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Success of deep learning

f(X) = WLU(WLf]_ -~~0'(Wlx). )

huge models + lots of data + compute + simple algorithms
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Success of deep learning

f(X) = WLU(W[_?]_ -~~0'(Wlx). )

huge models + lots of data + compute + simple algorithms

Q: Why does it work?
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Breaking the curse of dimensionality |: feature learning

Curse of dimensionality:
o Image/text/genomics/etc. data are high-dimensional: x € R, d large

o Curse of dimensionality = need additional structure for learning
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o Single-index/multi-index models:
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o Curse of dimensionality = need additional structure for learning

Feature learning;:

o Single-index/multi-index models:
Ely|x] = f*(wy' x, ..., w,' x), r<d

o Example: first layer of CNNs learns Gabor-like filters/features
o Goal: O(n~1/") instead of O(n~1/9) rates (Bach, 2017)
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Breaking the curse of dimensionality |: feature learning

Curse of dimensionality:
o Image/text/genomics/etc. data are high-dimensional: x € R, d large

o Curse of dimensionality = need additional structure for learning

Feature learning;:

o Single-index/multi-index models:
Ely|x] = f*(wy' x, ..., w,' x), r<d

o Example: first layer of CNNs learns Gabor-like filters/features
o Goal: O(n~1/") instead of O(n~1/9) rates (Bach, 2017)
o Gradient descent on first layer of shallow neural network can achieve this

» Well-studied for Gaussian data, harmonic analysis over Hermite basis
» (e.g., Ben Arous et al., 2021; Ba et al., 2022; B. et al., 2022; Damian et al., 2022; B. et al.,
2023a)
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Breaking the curse of dimensionality |I: locality + architecture

o Local structure: split input into small local patches / “tokens": x = (x1,...,x7)
.',.‘ Language Learning Models (LLMs) have revolutionized the field of natural

= language processing, enabling machines to understand and generate human-
E like text. At the core of LLMs lies the concept of tokens, which serve as
the fundamental building blocks for processing and representing text
data. In this blog post, we'll demystify tokens in LLMs, unraveling
their significance and exploring how they contribute to the power and
flexibility of these remarkable models.
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Breaking the curse of dimensionality |I: locality + architecture

o Local structure: split input into small local patches / “tokens": x = (x1,...,x7)
.',.F Language Learning Models (LLMs) have revolutionized the field of natural

language processing, enabling machines to understand and generate human-
g: like text. At the core of LLMs lies the concept of tokens, which serve as
the fundamental building blocks for processing and representing text
data. In this blog post, we'll demystify tokens in LLMs, unraveling
their significance and exploring how they contribute to the power and

.-... flexibility of these remarkable models.

o Target may involve interactions between tokens, e.g. (Wahba, 1990)

]E[y|x]—2f* X; —G—Z (xi, xj)
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Breaking the curse of dimensionality |I: locality + architecture

o Local structure: split input into small local patches / “tokens": x = (x1,...,x7)
.',.F Language Learning Models (LLMs) have revolutionized the field of natural

% language processing, enabling machines to understand and generate human-
.,‘mg: like text. At the core of LLMs lies the concept of tokens, which serve as

the fundamental building blocks for processing and representing text
. data. In this blog post, we'll demystify tokens in LLMs, unraveling
their significance and exploring how they contribute to the power and

.-... flexibility of these remarkable models.

o Target may involve interactions between tokens, e.g. (Wahba, 1990)

Ely|x] = Z ;" (xi) Z (xi, %))

Role of architectures:
o “Feature learning” at intermediate layers <+ select relevant interactions (7)
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Breaking the curse of dimensionality |I: locality + architecture

o Local structure: split input into small local patches / “tokens": x = (x1,...,x7)
.', ‘ Language Learning Models (LLMs) have revolutionized the field of natural

language processing, enabling machines to understand and generate human-

like text. At the core of LLMs lies the concept of tokens, which serve as

the fundamental building blocks for processing and representing text
data. In this blog post, we'll demystify tokens in LLMs, unraveling

. their significance and exploring how they contribute to the power and

..... flexibility of these remarkable models.

o Target may involve interactions between tokens, e.g. (Wahba, 1990)

Byl = 3400+ 2 5 s)

Role of architectures:
o “Feature learning” at intermediate layers <+ select relevant interactions (?)
o Convolution: local interactions at different scales
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Breaking the curse of dimensionality |I: locality + architecture
o Local structure: split input into small local patches / “tokens": x = (x1,...,x7)

Language Learning Models (LLMs) have revolutionized the field of natural
language processing, enabling machines to understand and generate human-
like text. At the core of LLMs lies the concept of tokens, which serve as
the fundamental building blocks for processing and representing text
data. In this blog post, we'll demystify tokens in LLMs, unraveling
their significance and exploring how they contribute to the power and
flexibility of these remarkable models.

o Target may involve interactions between tokens, e.g. (Wahba, 1990)
Ely|x] = Zf* Xi +Z (xi, %))

Role of architectures:
o “Feature learning” at intermediate layers <+ select relevant interactions (?)
o Convolution: local interactions at different scales
o Attention: non-local interactions
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What are layers doing?
Embedding layer:
o map patches/tokens to embedding space
o capture discrete/semantic features encoded as different embedding directions (?)
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o capture discrete/semantic features encoded as different embedding directions (?)

Unembedding (output) layer:
o map feature space back to tokens/labels
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What are layers doing?
Embedding layer:
o map patches/tokens to embedding space
o capture discrete/semantic features encoded as different embedding directions (?)

Unembedding (output) layer:
o map feature space back to tokens/labels

What about intermediate layers?
o (discrete) communication/computation in feature space (?7?)
o = associative mappings (input-output, or across tokens)

(Wang et al., 2022)
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;=~0
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;=~0

o Consider pairwise associations (i, /) € M with weights «;; and define:

T
W = Z Qujj ViU
(if)em

o We then have va Wui =~ aj
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|vi =1 and v;"v;=~0

o Consider pairwise associations (i, /) € M with weights «;; and define:

T
W = Z Qujj ViU
(if)em

o We then have va Wui =~ aj

> e.g., classification, predict f(x) = arg max; v; T W,
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;=~0

o Consider pairwise associations (i, /) € M with weights «;; and define:

T
W = Z Qujj ViU
(if)em

o We then have va Wui =~ aj
» e.g., classification, predict f(x) = argmax; v;T Wu,

o Related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;=~0

o Consider pairwise associations (i, /) € M with weights «;; and define:

-
W = Z Qujj ViU
(iJ)em

o We then have \/J-T Wui =~ aj
» e.g., classification, predict f(x) = argmax; v;T Wu,

o Related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

Q: how do these play a role in Transformers?
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Outline

(@ Application to Transformers (B., Cabannes, Bouchacourt, Jegou, and Bottou, 2023b)
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The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When [Vir Bacon went ... then ) .
- When Mr Bacon went to the mall, it started raining, then Mr Bacon
\ >< / decided to buy a raincoat and umbrella. He went to the store and
output bought a red raincoat and yellow polka dot umbrella)
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The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When [Vir Bacon went ... then ) .
- When Mr Bacon went to the mall, it started raining, then Mr Bacon
\ >< / decided to buy a raincoat and umbrella. He went to the store and
output bought a red raincoat and yellow polka dot umbrella)

Fix trigger tokens: q1,..., gk
Sample each sequence zi.7 € [N]7 as follows

o Output tokens: o, ~ mo(-|qx) (random)
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The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Bacon went ... then . L
When Mr Bacon went to the mall, it started raining, then Mr Bacon

‘\\ o
\ /< / decided to buy a raincoat and umbrella. He went to the store and

output bought a red raincoat and yellow polka dot umbrella)

Fix S g1y,
Sample each sequence zi.7 € [N]7 as follows
o Output tokens: o, ~ mo(-|qx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(+|zt—1) with

1{j= if i = k=1,....K
Gl = § HU = ok = k=
m(jl7), o/w.
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The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Bacon went ... then . .
~ When Mr Bacon went to the mall, it started raining, then Mr Bacon

//”\\\ decided to buy a raincoat and umbrella. He went to the store and

output bought a red raincoat and yellow polka dot umbrella)

Fix S g1y,
Sample each sequence zi.7 € [N]7 as follows
o Output tokens: o, ~ mo(-|qx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(+|zt—1) with

o [Wi=od fi=a. k=1..K
PU) {wbo\i), ofw.

7p: global bigrams model (estimated from Karpathy's character-level Shakespeare)
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

o Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

o Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]

o Intermediate layers: add new stuff to residual stream x;
» Repeat L times: Attention and feed-forward layers
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

©

Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]

©

Intermediate layers: add new stuff to residual stream x;
» Repeat L times: Attention and feed-forward layers

o Unembedding layer: logits for each k € [N],

(&)k = wu(k) ' xe
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

©

Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]

©

Intermediate layers: add new stuff to residual stream x;
» Repeat L times: Attention and feed-forward layers

o Unembedding layer: logits for each k € [N],

(&)k = wu(k) ' xe

o Loss for next-token prediction (¢: cross-entropy)

s'

-1
f(Zt+1aft)

..,
Il
i
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Transformers |l: self-attention

out

The QK (“query-key”)
circuit controls which
tokens the head prefers
to attend to.

WEWE W Wi

dst

Causal self-attention layer (single head):

exp(xs " Wy Woxt)
fexp(xs T W Woxe)

t
x; = ZBS WOT Wy xs, with g5 =

s=1
o Wk, Wgo € R%*¥9: key/query matrices, Wo, Wy, € R%*9: output/value matrices
o (s attention weights, 22:1 Bs=1
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Transformers |l: self-attention

The QK (“query-key”)
circuit controls which
tokens the head prefers
to attend to.

WEWE W Wi

dst

Causal self-attention layer (single head):

exP(XsT WKQXt)

t
Xé = Z 65 Wov xs, with /Bs =

s—1 E:l eXp(XST WKQXt)

o Wko € R¥*9: key-query matrix, Woy € RY*9: output-value matrix
o (s attention weights, 22:1 Bs=1
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Transformers |l: self-attention

out
A he OV (“output-value”)
T ;\ICLH( letermines hov
BB aiiects the ot
Wy WoWy W
- =
W
The QK (“query-key”)
circuit controls which
tokens the head prefers
m to attend to.
WEWE W Wi
dst
Causal self-attention layer (single head):
t T
exp(xs ' Wkoxt)
!/ . S
Xy = Zﬁs Wov xs, with /Bs = I TW
s=1 s=18xp(xs | Wikoxt)

o Wko € R¥*9: key-query matrix, Woy € RY*9: output-value matrix
o (s attention weights, 22:1 Bs=1
o Each x{ is then added to the corresponding residual stream

/
Xt i = Xt + X;
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Transformers on the bigram task
When Bacon went ... then

=

output
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Transformers on the bigram task

When Bacon went ... then Vir
output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions
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output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions

o 2-layer transformer succeeds: ~ 99% accuracy
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Transformers on the bigram task

When Bacon went ... then Vir
output
o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions

o 2-layer transformer succeeds: ~ 99% accuracy

See also (Sanford, Hsu, and Telgarsky, 2023, 2024) for representational lower bounds
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, Bacon} ... {T, \Vir, Bacon}
{t+1, Mr, Bacon} ... (T, IV}
{t, Vir} {t+1, Bacon} o AT
D

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, Bacon} ... {T, \Vir, Bacon}
{t+1, Mr, Bacon} ... (T, IV}
{t, Vir} {t+1, Bacon} o AT
D

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
o 2nd layer: induction head
» attends to output of previous token head, copies attended token
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, Bacon} ... {T, \Vir, Bacon}
{t+1, Mr, Bacon} ... (T, IV}
{t, Vir} {t+1, Bacon} o AT
D

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
o 2nd layer: induction head
» attends to output of previous token head, copies attended token

o Matches observed attention scores:
1
-9 ',
" -

" gt
| 5 5

m}
tstL t

sL,ab
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N(0,1/d) entries and d large

|ui| 1 and o u; = O(1/Vd)
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N(0,1/d) entries and d large

|ui| 1 and o u; = O(1/Vd)

o Remapping: multiply by random matrix W with N'(0,1/d) entries:

[Wuil| =1 and o Wu; = O(1/Vd)
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N(0,1/d) entries and d large

|ui| 1 and o u; = O(1/Vd)

o Remapping: multiply by random matrix W with N'(0,1/d) entries:

[Wuil| =1 and o Wu; = O(1/Vd)

o Value/Output matrices help with token remapping: — Mr, Bacon — Bacon
{t+1, Mr, Bacon} ... (T, VIr, Bacon}
{t+1, Mr, Bar;)n) o AT,
R 7//,//
{t, 1} {t+1, Bacon} o AT}
/i\—»,,,/— /
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Induction head with associative memories

Layer 2 ‘ * ‘ * ‘ ‘ * ‘ * ‘ wg(a)

Attn2: 3, wi(k)wp (k)" _——"“/I;gﬂf"%: S wu(k)wp(k)T

Layer 1 ‘ * ‘ wg(a) ‘ ‘ wy(a) [ 1‘1:’5’(1)) ‘
4
11’511"1,;,/'

'
- Attnl: . p. 1pT Residual ! prediction
P P 2usPs—1Ps !

Layer 0 ‘ Pi-1 ‘;JE(E)‘ ‘ Pt ‘wg(b) ‘
Sequence a b [++-] a ’7117

T N
Wko =D pePi1, Wig= > we(k)m(k)", W3y = wy(k)we(k)',
t=2 ke k=1

o Random embeddings wg(k), wy(k), random matrix W}, (frozen at init)
o Remapped previous tokens: wi (k) := W}, we(k)
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Induction head with associative memories

Layer 2 ‘ * ‘ * ‘ ‘ * ‘ * ‘

LT WRWZ: Y, wu (R ws(k)T

Attn2: >, wy (k)wg (k)"

Lyer 1 [« [uwp(a)] | (@ [;:-E—(b) \
”:(5‘”:3;/:;““1: Sops-apd “Mm'ﬂé Prediction
b0 [ [ee@] [P
Sequence a b [ a [
T N
Wio =D pepi1, Wig= Y welk)wi(k)", W3y = wu(k)we(k)',
t=2 ke@Q k=1

o Random embeddings wg(k), wy(k), random matrix W}, (frozen at init)
o Remapped previous tokens: wi (k) := W}, we(k)

Q: Does this match practice?
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Empirically

“Memory

probing the dynamics

Train only W}1<, Wf(, W(%, loss on deterministic output tokens only

o freeze W3 . freeze W} and W2 . freeze W2 . freeze W}
gos 0s- 0s- o8-
Sos- 06- 06- 06-
5 oa- 04- 04- 04-
802 0z 0z 02-
Enn

0.0 00 00
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

1.0- 1.0- 1.0- 1.0-

= os- S o [T - 0sA o

g » v

£os- / 05- 06- / 06- /‘/

S oa 04- 04- 0a- — w2

5 — wa

Eo2- 02- / 02- 02- WKL (t<64)
R — wa

00- == 00- 00- 00-

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration iteration iteration

recall probes™: for target memory Wy =5 e g vju,-T, compute

"

Z 1{j = arg maxv, T Wuid

R(W, W,
W) =i l(,,,)eM
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Empirically

“Memory

probing the dynamics

Train only W}1<, Wf(, W(%, loss on deterministic output tokens only

2
o freeze W§ freeze W} and W2 freeze W2 freeze W}
1 L0- L0- 10-
g o8- 0.8- 0.8- 0.8-
3
506~ 0.6- 06- 0.6-
§oa- 04- 04- 0a-
o2- 02- 02- 02-
T o0 i i i i = 0.0-55 i i i i 0.0 " i i i ' 0.0-= i . i i b
0 200 400 G600 800 1000 O 200 40 60 80 100 O 200 400 600 80 1000 0 200 400 600 800 1000
10- 10- 10- o
Z0n- I [T - 08 nc
¢ > v
= 06- 7 0.6- 0.6- / 0.6- /
2
gu»— 0.4- 04- 0.4- —— Wo2
5 — wa
£o2- 02- / 02- 02- WKL (t<64)
R — wa
00 mmmmm L . 00- 00-
0 200 400 o600 80 1000 O 200 40 60 80 100 O 200 400 600 80 100 0 200 400 60 800 1000
iteration iteration iteration iteration

recall probes™: for target memory Wy =5 e g vju;", compute

"

Z 1{j = arg maxv, T Wuid

R(W, W,
W) =i l(,,,)eM

o Natural learning “order": ng first, W}%Q next, W&Q last

o Joint learning is faster (motivates our theory below)
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Outline

(@ Scaling laws for associative memories (Cabannes, Dohmatob, and B., 2024a)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 16 /25



Scaling laws (a.k.a. non-parametric rates)

Statistical setup
o Non-parametric setting: what if there are N — oo elements?
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Scaling laws (a.k.a. non-parametric rates)

Statistical setup
o Non-parametric setting: what if there are N — oo elements?

o z; ~ p(z), yi = f*(z;), n samples: S, = {z1,...,2,}, 0/1 loss:

L(fa) = P(y # Ta(2))
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Scaling laws (a.k.a. non-parametric rates)

Statistical setup
o Non-parametric setting: what if there are N — oo elements?

o z; ~ p(z), yi = f*(z;), n samples: S, = {z1,...,2,}, 0/1 loss:
L(fa) = P(y # fa(2))
o Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

[0}

p(z) x z~
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o z; ~ p(z), yi = f*(z;), n samples: S, = {z1,...,2,}, 0/1 loss:

L(fa) = P(y # Ta(2))

©

Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

[0}

p(z) x z~
o Hutter (2021): with infinite memory, we have

a—1

L(F) < n s
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Scaling laws (a.k.a. non-parametric rates)

Statistical setup
o Non-parametric setting: what if there are N — oo elements?

o z; ~ p(z), yi = f*(z;), n samples: S, = {z1,...,2,}, 0/1 loss:

L(fa) = P(y # Ta(2))

©

Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

[0}

p(z) x z~
o Hutter (2021): with infinite memory, we have
a—1

L(F) <n s

Q: What about finite capacity?
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How much can we store with finite d? Intuition
o Random embeddings v, v, ~ N(0, 21)
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How much can we store with finite d? Intuition
o Random embeddings v, v, ~ N(0, 21)

o Consider
N
T
W=3 ve@u: R
z=1
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How much can we store with finite d? Intuition
o Random embeddings v, v, ~ N(0, 21)
o Consider

o When can we recover f*(z) from z for all z?

T _ T w
Vzy = vy Wu, = Z Vy Ve (zryUy Uy
Z/
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How much can we store with finite d? Intuition
o Random embeddings v, v, ~ N(0, 21)

o Consider
N

W = Z Vf*(Z)UZT S RdXd

z=1
o When can we recover f*(z) from z for all z?

T _ T w
Vzy = vy Wu, = Z Vy Ve (zryUy Uy
Z/

T2y 0, otherwise.
7' () = F N 4
Varfray) < HE P = (&) £ 9)
d d
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How much can we store with finite d? Intuition
o Random embeddings v, v, ~ N(0, 21)

o Consider
N

W = Z Vf*(Z)UZT S RdXd

z=1
o When can we recover f*(z) from z for all z?

T _ T w
Vzy = vy Wu, = Z Vy Ve (zryUy Uy
Z/

T2yl = 0, otherwise.

Vo) £ V=0 P 2

o Recover all associations when Var[y,,] < 1. Examples:
» f*(z) = z: can store up to N ~ d? associations
» f*(z) =z mod 2: can store up to N = d associations
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Scaling laws with finite capacity

o Random embeddings v, v, € RY with i.i.d. N(0,1/d) entries
o Estimator: IA‘,,,C/( ) = arg max, v, W,7 dUz, with

nd*Zq Vf*z)u
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o Random embeddings v, v, € RY with i.i.d. N(0,1/d) entries

o Estimator: IA‘,,,C/( ) = arg max, v, W,7 dUz, with

nd*Zq Vf*z)u

Theorem (Cabannes, Dohmatob, B., 2024, informal)
@ Forq(z) =X 1{z=z}: L(fg) S & L d
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Scaling laws with finite capacity
o Random embeddings v, v, € RY with i.i.d. N(0,1/d) entries

o Estimator: IA‘,,,d( ) = arg max, v, W,7 dUz, with

nd*Zq Vf*z)u

Theorem (Cabannes, Dohmatob, B., 2024, informal)
@ Forq(z) =X 1{z=z}: L(fra) S i d
@ Forq(z) =1{z € Sy}, and d > N: L(,4) < T+ d for any k
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Scaling laws with finite capacity
o Random embeddings v, v, € RY with i.i.d. N(0,1/d) entries

o Estimator: IA‘,,,d( ) = arg max, v, W,7 dUz, with

nd*Zq Vf*z)u

Theorem (Cabannes, Dohmatob, B., 2024, informal)

@ Forq(z) =X 1{z=z}: L(fg) S~ = +d

@ Forq(z)=1{z€ Sy}, and d > N: L(f,4) S n == d*k for any k
@ For q(z) = 1{z seen at least s times in Sp}: L(fnq) < n~ 8 4 datl
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Scaling laws with finite capacity

o Random embeddings v, v, € RY with i.i.d. N(0,1/d) entries
o Estimator: IA‘,,,C/( ) = arg max, v, W,7 dUz, with

nd*Zq Vf*z)u

Theorem (Cabannes, Dohmatob, B., 2024, informal)

@ Forq(z) =X 1{z=z}: L(fg) S~ = +d

@ Forq(z)=1{z€ Sy}, and d > N: L(Fq) S n "5 —|—d*k for any k
@ For q(z) = 1{z seen at least s times in Sp}: L(fnq) < n~ 8 4 datl

o n~“% is the same as (Hutter, 2021)
o g =1 is best if we have enough capacity

o Can store at most d memories (approximation error: d~2+1)
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Scaling laws with finite capacity

o Random embeddings v, v, € RY with i.i.d. N(0,1/d) entries
o Estimator: IA‘,,,C/( ) = arg max, v, W,7 dUz, with

nd*Zq Vf*z)u

Theorem (Cabannes, Dohmatob, B., 2024, informal)

@ Forq(z) =X 1{z=z}: L(fg) S~ = +d

@ Forq(z)=1{z€ Sy}, and d > N: L(Fq) S n "5 —|—d*k for any k
@ For q(z) = 1{z seen at least s times in Sp}: L(fnq) < n~ 8 4 datl

a—1
o n~ "o is the same as (Hutter, 2021)
o g =1 is best if we have enough capacity
o Can store at most d memories (approximation error: d~2+1)

o Extensions to md memories for MLPs with md parameters (w/ E. Nichani, J. Lee)
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Outline

(3 Learning with gradient steps (B. et al., 2023b; Cabannes et al., 2024a,b)
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Gradients as associative memories

o Simple model to learn associative memories:

7€ [N = v, € RY = Wu, e RY — (v Wu,), € RM
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ze€[N] = u, e R - Wu, e RY = (v, Wu,), € RM

o ., v, nearly-orthonormal input/output embeddings, assume fixed
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ze€[N] = u, e R - Wu, e RY = (v, Wu,), € RM

o ., v, nearly-orthonormal input/output embeddings, assume fixed

o Cross-entropy loss for logits £ € RM: £(y,&) = —&, + log(> 4 exp &)
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Gradients as associative memories

o Simple model to learn associative memories:
ze€[N] = u, e R - Wu, e RY = (v, Wu,), € RM

o ., v, nearly-orthonormal input/output embeddings, assume fixed

o Cross-entropy loss for logits £ € RM: £(y,&) = —&, + log(> 4 exp &)
Example: one gradient step

o Data model: z ~ Unif([N]), y = f(z) € [N]
o After one gradient step from Wy = 0, step-size 7:

Vk—l—V\/lLlZ ~ %]l{ﬁk(z) = k} + 0 (I\1/72>
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Gradients as associative memories

o Simple model to learn associative memories:
ze€[N] = u, e R - Wu, e RY = (v, Wu,), € RM

o ., v, nearly-orthonormal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y,&) = —&, + log(> 4 exp &)

Example: one gradient step
o Data model: z ~ Unif([N]), y = f(z) € [N]
o After one gradient step from Wy = 0, step-size 7:

T _n _ n
T Was, ~ L1 (2) = K} + O (/\/2>
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings
S
z={z,...,zs} C[N], X:ZUZS € R
j=1

» e.g., bag of words, output of attention operation, residual connections
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o In practice, inputs are often a collection of tokens / sum of embeddings
S
z={z,...,zs} C[N], X:ZUZS € R
j=1

» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings
S
z={z,...,zs} C[N], X:ZUZS € R
j=1

» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction

Example: filter out exogenous noise with one gradient step
o Data model: y ~ Unif([N]), t~ Unif([T]), x=u, +n €R?
o After one gradient step from Wy =0

VkTW1X ~ % ]l{k = y} + 0 (,\7}2)
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Gradient steps for the bigram task

Setting: transformer on the bigram task
o Focus on predicting second output token
o All distributions are uniform

©

Some simplifications to architecture
Infinite width, infinite data, N> T

©
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Gradient steps for the bigram task

Setting: transformer on the bigram task
o Focus on predicting second output token

o All distributions are uniform

©

Some simplifications to architecture
Infinite width, infinite data, N> T

©

Theorem (B. et al., 2023b, informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss: first on Wg,,, then W, then Wig.
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Gradient steps for the bigram task

Setting: transformer on the bigram task
o Focus on predicting second output token
o All distributions are uniform

©

Some simplifications to architecture
Infinite width, infinite data, N> T

©

Theorem (B. et al., 2023b, informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss: first on Wg,,, then W, then Wig.

Key ideas
o Attention is uniform at initialization = inputs are sums of embeddings
o W(%: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z1

1/2 . .
o WK/ : correct associations lead to more focused attention
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Imbalanced data, finite capacity

L(W) =E,p[t(f*(2), VWu.)], £: cross-entropy loss
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Imbalanced data, finite capacity

L(W) =E,p[t(f*(2), VWu.)], £: cross-entropy loss

Optimization improves capacity with imbalance: (Cabannes, Dohmatob, and B., 2024a)
o One population gradient step is similar to q(z) =~ p(z): inefficient for power law
o Many steps lead to g(z) =~ 1: more efficient (for d > N)
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Imbalanced data, finite capacity

L(W) =E,p[t(f*(2), VWu.)], £: cross-entropy loss

Optimization improves capacity with imbalance: (Cabannes, Dohmatob, and B., 2024a)
o One population gradient step is similar to q(z) =~ p(z): inefficient for power law
o Many steps lead to g(z) =~ 1: more efficient (for d > N)

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)
Orthogonal embeddings = logarithmic growth of margins for any step-size
Correlated embeddings 4+ imbalance = oscillatory regimes

Large step-sizes help reach perfect accuracy faster despite oscillations (empirically)
Over-optimization can hurt in under-parameterized settings (empirically)

© ©0 0 o
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Discussion

Summary

©

Weights of intermediate layers as associative memories

©

Bigram model: simple model on discrete data for in-context reasoning

©

Learning mechanisms via few gradient steps

©

Statistical and optimization results
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Discussion

Summary
o Weights of intermediate layers as associative memories
o Bigram model: simple model on discrete data for in-context reasoning

o Learning mechanisms via few gradient steps

o Statistical and optimization results

Future directions
o More complex “reasoning” tasks
o Learning embeddings
o Finer grained analysis of optimization dynamics and scaling laws
o Beyond text data: images and scientific data

o Applications: interpretability, model editing, factual recall, efficient fine-tuning
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Discussion

Summary
o Weights of intermediate layers as associative memories
o Bigram model: simple model on discrete data for in-context reasoning

o Learning mechanisms via few gradient steps

o Statistical and optimization results

Future directions
o More complex “reasoning” tasks
o Learning embeddings
o Finer grained analysis of optimization dynamics and scaling laws
o Beyond text data: images and scientific data

o Applications: interpretability, model editing, factual recall, efficient fine-tuning

Thank youl!
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Learning associations

Motivation:
o DL theory often focuses on learning/approximation of continuous target functions
» e.g., smooth functions, sparse polynomials
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Learning associations

Motivation:
o DL theory often focuses on learning/approximation of continuous target functions
» e.g., smooth functions, sparse polynomials
o In practice, discrete structure and memorization are often crucial

» language: words, syntactic rules, semantic concepts, facts
» vision: “visual words”, features, objects

Statistical learning setup:

o Data distribution p(z, y) over pairs of discrete tokens (z,y) € [N] x [M]
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Motivation:
o DL theory often focuses on learning/approximation of continuous target functions
» e.g., smooth functions, sparse polynomials
o In practice, discrete structure and memorization are often crucial

» language: words, syntactic rules, semantic concepts, facts
» vision: “visual words”, features, objects

Statistical learning setup:
o Data distribution p(z, y) over pairs of discrete tokens (z,y) € [N] x [M]
o We want a predictor 7 : [N] — [M] with small 0-1 loss:

Lor(F) = P(y # f(2))
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Learning associations

Motivation:
o DL theory often focuses on learning/approximation of continuous target functions
» e.g., smooth functions, sparse polynomials
o In practice, discrete structure and memorization are often crucial

» language: words, syntactic rules, semantic concepts, facts
» vision: “visual words”, features, objects

Statistical learning setup:
o Data distribution p(z, y) over pairs of discrete tokens (z,y) € [N] x [M]
o We want a predictor 7 : [N] — [M] with small 0-1 loss:

Lor(F) = P(y # f(2))

o Typically f(z) = arg max, f,(z) with f, : [N] — R for each y € [M]
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0

o Consider pairwise associations (i, ) € M with weights «;; and define:

T
W = Z a,-jvju,-
(ij)em

o We then have va Wu; = aj
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi][~1 and v;'v;=0
o Consider pairwise associations (i, ) € M with weights «;; and define:

W = Z a,-jvju,-T
(ij)emM

o We then have va Wu; = aj
o Computed in Transformers for logits in next-token prediction and self-attention
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0

o Consider pairwise associations (i, ) € M with weights «;; and define:

T
W = Z a,-jvju,-
(ij)em

o We then have va Wu; = aj

o Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)
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Learning associative memories with gradients

o Simple differentiable model to learn such associative memories:

z€[N] =, €RY - Wu, eRY — (v, Wu,), € RM
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Learning associative memories with gradients

o Simple differentiable model to learn such associative memories:
7€ [N] = u, e R = Wu, e RY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024

31/25



Learning associative memories with gradients

o Simple differentiable model to learn such associative memories:
7€ [N] = u, e R = Wu, e RY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)
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Learning associative memories with gradients
o Simple differentiable model to learn such associative memories:
7€ [N] = u, e R = Wu, e RY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)

Lemma (Gradients as memories)
Let p be a data distribution over (z,y) € [N] x [M], and consider the loss
L( W) = E(z,y)wp[é(y7£W(z))]7 fW(Z)k = VkTWUZ>

with ¢ the cross-entropy loss and u,, vi input/output embeddings.
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Learning associative memories with gradients
o Simple differentiable model to learn such associative memories:
7€ [N] = u, e R = Wu, e RY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)

Lemma (Gradients as memories)

Let p be a data distribution over (z,y) € [N] x [M], and consider the loss
L( W) = E(z,y)wp[é(ya £W(Z))]7 fW(Z)k = VkTWUZ>

with ¢ the cross-entropy loss and u,, vy input/output embeddings. Then,

M
VLW) =Y E:(bw(y = klz) — p(y = k|z))viu ],
k=1

with pw(y = k|z) = exp(§w(2)«)/ 22 exp(§w(2);)-
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=ny_p(2)(ply = klz) = w(y = k[z))viu "
z,k

" . 1
— N;(ﬂ{k = f*(2)} — N)Vkuf
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Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>
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Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>

o Corollary: f(z) = arg maxy v, ' Wi, has near-perfect accuracy
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>

o Corollary: ?(z) = arg maxy v ' Wi, has near-perfect accuracy
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections
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j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], X:Z”zs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € R x [N], and consider the loss

L(W) = E(x,y)fvp[e(y7§W(X))]7 SW(X)k = VkT Wx.
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], X:Z”zs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € R x [N], and consider the loss

L(W) = E(x,y)fvp[e(y7§W(X))]7 SW(X)k = VkT Wx.

Denoting ji;. := E[x|y = k] and /i, := E, [’;V(Vy(klf) x], we have
N
Vwl(W Z = k) vie( ik — i) T
k=1
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

N
> vi(Bluy + nely = K] = Efuy, + ne]) T

==
=
I
I

|
=3
M=

T M T
vl — WZ VicUj
kij

x
Il
—
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

N
> vi(Bluy + nely = K] = Efuy, + ne]) T
k=1

=[s

T M T
vl — WZ VicUj
kij

x
Il
—

1
=3
M=

o Then, for any k,y,t,x = u, + n;, we have

Vil Wyx = % {k=y}+0 <I\7/72)
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

N
> vi(Bluy + nely = K] = Efuy, + ne]) T
k=1

=[s

T M T
vl — WZ VicUj
kij

x
Il
—

1
=3
M=

o Then, for any k,y,t,x = u, + n;, we have

Vil Wyx = % {k=y}+0 <I\7/72)

o Corollary: f(x) = argmax vx ' Wix has near-perfect accuracy
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Link with feature learning
Maximal updates:
o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi=W+AW € RdXd, AW = ZO&jVjUJT, aj = @d(l)
J
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Link with feature learning
Maximal updates:
o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi = Wo—i—AWERdXd, AW = ZO&jVjUJT, Oéj:@d(l)
J
o For any input embedding u;, we have, thanks to near-orthonormality

[Wouil| = ©4(1) and  [[AW;|| = ©4(1)
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o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi = Wo—i—AWERdXd, AW = ZO&jVjUJT, Oéj:@d(l)
J
o For any input embedding u;, we have, thanks to near-orthonormality

[Wouil| = ©4(1) and  [[AW;|| = ©4(1)

o Contribution of updates is of similar order to initialization (not true for NTK!)
o Related to uP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)
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Link with feature learning
Maximal updates:
o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi = Wo—i—AWERdXd, AW = ZO&jVjUJT, Oéj:@d(l)
J
o For any input embedding u;, we have, thanks to near-orthonormality

[Wouil| = ©4(1) and  [[AW;|| = ©4(1)

o Contribution of updates is of similar order to initialization (not true for NTK!)
o Related to uP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Large gradient steps on shallow networks:
o Useful for feature learning in single-index and multi-index models

y = f*(x) + noise, f*(x) =g"(Wx), W eR™?

o Sufficient to break the curse of dimensionality when r < d
o (Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 35/25



Associative memories inside deep models

oHv}e

o Consider W that connects two nodes x, x in a feedforward computational graph
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Associative memories inside deep models

oHv}e

©

Consider W that connects two nodes x, x in a feedforward computational graph

©

The loss gradient takes the form
Vwl =E[Vzl x']

where Vx/ is the backward vector (loss gradient w.r.t. X)
o Often, this expectation may lead to associative memories as before

o A similar form can arise in attention matrices (see later!)
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Questions

o Finite capacity? how much can we “store” with finite d?
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o Finite samples? how well can we learn with finite data?

o Role of optimization algorithms? multiple gradient steps? Adam?
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Questions

o Finite capacity? how much can we “store” with finite d?
o Finite samples? how well can we learn with finite data?

o Role of optimization algorithms? multiple gradient steps? Adam?

— study through scaling laws (a.k.a. generalization bounds/statistical rates)
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:

L(%n) = P(y 7& ?n(z))
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:

L(?n) = P(y 7& ?n(z))
o Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

«

p(z) x z~
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:
L(?n) = P(y 7& ?n(z))
o Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)
«

p(z) x z~

o Hutter (2021): with infinite memory, we have

a—1

L(F) <n s
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:

L(%n) = P(y 7& ?n(z))
o Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)
«

p(z) x z~

o Hutter (2021): with infinite memory, we have

a—1

L(F) <n "5

o Q: What about finite capacity?
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 39/25



Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1

o Single population gradient step: q(z) = p(z)
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;
z=1
o Single population gradient step: q(z) = p(z)
Theorem (Cabannes, Dohmatob, B., 2023, informal)

@ Forq(z) =Y, 1{z=2z} L(fg) Sn % +d %=
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1
o Single population gradient step: q(z) = p(z)
Theorem (Cabannes, Dohmatob, B., 2023, informal)

@ Forq(z) = ¥ Mz =z} L(fa) S5 +d~ 5
@ Forq(z) = 1{z € S,}, and d > N: L(Fq) S n™°5 +d~* for any k
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1

o Single population gradient step: q(z) = p(z)

Theorem (Cabannes, Dohmatob, B., 2023, informal)
@ Forq(z) =3 1{z = z;}: L()%,, d) S s L d S
@ Forq(z) = 1{z € Sy}, and d > N: L(Fg) S0 "% + d*k for any k
(z2) =

@ For q(z) = 1{z seen at least s times in Sp}: L(fpq) < n~ a4 dott
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with
N

|/Vn,d = Z q(Z)Vf*(Z)U;

z=1

o Single population gradient step: q(z) = p(z)

Theorem (Cabannes, Dohmatob, B., 2023, informal)
@ Forq(z) =Y, 1{z=2z} L(fg) Sn % +d %=
@ Forq(z) =1{z€ Sy}, and d > N: L(fq) S n & = —i—d*k foranyk
(z) =

@ For q(z) = 1{z seen at least s times in Sp}: L(fpq) < n~ a4 dott

o n~“& is the same as (Hutter, 2021)
o g =1 is best if we have enough capacity

o Can store at most d memories (approximation error: d~2*1)
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Scaling laws with optimization algorithms

Different algorithms lead to different memory schemes ¢(z):
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Different algorithms lead to different memory schemes ¢(z):
o One step of SGD with large batch: g(z) ~ p(z)
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Different algorithms lead to different memory schemes ¢(z):
o One step of SGD with large batch: g(z) ~ p(z)
o SGD with batch size one + large step-size, d > N: q(z) = 1

o For d < N, smaller step-sizes can help later in training
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Scaling laws with optimization algorithms

Different algorithms lead to different memory schemes ¢(z):
o One step of SGD with large batch: g(z) ~ p(z)
SGD with batch size one + large step-size, d > N: q(z) =~ 1

©

For d < N, smaller step-sizes can help later in training

©

Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

©
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Scaling laws with optimization algorithms

Different algorithms lead to different memory schemes ¢(z):
o One step of SGD with large batch: g(z) ~ p(z)
o SGD with batch size one + large step-size, d > N: g(z) = 1

o For d < N, smaller step-sizes can help later in training

o Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

SGD, |B|=64, T=10240 SGD, T'=1024 ~v=1.0, | B|=1024, T=10240

i~ S]]

— SGD

—— Adam \
— 4=10.0 —— SGD+LN
— 7=100.0 — Adam+LN

Error

H
o
3
.
22
i
Ly
g
Error

Error

T T T T T T T T
10! 102 10% 10 102 103 10t 102 10%
d d d
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Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere
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o Nearest-neighbor lookup: set u, = v¢.(,) and take ?(z) = arg max, vyTuZ
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Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)
o Nearest-neighbor lookup: set u, = v¢.(,) and take ?(z) = arg max, vyTuZ
o Attention: soft-max instead of hard-max to retrieve from context
o MLP: f(z) = arg max, v;— SN, vf*(z/)a(u;r,uz —b)

But: higher computational cost, more sensitive to noise, harder to learn
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