk$k*1 Q= Hk ;W'[kpklbk,l (1)) = \,G‘k(PATk,l (1))) S Hk

non-linear mapping

Pray-1(v) € Py (patch extraction)

Tp-1(u) € Hia 1 Q= Hi
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Patch extraction operator Py

Pka_l(U) = (V € Sk — xk_l(u + V)) e Py = ,Hffl

Pyxy_y(v) € P (patch extraction)

T 1(11) € Hi Th-1 :Q — Hi1
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Patch extraction operator Py

Pka_l(U) = (V € Sk — xk_l(u + V)) e Py = /Hffl

o Si: patch shape, e.g. box

o Py is linear, and preserves the norm: ||Pyxi—1| = ||xk-1]]
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Non-linear mapping operator M

/\/IkPka_l(u) = gok(kak_l(u)) € Hy

My P s Q= Hy My Pyay1(v) = or(Prar-(v) € Hy

non-linear mapping
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Non-linear mapping operator M

/\/lkPka_l(u) = gok(kak_l(u)) € Hy

o ¢k : Px — Hy pointwise non-linearity on patches (kernel map)

o We assume non-expansivity: for z,z/ € Py
lex(2) < llzll - and  low(z) = wu(Z)] < [z = 2|
o M then satisfies, for x, x" € L2(Q, Py)

IMix|| < [Ix]l and [[Mix = Mix'|| < [lx = X'|
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Non-linear mapping operator M

/\/lkPka_l(u) = gok(kak_l(u)) € Hy

©

©k : Px — Hyi pointwise non-linearity on patches

o We assume: for z,Zz/ € Py

ler(2)l < pellzll - and  lpw(2) = wu(Z)I < pullz = 2]

©

M, then satisfies, for x, x’ € L2(Q, Px)

IMix|| < picllx]l - and  [[Mix = MixX'[| < pul|x = X||

o (can think instead: ¢x(z) = ReLU(Wz), pk-Lipschitz with
i = |Will)
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i from kernels

o Kernel mapping of homogeneous dot-product kernels:

(z,7))

12[[1l2']

Kulz,2) = 2l e (2 ) = (o2 onl2):

©

k() = 20 bjo with b; >0, ky(1) =1
Commonly used for hierarchical kernels
len(2)]| = Ki(z,2)"/? = | 2]|

lon(z) = eu(Z)I < llz = 2] if w) (1) < 1
@ = non-expansive

©

©

©
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i from kernels

o Kernel mapping of homogeneous dot-product kernels:

(z,7))

12[[1l2']

Kulz,2) = 2l e (2 ) = (o2 onl2):

©

k() = 20 bjo with b; >0, ky(1) =1

o Commonly used for hierarchical kernels

o [le(2)]| = Ki(z,2)"* = | 2|

o llow(z) — (@) < llz = 2|l if mi (1) <1
© = non-expansive

o Examples:

> Kep((2,2')) = e<zvz/>—11 (Gaussian kernel on the sphere)
> Hinv—poly(<zvzl>) = 2—(z,z’)
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i from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):
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i from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):

o Approximate ¢k (z) by projection on span(pk(z1), ..., ¢k(zp))
(Nystrom)

o Leads to tractable, p-dimensional representation 1, (z)

o Norm is preserved, and projection is non-expansive:

1th(2) = ()| = IMpie(2) = Mispue ()]
< lle(2) = (D) < [z = 2|

o Anchor points z, ..., z, (= filters) can be learned from data
(K-means or backprop)
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Pooling operator Ay

Xk(u) = AkMkPka_l(u) = /]Rd hgk(u — V)MkPka_l(V)dV € Hy

o = ApM Pewg 1 : Q — Hy zrp(w) = A My Prag 1 (w) € Hy

linear pooling

MyPrxy 1 :Q— Hy,

Th1 Q= Hiq
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Pooling operator Ay

Xk ( ) AkMkPka 1 / hak MkPka 1( )dV € Hy

o hy,: pooling filter at scale o
o hy(u) := o ?h(ujok) with h(u) Gaussian
o linear, non-expansive operator: ||Ax|| <1
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Pooling operator Ay

Xk ( ) AkMkPka 1 / hak MkPka 1( )dV € Hy

o hy,: pooling filter at scale o

o hy(u) := o ?h(ujok) with h(u) Gaussian

o linear, non-expansive operator: ||Ax|| <1

o In practice: discretization, sampling at resolution o after pooling

o Recovery with kernels possible when subsampling < patch size
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Recap: Pk, Mk, Ak

T = Ak]Wkkak,l : Q- Hk Jfk<’u,‘) = Akﬂ[;ﬁpk:lfk 1(’[1,‘) € Hl‘-,

linear pooling

My Prag—q : Q — Hy My Prxyy (’U) = @k(Pka—l (’U)) € Hy

kernel mapping

Prag-1(v) € Pr (patch extraction)

Tp-1(u) € Hia 10 Q= Hia
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Multilayer construction

Xp = AnMnPnAn—lM —1P -1 " AlMlP]-XO S L2(Q,Hn)

o Sy, ok grow exponentially in practice (i.e. fixed with subsampling)
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Multilayer construction

Xp = AnMnPnAn—lM —1P -1 " AlMlP]-XO S L2(Q,Hn)

o Sy, ok grow exponentially in practice (i.e. fixed with subsampling)
o X is typically a discrete signal aquired with physical device

» Natural assumption: xp = Agx, with x the original continuous signal,
Ao local integrator (anti-aliasing)
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Multilayer construction

Xp = AnMnPnAn—lM —1P -1 " AlMlP]-XO S L2(Q,Hn)

o Sy, ok grow exponentially in practice (i.e. fixed with subsampling)
o X is typically a discrete signal aquired with physical device

» Natural assumption: xp = Agx, with x the original continuous signal,
Ao local integrator (anti-aliasing)

o Prediction layer: e.g. linear

> f(XO) = <W5Xn>
> “linear kernel” K(x0,x5) = (X, X;) = [q(xn(u), x;(u))du
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QOutline

1) Construction of the Convolutional Representation

@ Invariance and Stability

3) Model Complexity and Generalization



Stability to deformations: definitions

o 7:Q — Q: Cl-diffeomorphism
o Lyx(u) = x(u—7(u)): action operator

o Much richer group of transformations than translations

FHY Y qhyyyn
559585855 €¢

77017717777

I E5E58¢43C8& S
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Stability to deformations: definitions

©

Representation ®(-) is stable (Mallat, 2012) if:

[8(Lrx) = S| < (Gl VTlloo + CallTllo0) I X]]

©

IVT|lco = sup, ||V7(u)|| controls deformation

©

I7]lcc = sup, |7(u)| controls translation

o (5 — 0: translation invariance
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Warmup: translation invariance

o Representation:
&,(x) =AM, PrA-1Mp1 Py -+ AiM1Prx.

o Translation: Lcx(u) = x(u — ¢)
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Warmup: translation invariance

o Representation:
&,(x) =AM, PrA-1Mp1 Py -+ AiM1Prx.

o Translation: Lcx(u) = x(u — ¢)

o Equivariance - all operators commute with L.: UL, = L.

[®(Lex) = @(X)[| = [[Lc®(x) — S(x)]
< [LeAn = Anll - [Ix]]
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Warmup: translation invariance

©

Representation:

&,(x) =AM, PrA-1Mp1 Py -+ AiM1Prx.

©

Translation: Lcx(u) = x(u—¢)

©

Equivariance - all operators commute with L.: OL, = L.

[®(Lex) = @(X)[| = [[Lc®(x) — S(x)]
< [LeAn = Anll - [Ix]]

©

Mallat (2012): [|L;An — Al < &7l

— op

Alberto Bietti Deep Convolutional Representations SMAI-MODE 2018

17 / 25



Warmup: translation invariance

©

Representation:

&,(x) =AM, PrA-1Mp1 Py -+ AiM1Prx.

©

Translation: Lcx(u) = x(u—¢)

©

Equivariance - all operators commute with L.: OL, = L.
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Warmup: translation invariance

©

Representation:

&,(x) =AM, PrA-1Mp1 Py -+ AiM1Prx.

©

Translation: Lcx(u) = x(u—¢)

©

Equivariance - all operators commute with L.: OL, = L.

[®(Lex) = @(X)[| = [[Lc®(x) — S(x)]
< [LeAn = Anll - [Ix]]

©

Mallat (2012): [[LcA, — Al < Sc

o Group invariance (e.g., rotations) with different construction
» Group equivariance in Py, A
» Global pooling on the group at last layer
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Stability to deformations

o Representation:
®p(x) = AgMuPrA-1Mp1Pry - AiM1Pix.

o Patch extraction P and pooling Ax do not commute with L;!
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Stability to deformations

o Representation:
®p(x) = AgMuPrA-1Mp1Pry - AiM1Pix.

o Patch extraction P and pooling Ax do not commute with L;!
o ||AkL: — Ly Ak|| < Gi||VT]||x (from Mallat, 2012)
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Stability to deformations

o Representation:
®p(x) = AgMuPrA-1Mp1Pry - AiM1Pix.

o Patch extraction P and pooling Ax do not commute with L;!
o ||[Ak, L:]|l < Gi]| VTl (from Mallat, 2012)
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Stability to deformations

©

Representation:

Op(x) 1= AnMpPpAn1Mp1Ppy -+ ALMPix.

©

Patch extraction Py and pooling Ay do not commute with L,!
I[Ak, Lt]|] < Gi]|VT]|so (from Mallat, 2012)
But: [Py, L;] is unstable at high frequencies!

©

©
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Stability to deformations

©

Representation:
&p(x) := AgMuPrAn-1Mp1Ppy -+ A1 M1 P1Aox.

o Patch extraction P and pooling Ax do not commute with L;!
I[Ak, Lt]|] < Gi]|VT]|so (from Mallat, 2012)
But: [Py, L;] is unstable at high frequencies!

©

©

©

Adapt to current layer resolution, patch size controlled by oj_;:

[[PrAk—1, L]l < Gl VTl sup |u| < Kok
ueSy
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Stability to deformations

©

Representation:

®p(x) 1= AnMnPpAniMp1 Py -+ AL My Py Aox.

©

Patch extraction Py and pooling Ay do not commute with L,!
I[Ak, Lt]|] < Gi]|VT]|so (from Mallat, 2012)
But: [Py, L;] is unstable at high frequencies!

©

©

©

Adapt to current layer resolution, patch size controlled by oj_;:

[[PrAk—1, L]l < Gl VTl sup |u| < Kok
ueSy

C1,. grows as k9Tl — more stable with small patches (e.g., 3x3,
VGG et al.)

©
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Stability to deformations: final result

Theorem
If|VT]leo <1/2,

C
[9n(Lex) = @all < ( e (14 1) [97 e + e ) e

o Suggests several layers with small patches and subsampling for
stability + signal preservation
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Stability to deformations: final result

Theorem
I VTlo < 1/2

n

C
19n(Lex) = @460l < T ot (Core (1 1) 197+ 2 el )l
k

o Suggests several layers with small patches and subsampling for
stability + signal preservation

o (for generic CNNs, multiply by TT, px = ITx || Wkl|)
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Outline

(3 Model Complexity and Generalization

Alberto Bietti Deep Convolutional Representations SMAI-MODE 2018 20 / 25



RKHS of patch kernels K

(z,7))

Ki(z,Z) = ||z z’m( ), w(u) = bjit

o RKHS contains homogeneous functions:

frze|zllo((g,2)/llzIl)

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels K

(z,7))

Ki(z,Z) = ||z z’m( ), w(u) = bjit

o RKHS contains homogeneous functions:

frze|zllo((g,2)/llzIl)

o Smooth activations: o(u) = >3, a;/

a2
o Norm: ||f[%, < CZ(llgll?) = X720 7 llgll* < o0

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels K

Examples:
o o(u) = u (linear): C2(\?) = O(\?)
o o(u) = uP (polynomial): C2(\?) = O(\?P)
o o =~ sin, sigmoid, smooth ReLU: C2(\?) = O(e)

f:x e |x|o(wx/|Xx|)

f:x o(x)
207 — Rewv 41 — RelU, w=1
sRelLU -~ sRelLU,w =0
154 34 — sReLU,w=10.5
’ — sRelU,w=1
. —— sRelU,w =2
X 1.0 X 2
0.5 1 14
0.0 1 01
-2.0 -15 -1.0 -0.5 0.0 05 10 15 2.0 -20 -15 -1.0 -05 0.0 05 1.0 15 2.0
X X
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Constructing a CNN in the RKHS H

©

Consider a CNN with filters W,ij(u), u€ Sk

o "Homogeneous" activations o

©

The CNN can be constructed hierarchically in Hyx

o Norm:

1117 < Wil CZCIWall3 C2(IWanall3 C3(-.)))
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Constructing a CNN in the RKHS H

Consider a CNN with filters W,ij(u), u€ Sk

o "Homogeneous" activations o

©

©

The CNN can be constructed hierarchically in Hyx

©

Norm (linear layers):

112 < [ Wasa 13 [ Wall3 - [ Woa |13 [IWA 3

©

Linear layers: product of spectral norms
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Link with generalization

o Simple bound on Rademacher complexity for linear/kernel methods:

BR
Fg = {f € Hy, |[f| < B} —> Rad,(F go()
B { /CH H } a (B) \/N
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Link with generalization

o Simple bound on Rademacher complexity for linear/kernel methods:

BR
Fg = {f € Hy, |[f| < B} —> Rad,(F go()
B { /CH H } a (B) \/N

o Leads to margin bound O(||%||R/yv/'N) for a learned CNN fy with
margin (confidence) v > 0

o Related to recent generalization bounds for neural networks based on
product of spectral norms (e.g., Bartlett et al., 2017)
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Deep convolutional representations: conclusions

Study of generic properties
o Deformation stability with small patches, adapted to resolution
o Signal preservation when subsampling < patch size

o Group invariance by changing patch extraction and pooling
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Deep convolutional representations: conclusions

Study of generic properties
o Deformation stability with small patches, adapted to resolution
o Signal preservation when subsampling < patch size
o Group invariance by changing patch extraction and pooling
Applies to learned models

o Same quantity ||f|| controls stability and generalization:

» “higher capacity” is needed to discriminate small deformations
» Learning is “easier” with stable functions

o Questions:

» Better regularization?
» How does SGD control capacity in CNNs?
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Discretization and signal preservation

Ips : Qo — Ha Ios(w1) = p1(Po,) € Ha
Kernel trick

P, € Py (patch)
Io : Qo — HO
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o) = si:

)_<k [n] = Ak Mk Pk)_(k—l [nsk]
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o = si:

)_<k [n] = Ak Mk Pk)_(k—l [nsk]

o Claim: We can recover xx_1 from X if subsampling s, < patch size
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Discretization and signal preservation

o X,: subsampling factor sy after pooling with scale o = si:

)_<k [n] = Ak Mk Pk)_(k—l [nsk]

o Claim: We can recover xx_1 from X if subsampling s, < patch size

o How? Kernels! Recover patches with linear functions (contained in
RKHS)

(fw, M Prx(u)) = o (Prx(u)) = (w, Pkx(u))
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Signal recovery: example in 1D

e |

deconvolution

Aprp_1 | |

recovery with linear measurements

| ] |

/ downsampling

AP [ ] ] ] | | |

/
linear pooling /

s [T T ] T T

dot-product kernel

S I S |

Prxy_1(u) € Py
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Beyond the translation group

o Global invariance to other groups? (rotations, reflections,
roto-translations, ...)

o Group action Lgx(u) = x(g1u)

©

Equivariance in inner layers + (global) pooling in last layer
Similar construction to (Cohen and Welling, 2016)

©
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G-equivariant layer construction

Feature maps x(u) defined on u € G (G: locally compact group)

©

o Patch extraction:
Px(u) = (x(uv))ves

Non-linear mapping: equivariant because pointwise!

©

Pooling (. left-invariant Haar measure):

()

Ax(u):/Gx(uv)h(v)d,u(v):/Gx(v)h(u_lv)d,u(v)
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Group invariance and stability

o Stability analysis should work on “compact Lie groups” (similar to
Mallat, 2012), e.g., rotations only
o For more complex groups (e.g., roto-translations):
» Stability only w.r.t. subgroup (translations) is enough?
» Inner layers: only pool on translation group
» Last layer: global pooling on rotations
» Cohen and Welling (2016): rotation pooling in inner layers hurts
performance on Rotated MNIST
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