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Success of deep convolutional networksParadigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min

f�F

1

n

n�

i=1

L(yi, f(xi))

� �� �
empirical risk, data fit

+ �⌦(f)� �� �
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...
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min
f œF

1
N

Nÿ

i=1
¸(yi , f (xi))

¸ ˚˙ ˝
empirical risk

+ ⁄�(f )
¸ ˚˙ ˝

regularization

Neural networks: f (x) = Wn+1‡(Wn‡(Wn≠1...‡(W2‡(W1x))...))
Convolutional structure in the linear operations Wk
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Convolutional Neural Networks (CNNs):
Capture multi-scale and compositional structure in natural signals
Provide some invariance
Model local stationarity
State-of-the-art in many applications
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Understanding deep convolutional representations

Are they stable to deformations?
How can we achieve invariance to transformation groups?
Do they preserve signal information?
How can we measure model complexity?
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A kernel perspective

Kernels?
Map data x to high-dimensional space, �(x) œ H (H: “RKHS”)
Non-linear function f œ H becomes linear: f (x) = Èf , �(x)Í
Learning with a positive definite kernel K (x , x Õ) = È�(x), �(x Õ)Í

CKN kernels (Mairal, 2016) satisfy:

f (x) = Wn+1‡(Wn‡(Wn≠1...‡(W2‡(W1x))...)) = Èf , �(x)Í
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A kernel perspective

Why? Separate learning from representation: f (x) = Èf , �(x)Í
�(x): CNN architecture (stability, invariance, signal preservation)
f : CNN model, learning, generalization through RKHS norm Îf Î

|f (x) ≠ f (x Õ)| Æ Îf Î · Î�(x) ≠ �(x Õ)Î

Îf Î controls both stability and generalization!
æ discriminating small deformations requires large Îf Î
æ learning stable functions is “easier”
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Outline

1 Construction of the Convolutional Representation

2 Invariance and Stability

3 Model Complexity and Generalization
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A generic deep convolutional representation

x0 : � æ H0: initial (continuous) signal
I u œ � = Rd : location (d = 2 for images)
I x0(u) œ H0: value (H0 = R3 for RGB images)

xk : � æ Hk : feature map at layer k

xk = AkMkPkxk≠1

I Pk : patch extraction operator, extract small patch of feature map
xk≠1 around each point u

I Mk : non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function Ïk(·)

I Ak : (linear, Gaussian) pooling operator at scale ‡k

Alberto Bietti Deep Convolutional Representations SMAI-MODE 2018 6 / 25



A generic deep convolutional representation

x0 : � æ H0: initial (continuous) signal
I u œ � = Rd : location (d = 2 for images)
I x0(u) œ H0: value (H0 = R3 for RGB images)

xk : � æ Hk : feature map at layer k

xk = AkMk

Pkxk≠1

I Pk : patch extraction operator, extract small patch of feature map
xk≠1 around each point u

I Mk : non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function Ïk(·)

I Ak : (linear, Gaussian) pooling operator at scale ‡k

Alberto Bietti Deep Convolutional Representations SMAI-MODE 2018 6 / 25



A generic deep convolutional representation

x0 : � æ H0: initial (continuous) signal
I u œ � = Rd : location (d = 2 for images)
I x0(u) œ H0: value (H0 = R3 for RGB images)

xk : � æ Hk : feature map at layer k

xk = Ak

MkPkxk≠1

I Pk : patch extraction operator, extract small patch of feature map
xk≠1 around each point u

I Mk : non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function Ïk(·)

I Ak : (linear, Gaussian) pooling operator at scale ‡k

Alberto Bietti Deep Convolutional Representations SMAI-MODE 2018 6 / 25



A generic deep convolutional representation

x0 : � æ H0: initial (continuous) signal
I u œ � = Rd : location (d = 2 for images)
I x0(u) œ H0: value (H0 = R3 for RGB images)

xk : � æ Hk : feature map at layer k

xk = AkMkPkxk≠1

I Pk : patch extraction operator, extract small patch of feature map
xk≠1 around each point u

I Mk : non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function Ïk(·)

I Ak : (linear, Gaussian) pooling operator at scale ‡k

Alberto Bietti Deep Convolutional Representations SMAI-MODE 2018 6 / 25



A generic deep convolutional representation

xk–1 : ⌦ ! Hk–1xk–1(u) 2 Hk–1

Pkxk–1(v) 2 Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = 'k(Pkxk–1(v)) 2 Hk
MkPkxk–1 : ⌦ ! Hk

xk := AkMkPkxk–1 : ⌦ ! Hk

linear pooling

xk(w) = AkMkPkxk–1(w) 2 Hk
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Patch extraction operator Pk

Pkxk–1(u) := (v œ Sk ‘æ xk–1(u + v)) œ Pk = HSk
k–1

xk–1 : ⌦ ! Hk–1xk–1(u) 2 Hk–1

Pkxk–1(v) 2 Pk (patch extraction)
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Patch extraction operator Pk

Pkxk–1(u) := (v œ Sk ‘æ xk–1(u + v)) œ Pk = HSk
k–1

Sk : patch shape, e.g. box
Pk is linear, and preserves the norm: ÎPkxk–1Î = Îxk–1Î
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Non-linear mapping operator Mk

MkPkxk–1(u) := Ïk(Pkxk–1(u)) œ Hk

xk–1 : ⌦ ! Hk–1

Pkxk–1(v) 2 Pk

non-linear mapping

MkPkxk–1(v) = 'k(Pkxk–1(v)) 2 Hk
MkPkxk–1 : ⌦ ! Hk
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Non-linear mapping operator Mk

MkPkxk–1(u) := Ïk(Pkxk–1(u)) œ Hk

Ïk : Pk æ Hk pointwise non-linearity on patches (kernel map)
We assume non-expansivity: for z , z Õ œ Pk

ÎÏk(z)Î Æ ÎzÎ and ÎÏk(z) ≠ Ïk(z Õ)Î Æ Îz ≠ z ÕÎ

Mk then satisfies, for x , x Õ œ L2(�, Pk)

ÎMkxÎ Æ ÎxÎ and ÎMkx ≠ Mkx ÕÎ Æ Îx ≠ x ÕÎ

(can think instead: Ïk(z) = ReLU(Wkz), flk -Lipschitz with
flk = ÎWkÎ)
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Ïk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z , z Õ) = ÎzÎÎz ÕÎŸk

3 Èz , z ÕÍ
ÎzÎÎz ÕÎ

4
= ÈÏk(z), Ïk(z Õ)Í.

Ÿk(u) = qŒ
j=0 bjuj with bj Ø 0, Ÿk(1) = 1

Commonly used for hierarchical kernels
ÎÏk(z)Î = Kk(z , z)1/2 = ÎzÎ
ÎÏk(z) ≠ Ïk(z Õ)Î Æ Îz ≠ z ÕÎ if ŸÕ

k(1) Æ 1
=∆ non-expansive

Examples:
I Ÿexp(Èz , z ÕÍ) = eÈz,zÕÍ≠1 (Gaussian kernel on the sphere)
I Ÿinv-poly(Èz , z ÕÍ) = 1

2≠Èz,zÕÍ
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Ïk from kernels: CKNs approximation

Convolutional Kernel Networks approximation (Mairal, 2016):

Approximate Ïk(z) by projection on span(Ïk(z1), . . . , Ïk(zp))
(Nystrom)
Leads to tractable, p-dimensional representation Âk(z)
Norm is preserved, and projection is non-expansive:

ÎÂk(z) ≠ Âk(z Õ)Î = Î�kÏk(z) ≠ �kÏk(z Õ)Î
Æ ÎÏk(z) ≠ Ïk(z Õ)Î Æ Îz ≠ z ÕÎ

Anchor points z1, . . . , zp (¥ filters) can be learned from data
(K-means or backprop)
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
⁄

Rd
h‡k (u ≠ v)MkPkxk–1(v)dv œ Hk

xk–1 : ⌦ ! Hk–1

MkPkxk–1 : ⌦ ! Hk

xk := AkMkPkxk–1 : ⌦ ! Hk

linear pooling

xk(w) = AkMkPkxk–1(w) 2 Hk
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
⁄

Rd
h‡k (u ≠ v)MkPkxk–1(v)dv œ Hk

h‡k : pooling filter at scale ‡k
h‡k (u) := ‡≠d

k h(u/‡k) with h(u) Gaussian
linear, non-expansive operator: ÎAkÎ Æ 1

In practice: discretization, sampling at resolution ‡k after pooling
Recovery with kernels possible when subsampling Æ patch size
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Recap: Pk , Mk , Ak

xk–1 : ⌦ ! Hk–1xk–1(u) 2 Hk–1

Pkxk–1(v) 2 Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = 'k(Pkxk–1(v)) 2 Hk
MkPkxk–1 : ⌦ ! Hk

xk := AkMkPkxk–1 : ⌦ ! Hk

linear pooling

xk(w) = AkMkPkxk–1(w) 2 Hk
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Multilayer construction

xn := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1x0 œ L2(�, Hn)

Sk , ‡k grow exponentially in practice (i.e. fixed with subsampling)

x0 is typically a discrete signal aquired with physical device
I Natural assumption: x0 = A0x , with x the original continuous signal,

A0 local integrator (anti-aliasing)
Prediction layer: e.g. linear

I f (x0) = Èw , xnÍ
I “linear kernel” K(x0, x Õ

0) = Èxn, x Õ
nÍ =

s
�Èxn(u), x Õ

n(u)Ídu
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3 Model Complexity and Generalization
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Stability to deformations: definitions

· : � æ �: C1-di�eomorphism
L· x(u) = x(u ≠ ·(u)): action operator
Much richer group of transformations than translations

Invariance to Translations

Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed
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Stability to deformations: definitions

Representation �(·) is stable (Mallat, 2012) if:

Î�(L· x) ≠ �(x)Î Æ (C1ÎÒ·ÎŒ + C2Î·ÎŒ)ÎxÎ

ÎÒ·ÎŒ = supu ÎÒ·(u)Î controls deformation
Î·ÎŒ = supu |·(u)| controls translation
C2 æ 0: translation invariance
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Warmup: translation invariance

Representation:

�n(x) := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1x .

Translation: Lcx(u) = x(u ≠ c)

Equivariance - all operators commute with Lc : ⇤Lc = Lc⇤

Î�(Lcx) ≠ �(x)Î = ÎLc�(x) ≠ �(x)Î
Æ ÎLcAn ≠ AnÎ · ÎxÎ

Mallat (2012): ÎL· An ≠ AnÎ Æ C2
‡n

Î·ÎŒ
Group invariance (e.g., rotations) with di�erent construction

I Group equivariance in Pk , Ak
I Global pooling on the group at last layer
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Stability to deformations

Representation:

�n(x) := AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1x .

Patch extraction Pk and pooling Ak do not commute with L· !

ÎÎ Æ C1ÎÒ·ÎŒ (from Mallat, 2012)
But: [Pk , L· ] is unstable at high frequencies!
Adapt to current layer resolution, patch size controlled by ‡k–1:

Î[PkAk–1, L· ]Î Æ C1,ŸÎÒ·ÎŒ sup
uœSk

|u| Æ Ÿ‡k–1

C1,Ÿ grows as Ÿd+1 =∆ more stable with small patches (e.g., 3x3,
VGG et al.)
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Adapt to current layer resolution, patch size controlled by ‡k–1:

Î[PkAk–1, L· ]Î Æ C1,ŸÎÒ·ÎŒ sup
uœSk

|u| Æ Ÿ‡k–1

C1,Ÿ grows as Ÿd+1 =∆ more stable with small patches (e.g., 3x3,
VGG et al.)
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Stability to deformations: final result

Theorem
If ÎÒ·ÎŒ Æ 1/2,

Î�n(L· x) ≠ �n(x)Î Æ
3

C1,Ÿ (n + 1) ÎÒ·ÎŒ + C2
‡n

Î·ÎŒ
4

ÎxÎ

Suggests several layers with small patches and subsampling for
stability + signal preservation

(for generic CNNs, multiply by r
k flk = r

k ÎWkÎ)
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RKHS of patch kernels Kk

Kk(z , z Õ) = ÎzÎÎz ÕÎŸ
3 Èz , z ÕÍ

ÎzÎÎz ÕÎ
4

, Ÿ(u) =
Œÿ

j=0
bjuj

RKHS contains homogeneous functions:

f : z ‘æ ÎzÎ‡(Èg , zÍ/ÎzÎ)

Smooth activations: ‡(u) = qŒ
j=0 ajuj

Norm: Îf Î2
Hk Æ C2

‡(ÎgÎ2) = qŒ
j=0

a2
j

bj
ÎgÎ2 < Œ

Homogeneous version of (Zhang et al., 2016, 2017)
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RKHS of patch kernels Kk

Examples:
‡(u) = u (linear): C2

‡(⁄2) = O(⁄2)
‡(u) = up (polynomial): C2

‡(⁄2) = O(⁄2p)
‡ ¥ sin, sigmoid, smooth ReLU: C2

‡(⁄2) = O(ec⁄2)
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Constructing a CNN in the RKHS HK

Consider a CNN with filters W ij
k (u), u œ Sk

“Homogeneous” activations ‡

The CNN can be constructed hierarchically in HK
Norm:

Îf‡Î2 Æ ÎWn+1Î2
2 C2

‡(ÎWnÎ2
2 C2

‡(ÎWn–1Î2
2 C2

‡(. . . )))

Linear layers: product of spectral norms
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Constructing a CNN in the RKHS HK

Consider a CNN with filters W ij
k (u), u œ Sk

“Homogeneous” activations ‡

The CNN can be constructed hierarchically in HK
Norm (linear layers):

Îf‡Î2 Æ ÎWn+1Î2
2 · ÎWnÎ2

2 · ÎWn–1Î2
2 . . . ÎW1Î2

2

Linear layers: product of spectral norms
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Link with generalization

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f œ HK, Îf Î Æ B} =∆ Radn(FB) Æ O
3 BRÔ

N

4

Leads to margin bound O(Îf̂nÎR/“
Ô

N) for a learned CNN f̂N with
margin (confidence) “ > 0
Related to recent generalization bounds for neural networks based on
product of spectral norms (e.g., Bartlett et al., 2017)
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Deep convolutional representations: conclusions

Study of generic properties
Deformation stability with small patches, adapted to resolution
Signal preservation when subsampling Æ patch size
Group invariance by changing patch extraction and pooling

Applies to learned models
Same quantity Îf Î controls stability and generalization:

I “higher capacity” is needed to discriminate small deformations
I Learning is “easier” with stable functions

Questions:
I Better regularization?
I How does SGD control capacity in CNNs?
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AI Summer School in Grenoble! July 2-6
PAISS - https://project.inria.fr/paiss/
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Discretization and signal preservation
The multilayer convolutional kernel

I0 : ⌦0 ! H0
I0(�0) 2 H0

P�1 2 P0 (patch)

Kernel trick

I0.5(�1) = '1(P�1) 2 H1
I0.5 : ⌦0 ! H1

I1 : ⌦1 ! H1

Linear pooling

I1(�2) 2 H1

How do we go from I0.5 : �0 ! H1 to I1 : �1 ! H1?

Linear pooling!
Julien Mairal Towards deep kernel machines 28/51
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Discretization and signal preservation

x̄k : subsampling factor sk after pooling with scale ‡k ¥ sk :

x̄k [n] = AkMkPk x̄k–1[nsk ]

Claim: We can recover x̄k≠1 from x̄k if subsampling sk Æ patch size
How? Kernels! Recover patches with linear functions (contained in
RKHS)

Èfw , MkPkx(u)Í = fw (Pkx(u)) = Èw , Pkx(u)Í
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Signal recovery: example in 1D

xk�1

Pkxk�1(u) 2 Pk

MkPkxk�1

dot-product kernel

AkMkPkxk�1

linear pooling

downsampling

xk

recovery with linear measurements

Akxk�1

deconvolution

xk�1
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Beyond the translation group

Global invariance to other groups? (rotations, reflections,
roto-translations, ...)
Group action Lgx(u) = x(g≠1u)
Equivariance in inner layers + (global) pooling in last layer
Similar construction to (Cohen and Welling, 2016)
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G-equivariant layer construction

Feature maps x(u) defined on u œ G (G : locally compact group)
Patch extraction:

Px(u) = (x(uv))vœS

Non-linear mapping: equivariant because pointwise!
Pooling (µ: left-invariant Haar measure):

Ax(u) =
⁄

G
x(uv)h(v)dµ(v) =

⁄

G
x(v)h(u≠1v)dµ(v)
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Group invariance and stability

Stability analysis should work on “compact Lie groups” (similar to
Mallat, 2012), e.g., rotations only
For more complex groups (e.g., roto-translations):

I Stability only w.r.t. subgroup (translations) is enough?
I Inner layers: only pool on translation group
I Last layer: global pooling on rotations
I Cohen and Welling (2016): rotation pooling in inner layers hurts

performance on Rotated MNIST
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