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Success of deep learning

State-of-the-art models in various domains (images, language, speech, biology, ...)

What can | help
you with?

ENGLISH - DETECTED ENGLISH C v g FRENCH CHINESE (TRADITIONAL) v
where is the train station? X ou est lagare? © w
D) 27/5000 ) [}
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Success of deep learning

State-of-the-art models in various domains (images, language, speech, biology, ...)

What can | help
you with?

ENGLISH - DETECTED ENGLISH C v g FRENCH CHINESE (TRADITIONAL) v
where is the train station? X ou est lagare? © w
D) 27/5000 ) [}

Recipe: huge models + lots of data + compute + simple algorithms
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Deep learning basics

o Linear layers with parameters W ¢ R4 %4

x — Wk
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Deep learning basics

o Linear layers with parameters W ¢ R4 %4

x — Wx
o Non-linear activations, e.g., ReLU o(u) = max(u, 0):

x — o(x)
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Deep learning basics

o Linear layers with parameters W ¢ R4 %4

x — Wx

o Non-linear activations, e.g., ReLU o(u) = max(u, 0):
x — o(x)

o Stack multiple layers with residual connections, e.g.:

Xn = Xnt1 = 0(Whxn) + Xn
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Deep learning basics

o Linear layers with parameters W ¢ R4 %4

x — Wx

o Non-linear activations, e.g., ReLU o(u) = max(u, 0):
x — o(x)

o Stack multiple layers with residual connections, e.g.:

Xn = Xnt1 = 0(Whxn) + Xn

©

Train by (stochastic) gradient descent on loss function ¢ (e.g., cross-entropy)
n .
>, x")
i=1

Gradients are computed using back-propagation (chain rule)

©

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 3/31



Deep learning architectures
Curse of dimensionality:
o Image/text/etc. data are high-dimensional
o Curse of dimensionality = need additional structure for learning
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Deep learning architectures

Curse of dimensionality:
o Image/text/etc. data are high-dimensional
o Curse of dimensionality = need additional structure for learning
o Local structure: split input into small local patches / “tokens”

Language Learning Models (LLMs) have revolutionized the field of natural
language processing, enabling machines to understand and generate human-
like text. At the core of LLMs lies the concept of tokens, which serve as
the fundamental building blocks for processing and representing text
data. In this blog post, we'll demystify tokens in LLMs, unraveling
their significance and exploring how they contribute to the power and
flexibility of these remarkable models.
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Deep learning architectures

Curse of dimensionality:
o Image/text/etc. data are high-dimensional
o Curse of dimensionality = need additional structure for learning
o Local structure: split input into small local patches / “tokens”

Language Learning Models (LLMs) have revolutionized the field of natural
language processing, enabling machines to understand and generate human-
like text. At the core of LLMs lies the concept of tokens, which serve as
the fundamental building blocks for processing and representing text
data. In this blog post, we'll demystify tokens in LLMs, unraveling
their significance and exploring how they contribute to the power and

flexibility of these remarkable models.

Architectures:
o Exploit symmetries/invariances among tokens
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Deep learning architectures

Curse of dimensionality:
o Image/text/etc. data are high-dimensional
o Curse of dimensionality = need additional structure for learning
o Local structure: split input into small local patches / “tokens”

Language Learning Models (LLMs) have revolutionized the field of natural
language processing, enabling machines to understand and generate human-
like text. At the core of LLMs lies the concept of tokens, which serve as
the fundamental building blocks for processing and representing text
data. In this blog post, we'll demystify tokens in LLMs, unraveling
their significance and exploring how they contribute to the power and

flexibility of these remarkable models.

Architectures:
o Exploit symmetries/invariances among tokens
o Model interactions/correlations across tokens
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Convolutional networks (CNNs)

GC3: 1, maps 16@10x10
INBUT %;g:éuare maps S4:1. maps 16@5x5
G2x32 52:f. may
@414

| |
| Full connection | Gaussian connections

Full

Ganvelutions Subsampling Convolutians

(LeCun et al, 1998)

o Model local interactions at different scales

o Translation equivariance + invariance via convolution + pooling
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Convolutional networks (CNNs)

- GC3: 1, maps 16@10x10
INBUT [+ ,gé%m maps S4:1. maps 16@5x5
3232 o8 52: . may
@414

| |
| Full connection | Gaussian connections

Canvelutions Subsampling Canvolutians I Full

(LeCun et al, 1998)

o Model local interactions at different scales
o Translation equivariance + invariance via convolution + pooling
o Some theoretical benefits: (B. and Mairal, 2019; B. et al., 2021; B., 2022)
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Attention heads in Transformers

The The
Law
will will Wi

never never
be be
perfect perfect m
but but
its its
application application
should should
be be
just just

(Vaswani et al., 2017; Elhage et al., 2021)

o Model non-local interactions using key-query attention
» “Learn” interactions instead of fixing them as in CNNs?

Alberto Bietti Transformers and Associative Memories

The OV (“output-value”)
circuit determines how
attel to a given
toke e logits

WyWoWyWg

The QK (“query-key”)
circuit controls which
tokens the head prefers
to attend to.
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Transformers and language models

o Transformers: attention + MLPs + residual connections

Output
Probabiities

"AGd & Norm.

Feca Atention
Forward Nx
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Positional Positional
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Input Output
Embeddng Embedng
Inputs Outputs
(shifted right)
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Transformers and language models

o Transformers: attention + MLPs + residual connections

o Large language models: train to predict next token on all the web (+ fine-tune)

Output
Probabiities

"AGd & Norm.

AJd & Norm

Feea Attention
Forward Nx
Nx =
===
Vo Foad Muti-Head
Atention Atention
o
Positional Positional
Encoding Encoding
Input Output
Embeddng Embeddng
Inputs Outputs
(shifted right)
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You
write a short poem about machine learning in Taipei

ChatGPT

In Taipei's embrace, where modern meets tradition,
Among the lanterns' glow and temples' sedition,
There lies a silent thread, unseen yet bold,

A tale of machine learning, patiently told.

Beneath the towering Taipei 101's might,
Where day gives way to neon-lit night,
Algorithms dance in intricate flair,

Patterns emerge from data, layer by layer.

In night markets bustling, rich with life's tapestry,
Machine learning whispers secrets of the city's mystery.
Predicting, learning, in an endless strive,

To make sense of the chaos, to help us thrive.
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Transformers and language models

o Transformers: attention + MLPs + residual connections
o Large language models: train to predict next token on all the web (+ fine-tune)

o In-context '"reasoning' vs memorization: transformers seem to use a mix of
"reasoning" from context and "knowledge" from training set

@ You
Output

Probabilities write a short poem about machine learning in Taipei

Congress shall make no law respecting an establishment of
religion, or prohibiting the free exercise thereof; or
abridging the freedom of speech, or of the press; or the
right of the people peaceably to assemble, and to petition
the Government for a redress of grievances.

ChatGPT

In Taipei's embrace, where modern meets tradition,

Among the lanterns' glow and temples' sedition,

AJd & Norm
Feed
Forward

"A03 & Norm
‘Multi-Head
Attention

L —

There lies a silent thread, unseen yet bold,

"AGd & Norm.
Mult-Head
Attention

e A tale of machine learning, patiently told.

Nx
This is known as the First Amendment to the United States

Constitution and it is designed to protect the fundamental
rights of citizens of the United States. It guarantees

Masked
Muiti-Head
Attention

Beneath the towering Taipei 101's might,

Where day gives way to neon-lit night,

iosiving Postional Algorithms dance in intricate flair, e ) . o ) )
- = neoding citizens the right to practice any religion of their choosing,
Embn:du;mg e Patterns emerge from data, layer by layer. B
T the freedom of speech and of the press, and the right to
Inputs (s\f’n‘ﬂﬁ'if;hn In night markets bustling, rich with life's tapestry, peacefully assemble and to petition the government.

Machine learning whispers secrets of the city's mystery.
Predicting, learning, in an endless strive,

To make sense of the chaos, to help us thrive.
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How Transformer language models use context

o Few-shot learning, chain-of-thought “reasoning"”, math, linguistic capabilities

Translate English to French:
sea otter => loutre de mer
peppermint => menthe poivrée
plush girafe => girafe peluche

cheese =>

task description

examples

prompt

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 =9. The
answer s 9.

(Brown et al., 2020; Wei et al., 2022)
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How Transformer language models use context

o Few-shot learning, chain-of-thought “reasoning"”, math, linguistic capabilities

o Transformers may achieve this using “circuits” of attention heads

When
10 Mary

and
S1 John |

Previous Token Heads
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(Wang et al., 2022)
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Understanding Transformers

o Interpretability: what mechanisms are used inside a transformer?
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o Memorization: how does memorization come into play?
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Understanding Transformers

o Interpretability: what mechanisms are used inside a transformer?
o Memorization: how does memorization come into play?

o Training dynamics: how is this learned with optimization?
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Understanding Transformers

o Interpretability: what mechanisms are used inside a transformer?
o Memorization: how does memorization come into play?
o Training dynamics: how is this learned with optimization?

o Role of depth: what are benefits of deep, compositional models?
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Understanding Transformers

o Interpretability: what mechanisms are used inside a transformer?
o Memorization: how does memorization come into play?
o Training dynamics: how is this learned with optimization?

o Role of depth: what are benefits of deep, compositional models?

©

Experimental /theory setup: what is a simple setting for studying this?
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Understanding Transformers

o Interpretability: what mechanisms are used inside a transformer?
o Memorization: how does memorization come into play?
o Training dynamics: how is this learned with optimization?

o Role of depth: what are benefits of deep, compositional models?

©

Experimental /theory setup: what is a simple setting for studying this?

This work: (B. et al., 2023; Cabannes et al., 2024)

o Empirical+theoretical study by viewing parameters as associative memories
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QOutline

(@ Transformers on the bigram task

2) Learning with gradient steps



The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When [Vir Bacon went ... then ) .
- When Mr Bacon went to the mall, it started raining, then Mr Bacon
\ >< / decided to buy a raincoat and umbrella. He went to the store and
output bought a red raincoat and yellow polka dot umbrella)
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The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)
When Bacon went ... then Vir . .
When Mr Bacon went to the mall, it started raining, then Mr Bacon
\ >< / decided to buy a raincoat and umbrella. He went to the store and

output bought a red raincoat and yellow polka dot umbrella]

Fix trigger tokens: q1,...,qk
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The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Bacon went ... then . L
- When Mr Bacon went to the mall, it started raining, then Mr Bacon
\ >< / decided to buy a raincoat and umbrella. He went to the store and
output bought a red raincoat and yellow polka dot umbrella.|

Fix trigger tokens: q1,..., gk
Sample each sequence zi.7 € [N]7 as follows

o Output tokens: o, ~ mo(-|qx) (random)
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The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When [Vir Bacon went ... then ) .
- When Mr Bacon went to the mall, it started raining, then Mr Bacon
\ >< / decided to buy a raincoat and umbrella. He went to the store and
output bought a red raincoat and yellow polka dot umbrella)

Fix trigger tokens: q1,..., gk
Sample each sequence zi.7 € [N]7 as follows

o Output tokens: o, ~ mo(-|qx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(+|zt—1) with

ﬂ{j:Ok}, ifi:qk, k:].,...,K
ﬂ—b(j‘i)a O/W'

p(ili) =
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The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Bacon went ... then . L
When Mr Bacon went to the mall, it started raining, then Mr Bacon

— /,.
\ //5\\\ decided to buy a raincoat and umbrella. He went to the store and

output bought a red raincoat and yellow polka dot umbrella)

Fix S g1y,
Sample each sequence zi.7 € [N]7 as follows
o Output tokens: o, ~ mo(-|qx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(+|zt—1) with

=0, ifim=q, k=1,....K
7rb(j‘i)a O/W'

p(jli) =
7p: global bigrams model (estimated from Karpathy's character-level Shakespeare)
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

o Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

o Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]

o Intermediate layers: add outputs to the residual stream x;
» Attention and feed-forward layers
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

©

Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]

©

Intermediate layers: add outputs to the residual stream x;
» Attention and feed-forward layers

o Unembedding layer: logits for each k € [N],

(&)k = wu(k) ' xe
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

©

Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]

©

Intermediate layers: add outputs to the residual stream x;
» Attention and feed-forward layers

o Unembedding layer: logits for each k € [N],

(&)k = wu(k) ' xe

o Loss for next-token prediction (¢: cross-entropy)

s'

-1
f(Zt+1aft)

..,
Il
i
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Transformers |l: self-attention

Causal self-attention layer:

exp(xsT W,—(r Woxt)
St exp(x T W,I Woxt)

t
xe =Y BsWoWyx,, with Bs =
s=1

o Wk, Wo € R¥*9: key and query matrices
o Wy, Wo € RY%: value and output matrices
o fs: attention weights, S°f_; s =1
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Transformers |l: self-attention

Causal self-attention layer:

exp(xsT W,—(r Woxt)
St exp(x T W,I Woxt)

t
xe =Y BsWoWyx,, with Bs =
s=1

©

Wi, Wo € R9%9: key and query matrices

©

Wy, Wo € R¥*9: value and output matrices
Bs: attention weights, S°f_; Bs =1
Single-head attention (in practice, multi-head with multiple such matrices, dj x d)

()

©
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Transformers |l: self-attention

Causal self-attention layer:

exp(xsT W,—(r Woxt)
St exp(x T W,I Woxt)

t
xe =Y BsWoWyx,, with Bs =
s=1

Wi, Wo € R9%9: key and query matrices

©

Wy, Wo € R¥*9: value and output matrices
Bs: attention weights, S°f_; Bs =1
Single-head attention (in practice, multi-head with multiple such matrices, dj x d)

©

()

©

o Each x{ is then added to the corresponding residual stream

. /
Xt 1= Xt + X;
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Transformers lll: feed-forward

Feed-forward layer: apply simple transformation to each token representation

o MLP (practice):
x; = Whao(Wixt), W, € R>*P W, e RP*d

o Linear (in this work):
x{ = Wext, We € R9*9
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Transformers lll: feed-forward

Feed-forward layer: apply simple transformation to each token representation

o MLP (practice):
x; = Whao(Wixt), W, € R>*P W, e RP*d

o Linear (in this work):
x{ = Wext, We € R9*9

o Added to the residual stream: x; := x; + x|

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024

14 /31



Transformers lll: feed-forward

Feed-forward layer: apply simple transformation to each token representation
o MLP (practice):
x; = Whao(Wixt), W, € R>*P W, e RP*d

o Linear (in this work):
x{ = Wext, We € R9*9

o Added to the residual stream: x; := x; + x|

o Some evidence that feed-forward layers store “global knowledge”, e.g., for factual
recall (Geva et al., 2020; Meng et al., 2022)
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Transformers on the bigram task

When Bacon went ... then Vir

output
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Transformers on the bigram task

When Bacon went ... then Vir
output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions
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Transformers on the bigram task

When Bacon went ... then Vir
output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions

o 2-layer transformer succeeds: ~ 99% accuracy
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Transformers on the bigram task

When Bacon went ... then Vir
output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions
o 2-layer transformer succeeds: ~ 99% accuracy

o Attention maps reveal a structured 2-layer “induction” mechanism (Elhage et al., 2021)

rsabtslLabtsL,ab
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Transformers on the bigram task
When Bacon went ... then Vir
output
o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions

o 2-layer transformer succeeds: ~ 99% accuracy

o Attention maps reveal a structured 2-layer “induction” mechanism (Elhage et al., 2021)

rsabtslLabtsL,ab

See also representation lower bounds (Sanford, Hsu, and Telgarsky, 2023)
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, Bacon} ... {T, \Ir, Bacon}
. {t+1, Mr, Bacon} ... (T, i}
/ ’\_/
{t, Vir} {t+1, Bacon} o AT

A

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, Bacon} ... {T, \Ir, Bacon}
. {t+1, Mr, Bacon} ... (T, i}
/ \_/
{t, Vir} {t+1, Bacon} o AT

A

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
o 2nd layer: induction head
» attends to output of previous token head, copies attended token
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 17 /31



Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0

o Consider pairwise associations (i, ) € M with weights «;; and define:

T
W = Z a,-jvju,-
(ij)em

o We then have va Wu; = aj
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi][~1 and v;'v;=0
o Consider pairwise associations (i, ) € M with weights «;; and define:

W = Z a,-jvju,-T
(ij)emM

o We then have va Wu; = aj
o Computed in Transformers for logits in next-token prediction and self-attention
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0

o Consider pairwise associations (i, ) € M with weights «;; and define:

T
W = Z a,-jvju,-
(ij)em

o We then have va Wu; = aj

o Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N(0,1/d) entries and d large

|ui| 1 and o u; = O(1/Vd)
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N(0,1/d) entries and d large

|ui| 1 and o u; = O(1/Vd)

o Remapping: multiply by random matrix W with N'(0,1/d) entries:

[Wuil| =1 and o Wu; = O(1/Vd)
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N(0,1/d) entries and d large

|ui| 1 and o u; = O(1/Vd)

o Remapping: multiply by random matrix W with N'(0,1/d) entries:

[Wuil| =1 and o Wu; = O(1/Vd)

o Value/Output matrices help with token remapping: — Mr, Bacon — Bacon
{t+1, Mr, Bacon} ... (T, VIr, Bacon}
{t+1, Mr, Barjon) o AT,
R 7//,//
{t, 1} {t+1, Bacon} o AT}
A\\—»,,,,/ /
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Induction head with associative memories

Layer 2 ‘ * ‘ * ‘ ‘ * ‘ * ‘ wg(a)

Attn2: 3, wi(k)wp (k)" _——"“/I;gﬂf"%: S wu(k)wp(k)T

Layer 1 ‘ * ‘ wg(a) ‘ ‘ wy(a) [ 1‘1:’5’(1)) ‘
>4
WV(BH:‘E”’AMHI' Sop T ““*“1”"‘5 Prediction
/,—\ D Ps—1Dd :
Layer 0 ‘ Pi-1 ‘ wg(a) ‘ ‘ Pt ‘ wg(b) ‘

Sequence a b [-] @ ’7177

T N
Wik = b1, WE=Y we(k)wa(k)", W3 = wy(k)(Wewe(k))",
t=2 keq@ k=1

o Random embeddings wg(k), wy(k), random matrices WY, W}, W2, fix Wg = 1
o Remapped previous tokens: wi (k) := WL WL we (k)
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Induction head with associative memories

Layer 2 ‘ * ‘ * ‘ ‘ * ‘ * ‘

Attn2: 3, wi(b)wp(k)" .- —"Wgﬂ"{%: S wu(k)wp(k)T

Layer 1 ‘ * ‘ wg(a) ‘ ‘ wy(a) [ 1‘1:’5’(1)) ‘
prs

WAW 7" X '
— <. __Attnl: S ps1py Residual | prediction

Laver 0 [Ps [ws@] [ 20 [

Sequence a b [++-] a ’7117

T N
Wik = b1, WE=Y we(k)wa(k)", W3 = wy(k)(Wewe(k))",
t=2 keq@ k=1

o Random embeddings wg(k), wy(k), random matrices WY, W}, W2, fix Wg = 1
o Remapped previous tokens: wi (k) := WL WL we (k)

Q: Does this match practice?
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Empirically probing the dynamics

Train only Wi, W2, W3, loss on deterministic output tokens only

2
freeze W3 freeze W} and W} freeze W3 freeze W}
10- 10- 10- 10-
9
8 os- 08- 08- 058-
gos 06- 06 06-
% 0a- 04- 0a- 04-
Soz 02- 02 02-
~ 0o0- : ! . —g ,, P e ] M e————— , , L S e —
0 200 400 600 800 1000 O 200 400 600 80 1000 0 200 400 600 800 1000 O 200 400 600 800 1000
10- 10- 10- 10-
—— R
= 08 0o el o 0s- ~
8 o
Sos 06- 06- / 06- /
S 0a- 04- 04- 04- — Wo2
§ — w2
Eo02- 02- / 02- 02- WKL (t<64)
— wa
00 00- 00- 00-

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration iteration iteration

© “Memory recall probes”: for target memory Wi =3 ; e vju,-T, compute
~ 1 A
R(W,W,) = — Z 1{j = argmax vj—,r Wu;}
Ml e ’
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Empirically probing the dynamics

Train only Wi, W2, W3, loss on deterministic output tokens only

freeze W3

08-

0.4-

context accuracy

in-s

0 200 400 600

04-

memory recal

02-

0 200 400 600
iteration

800 1000

800 1000

10-

0.8-

0.6-

0.4-

02-

0.0-

10-

0.8-

06-

0.4-

02-

0.0-

iteration iteration

freeze W} and W32 freeze W} freeze W}
10- 10-
o8- 08-
06 06-
0.4 04-
02- 02-
0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000
10- 10-
— =
/’“’_r 0s- o’ 08~
06- / 06~ /
04 0.4- — wo2
— w2
[ 02- 02- WKL (t<64)
J — w1
00- 0.0-
0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000

iteration

© “Memory recall probes”: for target memory Wi =3 ; e vju,-T, compute

1

RIW,W,)=— Z 1{j = arg

’ ’ (ij)emM

o Natural learning “order": W(% first, W}% next, W,% last

o Joint learning is faster

Alberto Bietti

Transformers and Associative Memories

~

max vj—/r Wu;}
J'/

NTU, April 12, 2024
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Global vs in-context learning and role of data

Train on all tokens, with added W after second attention layer

in-context vs global loss out of distribution attention and feed-forward probes

5- —— K=1, fix q frequent G ECR 0.8+ —— Wo2 recall S22
—— K=5, fix q rare 08 —— WK2 recall
4 ~—— K=1, random q ® = 06- —— WKL recall (t<64) >
—— K=5, random q 306 S M — -1.83
03 Ywa g ° 5
s Y\ I Roa- - 504 1o
2- < _.— unif (train unif) g 14
1- $ 0.2 7 —— bigram (train unif) g02 12
£ === unif (train bigram) :
0 0.0 === bigram (train bigram) 0.0- — WFKL -10
6 160 260 360 460 560 0 160 260 360 460 560 6 160 260 360 460 560

iteration iteration iteration

o Global bigrams learned quickly with Wg before induction mechanism
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Global vs in-context learning and role of data

Train on all tokens, with added W after second attention layer

in-context vs global loss out of distribution attention and feed-forward probes

5- —— K=1, fix q frequent G ECR 0.8+ —— Wo2 recall S22
—— K=5, fix q rare 5 0.8 —— WKk2 recall
4- —— K=1, random q ® — 06 —— WKL recall (t<64) >
—— K=5, random q 306 S M — -1.83
03 Wa g ° 5
s Y\ I foa- o F 504 1o
2- < _.— unif (train unif) (% 14
1- $ 0.2 7 —— bigram (train unif) g02 12
£ === unif (train bigram) :
0 0.0 === bigram (train bigram) 0.0- — WFKL -10
6 160 260 360 460 560 0 160 260 360 460 560 6 160 260 360 460 560

iteration iteration iteration

o Global bigrams learned quickly with Wg before induction mechanism

o More frequent triggers = faster learning of induction head
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Global vs in-context learning and role of data

Train on all tokens, with added W after second attention layer

in-context vs global loss out of distribution attention and feed-forward probes
5- —— K=1, fix q frequent G ECR 0.8+ —— Wo2 recall S22
—— K=5, fix q rare 5 0.8 —— WKk2 recall 220
4- K=1, random q ) =06 WK1 recall (t<64)
—— K=5, random q 306 S 1.8 3
N % :
4 1.6
S . % 04- 4f [ aeena- 50 =
= T unif (train unif) g 1.4 j
1 g 0.2 A" —— bigram (train unif) £ 02 15
£ — =~ unif (train bigram) )
o 0.0 === bigram (train bigram) 0.0- 1.0
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500

iteration iteration iteration

o Global bigrams learned quickly with Wg before induction mechanism
o More frequent triggers = faster learning of induction head

o More uniform output tokens helps OOD performance
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What about more complex models?

o Factorizations (e.g., W){ Wg): y UVx
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What about more complex models?

o Factorizations (e.g., W){ Wg): y UVx
o Non-linear MLP: y " Uo(Vx)

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 22/31



What about more complex models?

o Factorizations (e.g., W){ Wg): y UVx
o Non-linear MLP: y " Uo(Vx)

o Layer-norm: y' %
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What about more complex models?

©

Factorizations (e.g., Wy Wg): vy UVx

Non-linear MLP: y " Uo(Vx)

o Layer-norm: y' ”%i“

()

©

Trained input/output embeddings
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What about more complex models?

©

Factorizations (e.g., Wy Wg): vy UVx

Non-linear MLP: y " Uo(Vx)

o Layer-norm: y' %

()

©

Trained input/output embeddings

Does it work empirically on the bigram task? Yes!

o Memory recall probes — 1 as previously
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What about more complex models?

©

Factorizations (e.g., Wy Wg): vy UVx

Non-linear MLP: y " Uo(Vx)

o Layer-norm: y' %

()

©

Trained input/output embeddings

Does it work empirically on the bigram task? Yes!
o Memory recall probes — 1 as previously

o But: adding heads and layers loses identifiability

o

SR S R
a
- = | . = | = | | .E-
e BRan RS
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QOutline

1) Transformers on the bigram task

(@ Learning with gradient steps



Learning associative memories with gradients

o Simple model to learn associative memories:

z€[N) = v, €RY - Wu, eRY — (v Wu,), € RM
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Learning associative memories with gradients

o Simple model to learn associative memories:
7€ [N] = u, e R = Wu, eRY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
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Learning associative memories with gradients

o Simple model to learn associative memories:
7€ [N] = u, e R = Wu, eRY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)
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Learning associative memories with gradients
o Simple model to learn associative memories:
7€ [N] = u, e R = Wu, eRY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)

Lemma (Gradients as memories)
Let p be a data distribution over (z,y) € [N] x [M], and consider the loss
L( W) = E(z,y)wp[é(yaé.W(z))]? fW(Z)k = VkTWUZ>

with ¢ the cross-entropy loss and u,, vi input/output embeddings.
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Learning associative memories with gradients
o Simple model to learn associative memories:
7€ [N] = u, e R = Wu, eRY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)

Lemma (Gradients as memories)

Let p be a data distribution over (z,y) € [N] x [M], and consider the loss
L( W) = E(z,y)wp[é(ya £W(Z))]7 fW(Z)k = VkTWUZ>

with ¢ the cross-entropy loss and u,, vy input/output embeddings. Then,

M
VLW) =Y E:(bw(y = klz) — p(y = k|z))viu ],
k=1

with pw(y = k|z) = exp(§w(2)«)/ 22 exp(§w(2);)-
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=ny_p(2)(ply = klz) = w(y = k[z))viu "
z,k

" . 1
— N;(ﬂ{k = f*(2)} — N)Vkuf
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>

o Corollary: f(z) = arg maxy v, ' Wi, has near-perfect accuracy

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 25 /31



Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>

o Corollary: ?(z) = arg maxy v ' Wi, has near-perfect accuracy
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € R x [N], and consider the loss

L(W) = E(x,y)Np[e(y7§W(X))]7 SW(X)k = VkT Wx.
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € R x [N], and consider the loss

L(W) = E(x,y)Np[e(y7§W(X))]7 SW(X)k = VkT Wx.

Denoting j1;. := E[x|y = k] and /i, := E, [’;V(Vy(klf) x], we have
N
Vwl(W Z y = k)i — ) T
k=1
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

N
> vi(Bluy + nely = K] = Efuy, + ne]) T

==
=
I
I

|
=3
M=

T M T
vl — WZ VicUj
kij

x
Il
—
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

=[s

N
> vi(Eluy + nely = K] = E[u, + n¢])
k=1

T M T
vl — WZ VicUj
kij

x
Il
—

1
=3
M=

o Then, for any k,y,t,x = u, + n;, we have

Vil Wyx = % {k=y}+0 <I\7/72)

Alberto Bietti Transformers and Associative Memories

T

NTU, April 12, 2024

27 /31



Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

=[s

N
> vi(Eluy + nely = K] = E[u, + n¢])
k=1

T M T
vl — WZ VicUj
kij

x
Il
—

1
=3
M=

o Then, for any k,y,t,x = u, + n;, we have

Vil Wyx = % {k=y}+0 <I\7/72)

o Corollary: f(x) = argmax vx ' Wix has near-perfect accuracy
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Gradient steps for the bigram task

Setting: transformer on the bigram task
o Focus on predicting second output token
o All distributions are uniform

o Some simplifications to architecture
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Gradient steps for the bigram task

Setting: transformer on the bigram task

o Focus on predicting second output token
o All distributions are uniform

o Some simplifications to architecture

Theorem (informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss, assuming near-orthonormal embeddings: first on W(%, then W}% then W;%.
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Gradient steps for the bigram task

Setting: transformer on the bigram task
o Focus on predicting second output token
o All distributions are uniform

o Some simplifications to architecture

Theorem (informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss, assuming near-orthonormal embeddings: first on W(%, then W}% then W;%.

Key ideas
o Attention is uniform at initialization = inputs are sums of embeddings
o W(%: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of zt

1/2 . .
o WK/ : correct associations lead to more focused attention
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Finite data and finite capacity?

Questions:

o Finite capacity? how much can we “store” with finite d?
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Finite data and finite capacity?

Questions:
o Finite capacity? how much can we “store” with finite d?

o Finite samples? how well can we learn with finite data?
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Finite data and finite capacity?

Questions:
o Finite capacity? how much can we “store” with finite d?
o Finite samples? how well can we learn with finite data?

o Role of optimization algorithms? multiple gradient steps? Adam?
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Finite data and finite capacity?

Questions:
o Finite capacity? how much can we “store” with finite d?
o Finite samples? how well can we learn with finite data?

o Role of optimization algorithms? multiple gradient steps? Adam?

Scaling laws analysis: (Cabannes, Dohmatob, and B., 2024)
o Heavy-tailed distribution of input tokens (Zipf law)
o Linear associative memory can only store d tokens
o = Storing d most frequent tokens is best!
o Multiple gradient steps + Adam help achieve that

o Non-linear memory (e.g., MLP layers) can store more
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Discussion and next steps

Summary
o Bigram model: simple but rich toy model for discrete data
o Transformer weights as associative memories
o Learning via few top-down gradient steps

o Better algorithms help for better scaling laws on heavy-tailed data
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Discussion and next steps

Summary
o Bigram model: simple but rich toy model for discrete data
o Transformer weights as associative memories
o Learning via few top-down gradient steps

o Better algorithms help for better scaling laws on heavy-tailed data

Future directions
o More complex “reasoning” mechanisms, links with “emergence”

o Learning dynamics: multiple gradient steps? joint training? embeddings?

©

Applications: interpretability, model editing, factual recall, efficient fine-tuning

©

Beyond text data: images and scientific data?
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Thank you!

Polymathic

Internships and postdocs at Flatiron Institute and Polymathic Al in New York

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 31/31



References |

A. B. Approximation and learning with deep convolutional models: a kernel perspective. In Proceedings
of the International Conference on Learning Representations (ICLR), 2022.

A. B. and J. Mairal. Group invariance, stability to deformations, and complexity of deep convolutional
representations. Journal of Machine Learning Research (JMLR), 20(25):1-49, 2019.

A. B., L. Venturi, and J. Bruna. On the sample complexity of learning with geometric stability. arXiv
preprint arXiv:2106.07148, 2021.

A. B., V. Cabannes, D. Bouchacourt, H. Jegou, and L. Bottou. Birth of a transformer: A memory
viewpoint. In Advances in Neural Information Processing Systems (NeurlPS), 2023.

J. Ba, M. A. Erdogdu, T. Suzuki, Z. Wang, D. Wu, and G. Yang. High-dimensional asymptotics of
feature learning: How one gradient step improves the representation. Advances in Neural Information
Processing Systems (NeurlPS), 2022.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, et al. Language models are few-shot learners. In Advances in Neural Information
Processing Systems (NeurlPS), 2020.

V. Cabannes, E. Dohmatob, and A. B. Scaling laws for associative memories. In International
Conference on Learning Representations (ICLR), 2024.

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 32/31



References |l

L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized models
using optimal transport. In Advances in Neural Information Processing Systems (NeurlPS), 2018.

A. Damian, J. Lee, and M. Soltanolkotabi. Neural networks can learn representations with gradient
descent. In Conference on Learning Theory (COLT), 2022.

Y. Dandi, F. Krzakala, B. Loureiro, L. Pesce, and L. Stephan. Learning two-layer neural networks, one
(giant) step at a time. arXiv preprint arXiv:2305.18270, 2023.

N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen,
T. Conerly, N. DasSarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, A. Jones,
J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and
C. Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.

M. Geva, R. Schuster, J. Berant, and O. Levy. Transformer feed-forward layers are key-value memories.
arXiv preprint arXiv:2012.14913, 2020.

J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the national academy of sciences, 79(8):2554—-2558, 1982.

M. Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.

T. Kohonen. Correlation matrix memories. |EEE Transactions on Computers, 1972.

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 33/31



References 1l

S. Mei, T. Misiakiewicz, and A. Montanari. Mean-field theory of two-layers neural networks:
dimension-free bounds and kernel limit. In Conference on Learning Theory (COLT), 2019.

K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual associations in GPT.
Advances in Neural Information Processing Systems (NeurlPS), 2022.

E. Nichani, A. Damian, and J. D. Lee. Provable guarantees for nonlinear feature learning in three-layer
neural networks. arXiv preprint arXiv:2305.06986, 2023.

C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell, Y. Bai,
A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, S. Johnston, A. Jones,
J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and
C. Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.

C. Sanford, D. Hsu, and M. Telgarsky. Representational strengths and limitations of transformers. In
Advances in Neural Information Processing Systems (NeurlPS), 2023.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and |. Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems (NIPS), 2017.

K. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt. Interpretability in the wild: a
circuit for indirect object identification in gpt-2 small. arXiv preprint arXiv:2211.00593, 2022.

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 34 /31



References IV

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al.

Chain-of-thought prompting elicits reasoning in large language models. In Advances in Neural
Information Processing Systems (NeurlPS), 2022.

D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic associative memory.
Nature, 222(5197):960-962, 1969.

G. Yang and E. J. Hu. Tensor programs iv: Feature learning in infinite-width neural networks. In
Proceedings of the International Conference on Machine Learning (ICML), 2021.

Alberto Bietti Transformers and Associative Memories NTU, April 12, 2024 35/31



Learning associations
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o DL theory often focuses on learning/approximation of continuous target functions
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Learning associations

Motivation:

o DL theory often focuses on learning/approximation of continuous target functions

» e.g., smooth functions, sparse polynomials
o In practice, discrete structure and memorization are often crucial

» language: words, syntactic rules, semantic concepts, facts
» vision: “visual words”, features, objects

Statistical learning setup:
o Data distribution p(z, y) over pairs of discrete tokens (z,y) € [N] x [M]
o We want a predictor 7 : [N] — [M] with small 0-1 loss:

Lor(F) = P(y # f(2))
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Motivation:

o DL theory often focuses on learning/approximation of continuous target functions

» e.g., smooth functions, sparse polynomials
o In practice, discrete structure and memorization are often crucial

» language: words, syntactic rules, semantic concepts, facts
» vision: “visual words”, features, objects

Statistical learning setup:
o Data distribution p(z, y) over pairs of discrete tokens (z,y) € [N] x [M]
o We want a predictor 7 : [N] — [M] with small 0-1 loss:

Lor(F) = P(y # f(2))

o Typically f(z) = arg max, f,(z) with f, : [N] — R for each y € [M]
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0

o Consider pairwise associations (i, ) € M with weights «;; and define:

T
W = Z a,-jvju,-
(ij)em

o We then have va Wu; = aj
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi][~1 and v;'v;=0
o Consider pairwise associations (i, ) € M with weights «;; and define:

W = Z a,-jvju,-T
(ij)emM

o We then have va Wu; = aj
o Computed in Transformers for logits in next-token prediction and self-attention
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0

o Consider pairwise associations (i, ) € M with weights «;; and define:

T
W = Z a,-jvju,-
(ij)em

o We then have va Wu; = aj

o Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)
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Learning associative memories with gradients

o Simple differentiable model to learn such associative memories:

z€[N] =, €RY - Wu, eRY — (v, Wu,), € RM
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Learning associative memories with gradients

o Simple differentiable model to learn such associative memories:
7€ [N] = u, e R = Wu, e RY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
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o Simple differentiable model to learn such associative memories:
7€ [N] = u, e R = Wu, e RY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)
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Learning associative memories with gradients
o Simple differentiable model to learn such associative memories:
7€ [N] = u, e R = Wu, e RY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)

Lemma (Gradients as memories)
Let p be a data distribution over (z,y) € [N] x [M], and consider the loss
L( W) = E(z,y)wp[é(yaé.W(z))]? fW(Z)k = VkTWUZ>

with ¢ the cross-entropy loss and u,, vi input/output embeddings.
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Learning associative memories with gradients
o Simple differentiable model to learn such associative memories:
7€ [N] = u, e R = Wu, e RY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)

Lemma (Gradients as memories)

Let p be a data distribution over (z,y) € [N] x [M], and consider the loss
L( W) = E(z,y)wp[é(ya £W(Z))]7 fW(Z)k = VkTWUZ>

with ¢ the cross-entropy loss and u,, vy input/output embeddings. Then,

M
VLW) =Y E:(bw(y = klz) — p(y = k|z))viu ],
k=1

with pw(y = k|z) = exp(§w(2)«)/ 22 exp(§w(2);)-
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=ny_p(2)(ply = klz) = w(y = k[z))viu "
z,k

" . 1
— N;(ﬂ{k = f*(2)} — N)Vkuf
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>

o Corollary: f(z) = arg maxy v, ' Wi, has near-perfect accuracy
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>

o Corollary: ?(z) = arg maxy v ' Wi, has near-perfect accuracy
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € R x [N], and consider the loss

L(W) = E(x,y)Np[e(y7§W(X))]7 SW(X)k = VkT Wx.
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € R x [N], and consider the loss

L(W) = E(x,y)Np[e(y7§W(X))]7 SW(X)k = VkT Wx.

Denoting j1;. := E[x|y = k] and /i, := E, [’;V(Vy(klf) x], we have
N
Vwl(W Z y = k)i — ) T
k=1
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

N
> vi(Bluy + nely = K] = Efuy, + ne]) T

==
=
I
I

|
=3
M=

T M T
vl — WZ VicUj
kij

x
Il
—
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

=[s

N
> vi(Eluy + nely = K] = E[u, + n¢])
k=1

T M T
vl — WZ VicUj
kij

x
Il
—

1
=3
M=

o Then, for any k,y,t,x = u, + n;, we have

Vil Wyx = % {k=y}+0 <I\7/72)
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

=[s

N
> vi(Eluy + nely = K] = E[u, + n¢])
k=1

T M T
vl — WZ VicUj
kij

x
Il
—

1
=3
M=

o Then, for any k,y,t,x = u, + n;, we have

Vil Wyx = % {k=y}+0 <I\7/72)

o Corollary: f(x) = argmax vx ' Wix has near-perfect accuracy
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Link with feature learning
Maximal updates:
o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi=W+AW € RdXd, AW = ZO&jVjUJT, aj = @d(l)
J
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Link with feature learning
Maximal updates:
o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi = Wo—i—AWERdXd, AW = ZO&jVjUJT, Oéj:@d(l)
J
o For any input embedding u;, we have, thanks to near-orthonormality

[Wouil| = ©4(1) and  [[AW;|| = ©4(1)
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Link with feature learning
Maximal updates:
o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi = Wo—i—AWERdXd, AW = ZO&jVjUJT, Oéj:@d(l)
J
o For any input embedding u;, we have, thanks to near-orthonormality

[Wouil| = ©4(1) and  [[AW;|| = ©4(1)

o Contribution of updates is of similar order to initialization (not true for NTK!)
o Related to uP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)
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Link with feature learning
Maximal updates:
o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi = Wo—i—AWERdXd, AW = ZO&jVjUJT, Oéj:@d(l)
J
o For any input embedding u;, we have, thanks to near-orthonormality

[Wouil| = ©4(1) and  [[AW;|| = ©4(1)

o Contribution of updates is of similar order to initialization (not true for NTK!)
o Related to uP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Large gradient steps on shallow networks:
o Useful for feature learning in single-index and multi-index models

y = f*(x) + noise, f*(x) =g"(Wx), W eR™?

o Sufficient to break the curse of dimensionality when r < d
o (Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)
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Associative memories inside deep models

oHv}e

o Consider W that connects two nodes x, x in a feedforward computational graph
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Associative memories inside deep models

oHv}e

©

Consider W that connects two nodes x, x in a feedforward computational graph

©

The loss gradient takes the form
Vwl =E[Vzl x']

where Vx/ is the backward vector (loss gradient w.r.t. X)
o Often, this expectation may lead to associative memories as before

o A similar form can arise in attention matrices (see later!)
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Questions

o Finite capacity? how much can we “store” with finite d?
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Questions

o Finite capacity? how much can we “store” with finite d?

o Finite samples? how well can we learn with finite data?
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Questions

o Finite capacity? how much can we “store” with finite d?
o Finite samples? how well can we learn with finite data?

o Role of optimization algorithms? multiple gradient steps? Adam?
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Questions

o Finite capacity? how much can we “store” with finite d?
o Finite samples? how well can we learn with finite data?

o Role of optimization algorithms? multiple gradient steps? Adam?

— study through scaling laws (a.k.a. generalization bounds/statistical rates)
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:

L(%n) = P(y 7& ?n(z))
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:

L(?n) = P(y 7& ?n(z))
o Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

«

p(z) x z~
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:
L(?n) = P(y 7& ?n(z))
o Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)
«

p(z) x z~

o Hutter (2021): with infinite memory, we have

a—1

L(F) <n s
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:

L(%n) = P(y 7& ?n(z))
o Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)
«

p(z) x z~

o Hutter (2021): with infinite memory, we have

a—1

L(F) <n "5

o Q: What about finite capacity?
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Scaling laws with finite capacity
o Random embeddings u;, v, € R? with N/(0,1/d) entries

o Estimator: ?,,,d(x) = arg max, v; W, quz, with

N
_ T
Wn,d = E q(Z)Vf*(Z) u,
z=1
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1

o Single population gradient step: q(z) = p(z)
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?n,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;
z=1
o Single population gradient step: q(z) = p(z)
Theorem (Cabannes, Dohmatob, B., 2023, informal)

@ Forq(z) = ¥ Mz =z} L(fa) S5 +d~ 5
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?n,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1
o Single population gradient step: q(z) = p(z)
Theorem (Cabannes, Dohmatob, B., 2023, informal)

@ Forq(z) = ¥ Mz =z} L(fa) S5 +d~ 5
@ For q(z) = 1{z € S,}, and d > N: L(Fq) S n™°5 +d* for any k
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?n,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1
o Single population gradient step: q(z) = p(z)
Theorem (Cabannes, Dohmatob, B., 2023, informal)
@ Fqu(Z) Z-H{Z:Z,'}' L(?nd)<n_a7_1+d—a27_1
@ Forq(z) = 1{z € Sa}, and d > N: L(Fg) S0 "% + d*k for any k
@ For q(z) = 1{z seen at least s times in Sp}: L(fpq) < n~ S L Gpen
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with
N

|/Vn,d = Z q(Z)Vf*(Z)U;

z=1

o Single population gradient step: q(z) = p(z)

Theorem (Cabannes, Dohmatob, B., 2023, informal)
@ Forq(z) =Y, 1{z=2z} L(fg) Sn~ & +d %=
@ Forq(z) =1{z€ Sy}, and d > N: L(fq) S n & = —i—d*k foranyk
(z) =

@ For q(z) = 1{z seen at least s times in Sp}: L(fpq) < n~ a4 dott

o n~“& is the same as (Hutter, 2021)
o g =1 is best if we have enough capacity

o Can store at most d memories (approximation error: d~2*1)
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Scaling laws with optimization algorithms

Different algorithms lead to different memory schemes ¢(z):
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Scaling laws with optimization algorithms

Different algorithms lead to different memory schemes ¢(z):
o One step of SGD with large batch: g(z) ~ p(z)
SGD with batch size one + large step-size, d > N: q(z) =~ 1

©

For d < N, smaller step-sizes can help later in training

©

Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

©
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Scaling laws with optimization algorithms

Different algorithms lead to different memory schemes ¢(z):
o One step of SGD with large batch: g(z) ~ p(z)
o SGD with batch size one + large step-size, d > N: g(z) = 1
o For d < N, smaller step-sizes can help later in training

o Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

SGD, |B|=64, T=10240 SGD, T'=1024 ~v=1.0, | B|=1024, T=10240
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Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere
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Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)
o Nearest-neighbor lookup: set u, = v¢.(,) and take ?(z) = arg max, vyTuZ
o Attention: soft-max instead of hard-max to retrieve from context
o MLP: f(z) = arg max, v;— SN, vf*(z/)a(u;r,uz —b)

But: higher computational cost, more sensitive to noise, harder to learn
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