
Transformers and Associative Memories

Alberto Bietti

Flatiron Institute, Simons Foundation

Computational Harmonic Analysis in Data Science and Machine Learning.
CMO-BIRS, Oaxaca, September 2024

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 1 / 25

Success of deep learning

f (x) = WLσ(WL−1 · · ·σ(W1x) · · ·)

huge models + lots of data + compute + simple algorithms

Q: Why does it work?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 2 / 25

Success of deep learning

f (x) = WLσ(WL−1 · · ·σ(W1x) · · ·)

huge models + lots of data + compute + simple algorithms

Q: Why does it work?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 2 / 25

Breaking the curse of dimensionality I: feature learning
Curse of dimensionality:

Image/text/genomics/etc. data are high-dimensional: x ∈ Rd , d large
Curse of dimensionality =⇒ need additional structure for learning

Feature learning:
Single-index/multi-index models:

E[y |x] = f ∗(w>1 x , . . . ,w>r x), r � d

Example: first layer of CNNs learns Gabor-like filters/features
Goal: O(n−1/r) instead of O(n−1/d) rates (Bach, 2017)
Gradient descent on first layer of shallow neural network can achieve this

I Well-studied for Gaussian data, harmonic analysis over Hermite basis
I (e.g., Ben Arous et al., 2021; Ba et al., 2022; B. et al., 2022; Damian et al., 2022; B. et al.,

2023a)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 3 / 25

Breaking the curse of dimensionality I: feature learning
Curse of dimensionality:

Image/text/genomics/etc. data are high-dimensional: x ∈ Rd , d large
Curse of dimensionality =⇒ need additional structure for learning

Feature learning:
Single-index/multi-index models:

E[y |x] = f ∗(w>1 x , . . . ,w>r x), r � d

Example: first layer of CNNs learns Gabor-like filters/features

Goal: O(n−1/r) instead of O(n−1/d) rates (Bach, 2017)
Gradient descent on first layer of shallow neural network can achieve this

I Well-studied for Gaussian data, harmonic analysis over Hermite basis
I (e.g., Ben Arous et al., 2021; Ba et al., 2022; B. et al., 2022; Damian et al., 2022; B. et al.,

2023a)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 3 / 25

Breaking the curse of dimensionality I: feature learning
Curse of dimensionality:

Image/text/genomics/etc. data are high-dimensional: x ∈ Rd , d large
Curse of dimensionality =⇒ need additional structure for learning

Feature learning:
Single-index/multi-index models:

E[y |x] = f ∗(w>1 x , . . . ,w>r x), r � d

Example: first layer of CNNs learns Gabor-like filters/features
Goal: O(n−1/r) instead of O(n−1/d) rates (Bach, 2017)

Gradient descent on first layer of shallow neural network can achieve this
I Well-studied for Gaussian data, harmonic analysis over Hermite basis
I (e.g., Ben Arous et al., 2021; Ba et al., 2022; B. et al., 2022; Damian et al., 2022; B. et al.,

2023a)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 3 / 25

Breaking the curse of dimensionality I: feature learning
Curse of dimensionality:

Image/text/genomics/etc. data are high-dimensional: x ∈ Rd , d large
Curse of dimensionality =⇒ need additional structure for learning

Feature learning:
Single-index/multi-index models:

E[y |x] = f ∗(w>1 x , . . . ,w>r x), r � d

Example: first layer of CNNs learns Gabor-like filters/features
Goal: O(n−1/r) instead of O(n−1/d) rates (Bach, 2017)
Gradient descent on first layer of shallow neural network can achieve this

I Well-studied for Gaussian data, harmonic analysis over Hermite basis
I (e.g., Ben Arous et al., 2021; Ba et al., 2022; B. et al., 2022; Damian et al., 2022; B. et al.,

2023a)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 3 / 25

Breaking the curse of dimensionality II: locality + architecture
Local structure: split input into small local patches / “tokens”: x = (x1, . . . , xT)

Masked Autoencoders Are Scalable Vision Learners

Kaiming He⇤,† Xinlei Chen⇤ Saining Xie Yanghao Li Piotr Dollár Ross Girshick
⇤equal technical contribution †project lead

Facebook AI Research (FAIR)

Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[33, 25, 57]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [47, 48, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [58], is natural and applicable
in computer vision as well. Indeed, closely related research

encoder

....

....

decoder

input target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [59, 46] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [34] were dominant over the last
decade [33]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [57] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-

1

ar
X

iv
:2

11
1.

06
37

7v
3

 [c
s.C

V
]

19
 D

ec
 2

02
1

Target may involve interactions between tokens, e.g. (Wahba, 1990)
E[y |x] =

∑
i
f ∗i (xi) +

∑
i ,j

f ∗ij (xi , xj)

Role of architectures:

“Feature learning” at intermediate layers ↔ select relevant interactions (?)
Convolution: local interactions at different scales
Attention: non-local interactions

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 4 / 25

Breaking the curse of dimensionality II: locality + architecture
Local structure: split input into small local patches / “tokens”: x = (x1, . . . , xT)

Masked Autoencoders Are Scalable Vision Learners

Kaiming He⇤,† Xinlei Chen⇤ Saining Xie Yanghao Li Piotr Dollár Ross Girshick
⇤equal technical contribution †project lead

Facebook AI Research (FAIR)

Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[33, 25, 57]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [47, 48, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [58], is natural and applicable
in computer vision as well. Indeed, closely related research

encoder

....

....

decoder

input target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [59, 46] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [34] were dominant over the last
decade [33]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [57] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-

1

ar
X

iv
:2

11
1.

06
37

7v
3

 [c
s.C

V
]

19
 D

ec
 2

02
1

Target may involve interactions between tokens, e.g. (Wahba, 1990)
E[y |x] =

∑
i
f ∗i (xi) +

∑
i ,j

f ∗ij (xi , xj)

Role of architectures:

“Feature learning” at intermediate layers ↔ select relevant interactions (?)
Convolution: local interactions at different scales
Attention: non-local interactions

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 4 / 25

Breaking the curse of dimensionality II: locality + architecture
Local structure: split input into small local patches / “tokens”: x = (x1, . . . , xT)

Masked Autoencoders Are Scalable Vision Learners

Kaiming He⇤,† Xinlei Chen⇤ Saining Xie Yanghao Li Piotr Dollár Ross Girshick
⇤equal technical contribution †project lead

Facebook AI Research (FAIR)

Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[33, 25, 57]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [47, 48, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [58], is natural and applicable
in computer vision as well. Indeed, closely related research

encoder

....

....

decoder

input target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [59, 46] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [34] were dominant over the last
decade [33]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [57] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-

1

ar
X

iv
:2

11
1.

06
37

7v
3

 [c
s.C

V
]

19
 D

ec
 2

02
1

Target may involve interactions between tokens, e.g. (Wahba, 1990)
E[y |x] =

∑
i
f ∗i (xi) +

∑
i ,j

f ∗ij (xi , xj)

Role of architectures:
“Feature learning” at intermediate layers ↔ select relevant interactions (?)

Convolution: local interactions at different scales
Attention: non-local interactions

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 4 / 25

Breaking the curse of dimensionality II: locality + architecture
Local structure: split input into small local patches / “tokens”: x = (x1, . . . , xT)

Masked Autoencoders Are Scalable Vision Learners

Kaiming He⇤,† Xinlei Chen⇤ Saining Xie Yanghao Li Piotr Dollár Ross Girshick
⇤equal technical contribution †project lead

Facebook AI Research (FAIR)

Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[33, 25, 57]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [47, 48, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [58], is natural and applicable
in computer vision as well. Indeed, closely related research

encoder

....

....

decoder

input target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [59, 46] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [34] were dominant over the last
decade [33]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [57] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-

1

ar
X

iv
:2

11
1.

06
37

7v
3

 [c
s.C

V
]

19
 D

ec
 2

02
1

Target may involve interactions between tokens, e.g. (Wahba, 1990)
E[y |x] =

∑
i
f ∗i (xi) +

∑
i ,j

f ∗ij (xi , xj)

Role of architectures:
“Feature learning” at intermediate layers ↔ select relevant interactions (?)
Convolution: local interactions at different scales

Attention: non-local interactions

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 4 / 25

Breaking the curse of dimensionality II: locality + architecture
Local structure: split input into small local patches / “tokens”: x = (x1, . . . , xT)

Masked Autoencoders Are Scalable Vision Learners

Kaiming He⇤,† Xinlei Chen⇤ Saining Xie Yanghao Li Piotr Dollár Ross Girshick
⇤equal technical contribution †project lead

Facebook AI Research (FAIR)

Abstract

This paper shows that masked autoencoders (MAE) are
scalable self-supervised learners for computer vision. Our
MAE approach is simple: we mask random patches of the
input image and reconstruct the missing pixels. It is based
on two core designs. First, we develop an asymmetric
encoder-decoder architecture, with an encoder that oper-
ates only on the visible subset of patches (without mask to-
kens), along with a lightweight decoder that reconstructs
the original image from the latent representation and mask
tokens. Second, we find that masking a high proportion
of the input image, e.g., 75%, yields a nontrivial and
meaningful self-supervisory task. Coupling these two de-
signs enables us to train large models efficiently and ef-
fectively: we accelerate training (by 3⇥ or more) and im-
prove accuracy. Our scalable approach allows for learning
high-capacity models that generalize well: e.g., a vanilla
ViT-Huge model achieves the best accuracy (87.8%) among
methods that use only ImageNet-1K data. Transfer per-
formance in downstream tasks outperforms supervised pre-
training and shows promising scaling behavior.

1. Introduction
Deep learning has witnessed an explosion of archi-

tectures of continuously growing capability and capacity
[33, 25, 57]. Aided by the rapid gains in hardware, mod-
els today can easily overfit one million images [13] and
begin to demand hundreds of millions of—often publicly
inaccessible—labeled images [16].

This appetite for data has been successfully addressed in
natural language processing (NLP) by self-supervised pre-
training. The solutions, based on autoregressive language
modeling in GPT [47, 48, 4] and masked autoencoding in
BERT [14], are conceptually simple: they remove a portion
of the data and learn to predict the removed content. These
methods now enable training of generalizable NLP models
containing over one hundred billion parameters [4].

The idea of masked autoencoders, a form of more gen-
eral denoising autoencoders [58], is natural and applicable
in computer vision as well. Indeed, closely related research

encoder

....

....

decoder

input target

Figure 1. Our MAE architecture. During pre-training, a large
random subset of image patches (e.g., 75%) is masked out. The
encoder is applied to the small subset of visible patches. Mask
tokens are introduced after the encoder, and the full set of en-
coded patches and mask tokens is processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder is discarded and the encoder is applied to uncorrupted
images (full sets of patches) for recognition tasks.

in vision [59, 46] preceded BERT. However, despite signif-
icant interest in this idea following the success of BERT,
progress of autoencoding methods in vision lags behind
NLP. We ask: what makes masked autoencoding different
between vision and language? We attempt to answer this
question from the following perspectives:

(i) Until recently, architectures were different. In vision,
convolutional networks [34] were dominant over the last
decade [33]. Convolutions typically operate on regular grids
and it is not straightforward to integrate ‘indicators’ such as
mask tokens [14] or positional embeddings [57] into con-
volutional networks. This architectural gap, however, has
been addressed with the introduction of Vision Transform-
ers (ViT) [16] and should no longer present an obstacle.

(ii) Information density is different between language
and vision. Languages are human-generated signals that
are highly semantic and information-dense. When training
a model to predict only a few missing words per sentence,
this task appears to induce sophisticated language under-
standing. Images, on the contrary, are natural signals with
heavy spatial redundancy—e.g., a missing patch can be re-
covered from neighboring patches with little high-level un-

1

ar
X

iv
:2

11
1.

06
37

7v
3

 [c
s.C

V
]

19
 D

ec
 2

02
1

Target may involve interactions between tokens, e.g. (Wahba, 1990)
E[y |x] =

∑
i
f ∗i (xi) +

∑
i ,j

f ∗ij (xi , xj)

Role of architectures:
“Feature learning” at intermediate layers ↔ select relevant interactions (?)
Convolution: local interactions at different scales
Attention: non-local interactions

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 4 / 25

What are layers doing?
Embedding layer:

map patches/tokens to embedding space
capture discrete/semantic features encoded as different embedding directions (?)

Unembedding (output) layer:
map feature space back to tokens/labels

What about intermediate layers?
(discrete) communication/computation in feature space (??)
=⇒ associative mappings (input-output, or across tokens)

in Nanda & Lieberum (2022). Mean-ablations remove the information that varies in the reference
distribution (e.g. the value of the name outputted by a head) but will preserve constant information
(e.g. the fact that a head is outputting a name).

In this work, all knockouts are performed in a modified pIOI distribution called pABC. It relies on the
same generation procedure, but instead of using two names (IO and S) it used three unrelated random
names (A, B and C). In pABC, sentences no longer have a single plausible IO, but the grammatical
structures from the pIOI templates are preserved.

We chose this distribution for mean-ablating because using pIOI would not remove enough informa-
tion helpful for the task. For instance, some information constant in pIOI (e.g. the fact that a name
is duplicated) is removed when computing the mean on pABC.

When knocking out a single node, a (head, token position) pair in our circuit, we want to preserve
the grammatical information unrelated to IOI contained in its activations. However, the grammatical
role (subject, verb, conjunction etc.) of a particular token position varies across templates. To ensure
that grammatical information is constant when averaging, we compute the mean of a node across
samples of the same template.

3 DISCOVERING THE CIRCUIT

We seek to explain how GPT-2 small implements the IOI task (Section 2). Recall the example
sentence “When Mary and John went to the store, John gave a drink to”. The following human-
interpretable algorithm suffices to perform this task:

1. Identify all previous names in the sentence (Mary, John, John).
2. Remove all names that are duplicated (in the example above: John).
3. Output the remaining name.

Below we present a circuit that we claim implements this functionality. Our circuit contains three
major classes of heads, corresponding to the three steps of the algorithm above:

• Duplicate Token Heads identify tokens that have already appeared in the sentence. They are active
at the S2 token, attend primarily to the S1 token, and signal that token duplication has occurred
by writing the position of the duplicate token.

• S-Inhibition Heads remove duplicate tokens from Name Mover Heads’ attention. They are active
at the END token, attend to the S2 token, and write in the query of the Name Mover Heads,
inhibiting their attention to S1 and S2 tokens.

• Name Mover Heads output the remaining name. They are active at END, attend to previous names
in the sentence, and copy the names they attend to. Due to the S-Inhibition Heads, they attend to
the IO token over the S1 and S2 tokens.

IO

S2

END

When
Mary

and
S1 John

went

the
store,
John
gave

a
drink

to

S1+1 Previous Token Heads
2.2 4.11

Duplicate Token Heads
0.1 3.0 (0.10)

Induction Heads
5.5 6.9 (5.8 5.9)

S-Inhibition Heads
7.3 7.9 8.6 8.10

Backup Name Mover Heads
9.0 9.7 10.1 10.2 10.6 10.10 11.2 11.9

Name Mover Heads
9.9 9.6 10.0

Negative Name Mover Heads
10.7 11.10

to

Class of Heads
Layer.Head

Key / Value

OutputQuery

Legend

Figure 2: We discover a circuit in GPT-2 small that implements IOI. The input tokens on the left are
passed into the residual stream. Attention heads move information between residual streams: the
query and output arrows show which residual streams they write to, and the key/value arrows show
which residual streams they read from.

4

(Wang et al., 2022)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 5 / 25

What are layers doing?
Embedding layer:

map patches/tokens to embedding space
capture discrete/semantic features encoded as different embedding directions (?)

Unembedding (output) layer:
map feature space back to tokens/labels

What about intermediate layers?
(discrete) communication/computation in feature space (??)
=⇒ associative mappings (input-output, or across tokens)

in Nanda & Lieberum (2022). Mean-ablations remove the information that varies in the reference
distribution (e.g. the value of the name outputted by a head) but will preserve constant information
(e.g. the fact that a head is outputting a name).

In this work, all knockouts are performed in a modified pIOI distribution called pABC. It relies on the
same generation procedure, but instead of using two names (IO and S) it used three unrelated random
names (A, B and C). In pABC, sentences no longer have a single plausible IO, but the grammatical
structures from the pIOI templates are preserved.

We chose this distribution for mean-ablating because using pIOI would not remove enough informa-
tion helpful for the task. For instance, some information constant in pIOI (e.g. the fact that a name
is duplicated) is removed when computing the mean on pABC.

When knocking out a single node, a (head, token position) pair in our circuit, we want to preserve
the grammatical information unrelated to IOI contained in its activations. However, the grammatical
role (subject, verb, conjunction etc.) of a particular token position varies across templates. To ensure
that grammatical information is constant when averaging, we compute the mean of a node across
samples of the same template.

3 DISCOVERING THE CIRCUIT

We seek to explain how GPT-2 small implements the IOI task (Section 2). Recall the example
sentence “When Mary and John went to the store, John gave a drink to”. The following human-
interpretable algorithm suffices to perform this task:

1. Identify all previous names in the sentence (Mary, John, John).
2. Remove all names that are duplicated (in the example above: John).
3. Output the remaining name.

Below we present a circuit that we claim implements this functionality. Our circuit contains three
major classes of heads, corresponding to the three steps of the algorithm above:

• Duplicate Token Heads identify tokens that have already appeared in the sentence. They are active
at the S2 token, attend primarily to the S1 token, and signal that token duplication has occurred
by writing the position of the duplicate token.

• S-Inhibition Heads remove duplicate tokens from Name Mover Heads’ attention. They are active
at the END token, attend to the S2 token, and write in the query of the Name Mover Heads,
inhibiting their attention to S1 and S2 tokens.

• Name Mover Heads output the remaining name. They are active at END, attend to previous names
in the sentence, and copy the names they attend to. Due to the S-Inhibition Heads, they attend to
the IO token over the S1 and S2 tokens.

IO

S2

END

When
Mary

and
S1 John

went

the
store,
John
gave

a
drink

to

S1+1 Previous Token Heads
2.2 4.11

Duplicate Token Heads
0.1 3.0 (0.10)

Induction Heads
5.5 6.9 (5.8 5.9)

S-Inhibition Heads
7.3 7.9 8.6 8.10

Backup Name Mover Heads
9.0 9.7 10.1 10.2 10.6 10.10 11.2 11.9

Name Mover Heads
9.9 9.6 10.0

Negative Name Mover Heads
10.7 11.10

to

Class of Heads
Layer.Head

Key / Value

OutputQuery

Legend

Figure 2: We discover a circuit in GPT-2 small that implements IOI. The input tokens on the left are
passed into the residual stream. Attention heads move information between residual streams: the
query and output arrows show which residual streams they write to, and the key/value arrows show
which residual streams they read from.

4

(Wang et al., 2022)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 5 / 25

What are layers doing?
Embedding layer:

map patches/tokens to embedding space
capture discrete/semantic features encoded as different embedding directions (?)

Unembedding (output) layer:
map feature space back to tokens/labels

What about intermediate layers?
(discrete) communication/computation in feature space (??)
=⇒ associative mappings (input-output, or across tokens)

in Nanda & Lieberum (2022). Mean-ablations remove the information that varies in the reference
distribution (e.g. the value of the name outputted by a head) but will preserve constant information
(e.g. the fact that a head is outputting a name).

In this work, all knockouts are performed in a modified pIOI distribution called pABC. It relies on the
same generation procedure, but instead of using two names (IO and S) it used three unrelated random
names (A, B and C). In pABC, sentences no longer have a single plausible IO, but the grammatical
structures from the pIOI templates are preserved.

We chose this distribution for mean-ablating because using pIOI would not remove enough informa-
tion helpful for the task. For instance, some information constant in pIOI (e.g. the fact that a name
is duplicated) is removed when computing the mean on pABC.

When knocking out a single node, a (head, token position) pair in our circuit, we want to preserve
the grammatical information unrelated to IOI contained in its activations. However, the grammatical
role (subject, verb, conjunction etc.) of a particular token position varies across templates. To ensure
that grammatical information is constant when averaging, we compute the mean of a node across
samples of the same template.

3 DISCOVERING THE CIRCUIT

We seek to explain how GPT-2 small implements the IOI task (Section 2). Recall the example
sentence “When Mary and John went to the store, John gave a drink to”. The following human-
interpretable algorithm suffices to perform this task:

1. Identify all previous names in the sentence (Mary, John, John).
2. Remove all names that are duplicated (in the example above: John).
3. Output the remaining name.

Below we present a circuit that we claim implements this functionality. Our circuit contains three
major classes of heads, corresponding to the three steps of the algorithm above:

• Duplicate Token Heads identify tokens that have already appeared in the sentence. They are active
at the S2 token, attend primarily to the S1 token, and signal that token duplication has occurred
by writing the position of the duplicate token.

• S-Inhibition Heads remove duplicate tokens from Name Mover Heads’ attention. They are active
at the END token, attend to the S2 token, and write in the query of the Name Mover Heads,
inhibiting their attention to S1 and S2 tokens.

• Name Mover Heads output the remaining name. They are active at END, attend to previous names
in the sentence, and copy the names they attend to. Due to the S-Inhibition Heads, they attend to
the IO token over the S1 and S2 tokens.

IO

S2

END

When
Mary

and
S1 John

went

the
store,
John
gave

a
drink

to

S1+1 Previous Token Heads
2.2 4.11

Duplicate Token Heads
0.1 3.0 (0.10)

Induction Heads
5.5 6.9 (5.8 5.9)

S-Inhibition Heads
7.3 7.9 8.6 8.10

Backup Name Mover Heads
9.0 9.7 10.1 10.2 10.6 10.10 11.2 11.9

Name Mover Heads
9.9 9.6 10.0

Negative Name Mover Heads
10.7 11.10

to

Class of Heads
Layer.Head

Key / Value

OutputQuery

Legend

Figure 2: We discover a circuit in GPT-2 small that implements IOI. The input tokens on the left are
passed into the residual stream. Attention heads move information between residual streams: the
query and output arrows show which residual streams they write to, and the key/value arrows show
which residual streams they read from.

4

(Wang et al., 2022)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 5 / 25

Matrices as associative memories

Consider sets of nearly orthonormal embeddings {ui}i∈I and {vj}j∈J :

‖ui‖ ≈ 1 and ui
>uj ≈ 0

‖vi‖ ≈ 1 and vi
>vj ≈ 0

Consider pairwise associations (i , j) ∈M with weights αij and define:

W =
∑

(i ,j)∈M
αijvjui

>

We then have vj
>Wui ≈ αij

I e.g., classification, predict f̂ (x) = arg maxj vj
>Wux

Related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

Q: how do these play a role in Transformers?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 6 / 25

Matrices as associative memories

Consider sets of nearly orthonormal embeddings {ui}i∈I and {vj}j∈J :

‖ui‖ ≈ 1 and ui
>uj ≈ 0

‖vi‖ ≈ 1 and vi
>vj ≈ 0

Consider pairwise associations (i , j) ∈M with weights αij and define:

W =
∑

(i ,j)∈M
αijvjui

>

We then have vj
>Wui ≈ αij

I e.g., classification, predict f̂ (x) = arg maxj vj
>Wux

Related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

Q: how do these play a role in Transformers?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 6 / 25

Matrices as associative memories

Consider sets of nearly orthonormal embeddings {ui}i∈I and {vj}j∈J :

‖ui‖ ≈ 1 and ui
>uj ≈ 0

‖vi‖ ≈ 1 and vi
>vj ≈ 0

Consider pairwise associations (i , j) ∈M with weights αij and define:

W =
∑

(i ,j)∈M
αijvjui

>

We then have vj
>Wui ≈ αij

I e.g., classification, predict f̂ (x) = arg maxj vj
>Wux

Related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

Q: how do these play a role in Transformers?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 6 / 25

Matrices as associative memories

Consider sets of nearly orthonormal embeddings {ui}i∈I and {vj}j∈J :

‖ui‖ ≈ 1 and ui
>uj ≈ 0

‖vi‖ ≈ 1 and vi
>vj ≈ 0

Consider pairwise associations (i , j) ∈M with weights αij and define:

W =
∑

(i ,j)∈M
αijvjui

>

We then have vj
>Wui ≈ αij

I e.g., classification, predict f̂ (x) = arg maxj vj
>Wux

Related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

Q: how do these play a role in Transformers?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 6 / 25

Matrices as associative memories

Consider sets of nearly orthonormal embeddings {ui}i∈I and {vj}j∈J :

‖ui‖ ≈ 1 and ui
>uj ≈ 0

‖vi‖ ≈ 1 and vi
>vj ≈ 0

Consider pairwise associations (i , j) ∈M with weights αij and define:

W =
∑

(i ,j)∈M
αijvjui

>

We then have vj
>Wui ≈ αij

I e.g., classification, predict f̂ (x) = arg maxj vj
>Wux

Related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

Q: how do these play a role in Transformers?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 6 / 25

Outline

1 Application to Transformers (B., Cabannes, Bouchacourt, Jegou, and Bottou, 2023b)

2 Scaling laws for associative memories (Cabannes, Dohmatob, and B., 2024a)

3 Learning with gradient steps (B. et al., 2023b; Cabannes et al., 2024a,b)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 7 / 25

The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output

Fix trigger tokens: q1, . . . , qK
Sample each sequence z1:T ∈ [N]T as follows

Output tokens: ok ∼ πo(·|qk) (random)
Sequence-specific Markov model: z1 ∼ π1, zt |zt−1 ∼ p(·|zt−1) with

p(j |i) =
{
1{j = ok}, if i = qk , k = 1, . . . ,K
πb(j |i), o/w.

πb: global bigrams model (estimated from Karpathy’s character-level Shakespeare)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 8 / 25

The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output

Fix trigger tokens: q1, . . . , qK

Sample each sequence z1:T ∈ [N]T as follows
Output tokens: ok ∼ πo(·|qk) (random)
Sequence-specific Markov model: z1 ∼ π1, zt |zt−1 ∼ p(·|zt−1) with

p(j |i) =
{
1{j = ok}, if i = qk , k = 1, . . . ,K
πb(j |i), o/w.

πb: global bigrams model (estimated from Karpathy’s character-level Shakespeare)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 8 / 25

The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output

Fix trigger tokens: q1, . . . , qK
Sample each sequence z1:T ∈ [N]T as follows

Output tokens: ok ∼ πo(·|qk) (random)

Sequence-specific Markov model: z1 ∼ π1, zt |zt−1 ∼ p(·|zt−1) with

p(j |i) =
{
1{j = ok}, if i = qk , k = 1, . . . ,K
πb(j |i), o/w.

πb: global bigrams model (estimated from Karpathy’s character-level Shakespeare)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 8 / 25

The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output

Fix trigger tokens: q1, . . . , qK
Sample each sequence z1:T ∈ [N]T as follows

Output tokens: ok ∼ πo(·|qk) (random)
Sequence-specific Markov model: z1 ∼ π1, zt |zt−1 ∼ p(·|zt−1) with

p(j |i) =
{
1{j = ok}, if i = qk , k = 1, . . . ,K
πb(j |i), o/w.

πb: global bigrams model (estimated from Karpathy’s character-level Shakespeare)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 8 / 25

The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output

Fix trigger tokens: q1, . . . , qK
Sample each sequence z1:T ∈ [N]T as follows

Output tokens: ok ∼ πo(·|qk) (random)
Sequence-specific Markov model: z1 ∼ π1, zt |zt−1 ∼ p(·|zt−1) with

p(j |i) =
{
1{j = ok}, if i = qk , k = 1, . . . ,K
πb(j |i), o/w.

πb: global bigrams model (estimated from Karpathy’s character-level Shakespeare)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 8 / 25

Transformers I: embeddings and residual stream
Input sequence: [z1, . . . , zT] ∈ [N]T

Embedding layer:

xt := wE (zt) + pt ∈ Rd

I wE (z): token embedding of z ∈ [N]
I pt : positional embedding at position t ∈ [T]

Intermediate layers: add new stuff to residual stream xt
I Repeat L times: Attention and feed-forward layers

Unembedding layer: logits for each k ∈ [N],

(ξt)k = wU(k)>xt

Loss for next-token prediction (`: cross-entropy)

T−1∑
t=1

`(zt+1, ξt)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 9 / 25

Transformers I: embeddings and residual stream
Input sequence: [z1, . . . , zT] ∈ [N]T

Embedding layer:

xt := wE (zt) + pt ∈ Rd

I wE (z): token embedding of z ∈ [N]
I pt : positional embedding at position t ∈ [T]

Intermediate layers: add new stuff to residual stream xt
I Repeat L times: Attention and feed-forward layers

Unembedding layer: logits for each k ∈ [N],

(ξt)k = wU(k)>xt

Loss for next-token prediction (`: cross-entropy)

T−1∑
t=1

`(zt+1, ξt)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 9 / 25

Transformers I: embeddings and residual stream
Input sequence: [z1, . . . , zT] ∈ [N]T

Embedding layer:

xt := wE (zt) + pt ∈ Rd

I wE (z): token embedding of z ∈ [N]
I pt : positional embedding at position t ∈ [T]

Intermediate layers: add new stuff to residual stream xt
I Repeat L times: Attention and feed-forward layers

Unembedding layer: logits for each k ∈ [N],

(ξt)k = wU(k)>xt

Loss for next-token prediction (`: cross-entropy)

T−1∑
t=1

`(zt+1, ξt)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 9 / 25

Transformers I: embeddings and residual stream
Input sequence: [z1, . . . , zT] ∈ [N]T

Embedding layer:

xt := wE (zt) + pt ∈ Rd

I wE (z): token embedding of z ∈ [N]
I pt : positional embedding at position t ∈ [T]

Intermediate layers: add new stuff to residual stream xt
I Repeat L times: Attention and feed-forward layers

Unembedding layer: logits for each k ∈ [N],

(ξt)k = wU(k)>xt

Loss for next-token prediction (`: cross-entropy)

T−1∑
t=1

`(zt+1, ξt)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 9 / 25

Transformers I: embeddings and residual stream
Input sequence: [z1, . . . , zT] ∈ [N]T

Embedding layer:

xt := wE (zt) + pt ∈ Rd

I wE (z): token embedding of z ∈ [N]
I pt : positional embedding at position t ∈ [T]

Intermediate layers: add new stuff to residual stream xt
I Repeat L times: Attention and feed-forward layers

Unembedding layer: logits for each k ∈ [N],

(ξt)k = wU(k)>xt

Loss for next-token prediction (`: cross-entropy)

T−1∑
t=1

`(zt+1, ξt)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 9 / 25

Transformers II: self-attention

Causal self-attention layer (single head):

x ′t =
t∑

s=1
βsW T

O WV xs , with βs = exp(xs
>W>

K WQxt)∑t
s=1 exp(xs>W>

K WQxt)

WK ,WQ ∈ Rdh×d : key/query matrices, WO,WV ∈ Rdh×d : output/value matrices
βs : attention weights,

∑t
s=1 βs = 1

Each x ′t is then added to the corresponding residual stream
xt := xt + x ′t

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 10 / 25

Transformers II: self-attention

Causal self-attention layer (single head):

x ′t =
t∑

s=1
βsWOV xs , with βs = exp(xs

>WKQxt)∑t
s=1 exp(xs>WKQxt)

WKQ ∈ Rd×d : key-query matrix, WOV ∈ Rd×d : output-value matrix
βs : attention weights,

∑t
s=1 βs = 1

Each x ′t is then added to the corresponding residual stream
xt := xt + x ′t

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 10 / 25

Transformers II: self-attention

Causal self-attention layer (single head):

x ′t =
t∑

s=1
βsWOV xs , with βs = exp(xs

>WKQxt)∑t
s=1 exp(xs>WKQxt)

WKQ ∈ Rd×d : key-query matrix, WOV ∈ Rd×d : output-value matrix
βs : attention weights,

∑t
s=1 βs = 1

Each x ′t is then added to the corresponding residual stream
xt := xt + x ′t

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 10 / 25

Transformers on the bigram task

The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output

1-layer transformer fails: ∼ 55% accuracy on in-context output predictions
2-layer transformer succeeds: ∼ 99% accuracy

See also (Sanford, Hsu, and Telgarsky, 2023, 2024) for representational lower bounds

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 11 / 25

Transformers on the bigram task

The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output

1-layer transformer fails: ∼ 55% accuracy on in-context output predictions

2-layer transformer succeeds: ∼ 99% accuracy

See also (Sanford, Hsu, and Telgarsky, 2023, 2024) for representational lower bounds

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 11 / 25

Transformers on the bigram task

The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output

1-layer transformer fails: ∼ 55% accuracy on in-context output predictions
2-layer transformer succeeds: ∼ 99% accuracy

See also (Sanford, Hsu, and Telgarsky, 2023, 2024) for representational lower bounds

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 11 / 25

Transformers on the bigram task

The bigram data model: generic vs triggered rules

● Each sequence is sampled from a bigram (Markov) model
● The transitions at each sequence are the same except for special tokens

○ Triggers q_k (either fixed for all sequences, or sampled from unigram model)
○ Outputs o_k (sampled at each sequence, e.g. from uniform distribution)

● The other tokens follow a global bigram model (estimated on Shakespeare)

When Mr Bacon went … then Mr ___

trigger output

1-layer transformer fails: ∼ 55% accuracy on in-context output predictions
2-layer transformer succeeds: ∼ 99% accuracy

See also (Sanford, Hsu, and Telgarsky, 2023, 2024) for representational lower bounds

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 11 / 25

Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

 … {t+1, Mr, Bacon} … {T, Mr}

… {t, Mr} {t+1, Bacon} … {T, Mr}

 … {t+1, Mr, Bacon} … {T, Mr, Bacon}

1st layer: previous-token head
I attends to previous token and copies it to residual stream

2nd layer: induction head
I attends to output of previous token head, copies attended token

Matches observed attention scores:

 r s a b t s L a b t s L , a b

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 12 / 25

Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

 … {t+1, Mr, Bacon} … {T, Mr}

… {t, Mr} {t+1, Bacon} … {T, Mr}

 … {t+1, Mr, Bacon} … {T, Mr, Bacon}

1st layer: previous-token head
I attends to previous token and copies it to residual stream

2nd layer: induction head
I attends to output of previous token head, copies attended token

Matches observed attention scores:

 r s a b t s L a b t s L , a b

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 12 / 25

Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

 … {t+1, Mr, Bacon} … {T, Mr}

… {t, Mr} {t+1, Bacon} … {T, Mr}

 … {t+1, Mr, Bacon} … {T, Mr, Bacon}

1st layer: previous-token head
I attends to previous token and copies it to residual stream

2nd layer: induction head
I attends to output of previous token head, copies attended token

Matches observed attention scores:

 r s a b t s L a b t s L , a b

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 12 / 25

Random embeddings in high dimension
We consider random embeddings ui with i.i.d. N(0, 1/d) entries and d large

‖ui‖ ≈ 1 and u>i uj = O(1/
√
d)

Remapping: multiply by random matrix W with N (0, 1/d) entries:

‖Wui‖ ≈ 1 and u>i Wui = O(1/
√
d)

Value/Output matrices help with token remapping: Mr 7→ Mr, Bacon 7→ Bacon

 … {t+1, Mr, Bacon} … {T, Mr}

… {t, Mr} {t+1, Bacon} … {T, Mr}

 … {t+1, Mr, Bacon} … {T, Mr, Bacon}

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 13 / 25

Random embeddings in high dimension
We consider random embeddings ui with i.i.d. N(0, 1/d) entries and d large

‖ui‖ ≈ 1 and u>i uj = O(1/
√
d)

Remapping: multiply by random matrix W with N (0, 1/d) entries:

‖Wui‖ ≈ 1 and u>i Wui = O(1/
√
d)

Value/Output matrices help with token remapping: Mr 7→ Mr, Bacon 7→ Bacon

 … {t+1, Mr, Bacon} … {T, Mr}

… {t, Mr} {t+1, Bacon} … {T, Mr}

 … {t+1, Mr, Bacon} … {T, Mr, Bacon}

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 13 / 25

Random embeddings in high dimension
We consider random embeddings ui with i.i.d. N(0, 1/d) entries and d large

‖ui‖ ≈ 1 and u>i uj = O(1/
√
d)

Remapping: multiply by random matrix W with N (0, 1/d) entries:

‖Wui‖ ≈ 1 and u>i Wui = O(1/
√
d)

Value/Output matrices help with token remapping: Mr 7→ Mr, Bacon 7→ Bacon

 … {t+1, Mr, Bacon} … {T, Mr}

… {t, Mr} {t+1, Bacon} … {T, Mr}

 … {t+1, Mr, Bacon} … {T, Mr, Bacon}

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 13 / 25

Induction head with associative memories

Layer 0

Sequence

Layer 1

Layer 2

pt−1 wE(a) pt wE(b) pT−1 wE(a)

a b a b[· · ·]

∗ wE(a) w1(a) wE(b) ∗ wE(a)

∗ ∗ ∗ ∗ wU (b) wE(a)

Attn1:
∑

s ps−1p
⊤
s

W 1
OW

1
V Residual

Attn2:
∑

k w1(k)wE(k)
⊤ W 2

OW 2
V :

∑
k wU (k)wE(k)

⊤

Prediction

W 1
KQ =

T∑
t=2

ptp>t−1, W 2
KQ =

∑
k∈Q

wE (k)w1(k)>, W 2
OV =

N∑
k=1

wU(k)wE (k)>,

Random embeddings wE (k), wU(k), random matrix W 1
OV (frozen at init)

Remapped previous tokens: w1(k) := W 1
OVwE (k)

Q: Does this match practice?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 14 / 25

Induction head with associative memories

Layer 0

Sequence

Layer 1

Layer 2

pt−1 wE(a) pt wE(b) pT−1 wE(a)

a b a b[· · ·]

∗ wE(a) w1(a) wE(b) ∗ wE(a)

∗ ∗ ∗ ∗ wU (b) wE(a)

Attn1:
∑

s ps−1p
⊤
s

W 1
OW

1
V Residual

Attn2:
∑

k w1(k)wE(k)
⊤ W 2

OW 2
V :

∑
k wU (k)wE(k)

⊤

Prediction

W 1
KQ =

T∑
t=2

ptp>t−1, W 2
KQ =

∑
k∈Q

wE (k)w1(k)>, W 2
OV =

N∑
k=1

wU(k)wE (k)>,

Random embeddings wE (k), wU(k), random matrix W 1
OV (frozen at init)

Remapped previous tokens: w1(k) := W 1
OVwE (k)

Q: Does this match practice?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 14 / 25

Empirically probing the dynamics
Train only W 1

K , W 2
K , W 2

O, loss on deterministic output tokens only

Figure 3: Learning the induction head alone: in-context accuracy (top) and recall probes
(bottom) with some layers frozen until iteration 300. The output matrix W 2

O can and must be learned
before the key-query matrices, but does not suffice for good accuracy. It is easier to learn W 2

K
before W 1

K , and W 1
K stores initial context positions (t < 64) much faster than late positions.

The question remains of how the model could trade-off predictions from the induction head and from229

the feed-forward layer, which are added together due to residual connections. With fixed triggers Q,230

we may simply remove all i 2 Q from the summation in (8), so that the model exclusively relies231

on the attention head for all triggers (indeed, the output of W 2
O is in the span of output embeddings,232

which are nearly orthogonal to the row space of WF). When the triggers can vary across different233

sequences, choosing between the induction head and the feed-forward layer is more ambiguous as234

it depends on context, and WF may try to learn more complex mappings that also use the outputs235

of W 2
O. In practice, we observe that the model often prefers the induction head, unless its output236

agrees with one of the top predictions from the global bigram, in which case it tends to prefer those.237

5 Empirical Study238

In this section, we present our empirical analysis of learning dynamics on the bigram data defined in239

Section 3, for the simplified architecture defined in Section 4.2. See Appendix D for additional results.240

Experimental setup. We train our models using mini-batch SGD with momentum, where each241

batch consists of 512 fresh sequences of length T = 256 sampled from our synthetic model. We use242

a fixed learning rate and weight decay. Hyperparameters are given in Appendix D. Unless otherwise243

noted, we use d = 128, random triggers with ⇡q = ⇡u and uniform output tokens. The reported244

accuracies and losses are computed over each fresh batch before it is used for optimization, and245

are averaged over relevant tokens: “in-context accuracy/loss” numbers only consider predictions246

of output tokens on triggers starting at the second occurrence (the first is non-deterministic), while247

“global loss” refers to average loss on non-trigger tokens.248

Memory recall probes. In addition to loss and accuracy, we consider metrics to check whether249

individual matrices have learned the desired associative memories: for a desired target memory W⇤ =250 P
(i,j)2M vju

>
i , the corresponding recall metric is computed from the empirical estimate Ŵ as251

R(Ŵ , W⇤) =
1

|M|
X

(i,j)2M
{arg max

j0
v>j0Ŵui = j}. (9)

We use this for each matrix in (7) as target, and additionally test the previous token matrix W 1
K on252

smaller time windows. For the final feed-forward layer, we measure the average KL divergence253

between the predicted softmax distribution using only WF and the global bigram distribution ⇡b:254

dKL(WF , ⇡b) :=
1

N

NX

k=1

dKL(�(WUWF wE(k)), ⇡b(·|k)). (10)

255
Emergence of the induction head via top-down learning. We begin our study by only training256

to minimize the loss on trigger-output token predictions after their first occurrence. This should257

7

“Memory recall probes”: for target memory W∗ =
∑

(i ,j)∈M vju>i , compute

R(Ŵ ,W∗) = 1
|M|

∑
(i ,j)∈M

1{j = arg max
j′

v>j′ Ŵ ui}

Natural learning “order”: W 2
OV first, W 2

KQ next, W 1
KQ last

Joint learning is faster (motivates our theory below)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 15 / 25

Empirically probing the dynamics
Train only W 1

K , W 2
K , W 2

O, loss on deterministic output tokens only

Figure 3: Learning the induction head alone: in-context accuracy (top) and recall probes
(bottom) with some layers frozen until iteration 300. The output matrix W 2

O can and must be learned
before the key-query matrices, but does not suffice for good accuracy. It is easier to learn W 2

K
before W 1

K , and W 1
K stores initial context positions (t < 64) much faster than late positions.

The question remains of how the model could trade-off predictions from the induction head and from229

the feed-forward layer, which are added together due to residual connections. With fixed triggers Q,230

we may simply remove all i 2 Q from the summation in (8), so that the model exclusively relies231

on the attention head for all triggers (indeed, the output of W 2
O is in the span of output embeddings,232

which are nearly orthogonal to the row space of WF). When the triggers can vary across different233

sequences, choosing between the induction head and the feed-forward layer is more ambiguous as234

it depends on context, and WF may try to learn more complex mappings that also use the outputs235

of W 2
O. In practice, we observe that the model often prefers the induction head, unless its output236

agrees with one of the top predictions from the global bigram, in which case it tends to prefer those.237

5 Empirical Study238

In this section, we present our empirical analysis of learning dynamics on the bigram data defined in239

Section 3, for the simplified architecture defined in Section 4.2. See Appendix D for additional results.240

Experimental setup. We train our models using mini-batch SGD with momentum, where each241

batch consists of 512 fresh sequences of length T = 256 sampled from our synthetic model. We use242

a fixed learning rate and weight decay. Hyperparameters are given in Appendix D. Unless otherwise243

noted, we use d = 128, random triggers with ⇡q = ⇡u and uniform output tokens. The reported244

accuracies and losses are computed over each fresh batch before it is used for optimization, and245

are averaged over relevant tokens: “in-context accuracy/loss” numbers only consider predictions246

of output tokens on triggers starting at the second occurrence (the first is non-deterministic), while247

“global loss” refers to average loss on non-trigger tokens.248

Memory recall probes. In addition to loss and accuracy, we consider metrics to check whether249

individual matrices have learned the desired associative memories: for a desired target memory W⇤ =250 P
(i,j)2M vju

>
i , the corresponding recall metric is computed from the empirical estimate Ŵ as251

R(Ŵ , W⇤) =
1

|M|
X

(i,j)2M
{arg max

j0
v>j0Ŵui = j}. (9)

We use this for each matrix in (7) as target, and additionally test the previous token matrix W 1
K on252

smaller time windows. For the final feed-forward layer, we measure the average KL divergence253

between the predicted softmax distribution using only WF and the global bigram distribution ⇡b:254

dKL(WF , ⇡b) :=
1

N

NX

k=1

dKL(�(WUWF wE(k)), ⇡b(·|k)). (10)

255
Emergence of the induction head via top-down learning. We begin our study by only training256

to minimize the loss on trigger-output token predictions after their first occurrence. This should257

7

“Memory recall probes”: for target memory W∗ =
∑

(i ,j)∈M vju>i , compute

R(Ŵ ,W∗) = 1
|M|

∑
(i ,j)∈M

1{j = arg max
j′

v>j′ Ŵ ui}

Natural learning “order”: W 2
OV first, W 2

KQ next, W 1
KQ last

Joint learning is faster (motivates our theory below)
Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 15 / 25

Outline

1 Application to Transformers (B., Cabannes, Bouchacourt, Jegou, and Bottou, 2023b)

2 Scaling laws for associative memories (Cabannes, Dohmatob, and B., 2024a)

3 Learning with gradient steps (B. et al., 2023b; Cabannes et al., 2024a,b)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 16 / 25

Scaling laws (a.k.a. non-parametric rates)

Statistical setup
Non-parametric setting: what if there are N →∞ elements?

zi ∼ p(z), yi = f ∗(zi), n samples: Sn = {z1, . . . , zn}, 0/1 loss:

L(f̂n) = P(y 6= f̂n(z))

Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

p(z) ∝ z−α

Hutter (2021): with infinite memory, we have

L(f̂n) . n−
α−1

α

Q: What about finite capacity?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 17 / 25

Scaling laws (a.k.a. non-parametric rates)

Statistical setup
Non-parametric setting: what if there are N →∞ elements?
zi ∼ p(z), yi = f ∗(zi), n samples: Sn = {z1, . . . , zn}, 0/1 loss:

L(f̂n) = P(y 6= f̂n(z))

Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

p(z) ∝ z−α

Hutter (2021): with infinite memory, we have

L(f̂n) . n−
α−1

α

Q: What about finite capacity?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 17 / 25

Scaling laws (a.k.a. non-parametric rates)

Statistical setup
Non-parametric setting: what if there are N →∞ elements?
zi ∼ p(z), yi = f ∗(zi), n samples: Sn = {z1, . . . , zn}, 0/1 loss:

L(f̂n) = P(y 6= f̂n(z))

Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

p(z) ∝ z−α

Hutter (2021): with infinite memory, we have

L(f̂n) . n−
α−1

α

Q: What about finite capacity?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 17 / 25

Scaling laws (a.k.a. non-parametric rates)

Statistical setup
Non-parametric setting: what if there are N →∞ elements?
zi ∼ p(z), yi = f ∗(zi), n samples: Sn = {z1, . . . , zn}, 0/1 loss:

L(f̂n) = P(y 6= f̂n(z))

Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

p(z) ∝ z−α

Hutter (2021): with infinite memory, we have

L(f̂n) . n−
α−1

α

Q: What about finite capacity?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 17 / 25

Scaling laws (a.k.a. non-parametric rates)

Statistical setup
Non-parametric setting: what if there are N →∞ elements?
zi ∼ p(z), yi = f ∗(zi), n samples: Sn = {z1, . . . , zn}, 0/1 loss:

L(f̂n) = P(y 6= f̂n(z))

Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

p(z) ∝ z−α

Hutter (2021): with infinite memory, we have

L(f̂n) . n−
α−1

α

Q: What about finite capacity?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 17 / 25

How much can we store with finite d? Intuition
Random embeddings uz , vy ∼ N (0, 1

d I)

Consider

W =
N∑

z=1
vf ∗(z)uz

> ∈ Rd×d

When can we recover f ∗(z) from z for all z?

γz,y := vy
>Wuz =

∑
z ′

v>y vf ∗(z ′)u>z uz ′

We have
E[γz,y] =

{
1, if y = f ∗(z)
0, otherwise.

Var[γz,y] . |{z
′ : f ∗(z ′) = y}|

d + |{z
′ : f ∗(z ′) 6= y}|

d2

Recover all associations when Var[γz,y] . 1. Examples:
I f ∗(z) = z : can store up to N ≈ d2 associations
I f ∗(z) = z mod 2: can store up to N ≈ d associations

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 18 / 25

How much can we store with finite d? Intuition
Random embeddings uz , vy ∼ N (0, 1

d I)
Consider

W =
N∑

z=1
vf ∗(z)uz

> ∈ Rd×d

When can we recover f ∗(z) from z for all z?

γz,y := vy
>Wuz =

∑
z ′

v>y vf ∗(z ′)u>z uz ′

We have
E[γz,y] =

{
1, if y = f ∗(z)
0, otherwise.

Var[γz,y] . |{z
′ : f ∗(z ′) = y}|

d + |{z
′ : f ∗(z ′) 6= y}|

d2

Recover all associations when Var[γz,y] . 1. Examples:
I f ∗(z) = z : can store up to N ≈ d2 associations
I f ∗(z) = z mod 2: can store up to N ≈ d associations

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 18 / 25

How much can we store with finite d? Intuition
Random embeddings uz , vy ∼ N (0, 1

d I)
Consider

W =
N∑

z=1
vf ∗(z)uz

> ∈ Rd×d

When can we recover f ∗(z) from z for all z?

γz,y := vy
>Wuz =

∑
z ′

v>y vf ∗(z ′)u>z uz ′

We have
E[γz,y] =

{
1, if y = f ∗(z)
0, otherwise.

Var[γz,y] . |{z
′ : f ∗(z ′) = y}|

d + |{z
′ : f ∗(z ′) 6= y}|

d2

Recover all associations when Var[γz,y] . 1. Examples:
I f ∗(z) = z : can store up to N ≈ d2 associations
I f ∗(z) = z mod 2: can store up to N ≈ d associations

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 18 / 25

How much can we store with finite d? Intuition
Random embeddings uz , vy ∼ N (0, 1

d I)
Consider

W =
N∑

z=1
vf ∗(z)uz

> ∈ Rd×d

When can we recover f ∗(z) from z for all z?

γz,y := vy
>Wuz =

∑
z ′

v>y vf ∗(z ′)u>z uz ′

We have
E[γz,y] =

{
1, if y = f ∗(z)
0, otherwise.

Var[γz,y] . |{z
′ : f ∗(z ′) = y}|

d + |{z
′ : f ∗(z ′) 6= y}|

d2

Recover all associations when Var[γz,y] . 1. Examples:
I f ∗(z) = z : can store up to N ≈ d2 associations
I f ∗(z) = z mod 2: can store up to N ≈ d associations

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 18 / 25

How much can we store with finite d? Intuition
Random embeddings uz , vy ∼ N (0, 1

d I)
Consider

W =
N∑

z=1
vf ∗(z)uz

> ∈ Rd×d

When can we recover f ∗(z) from z for all z?

γz,y := vy
>Wuz =

∑
z ′

v>y vf ∗(z ′)u>z uz ′

We have
E[γz,y] =

{
1, if y = f ∗(z)
0, otherwise.

Var[γz,y] . |{z
′ : f ∗(z ′) = y}|

d + |{z
′ : f ∗(z ′) 6= y}|

d2

Recover all associations when Var[γz,y] . 1. Examples:
I f ∗(z) = z : can store up to N ≈ d2 associations
I f ∗(z) = z mod 2: can store up to N ≈ d associations

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 18 / 25

Scaling laws with finite capacity
Random embeddings uz , vy ∈ Rd with i.i.d. N (0, 1/d) entries
Estimator: f̂n,d (x) = arg maxy v>y Wn,duz , with

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Theorem (Cabannes, Dohmatob, B., 2024, informal)
1 For q(z) =

∑
i 1{z = zi}: L(f̂n,d) . n−

α−1
α + d−

α−1
2α

2 For q(z) = 1{z ∈ Sn}, and d � N: L(f̂n,d) . n−
α−1

α + d−k for any k
3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) . n−

α−1
α + d−α+1

n−
α−1

α is the same as (Hutter, 2021)
q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)
Extensions to md memories for MLPs with md parameters (w/ E. Nichani, J. Lee)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 19 / 25

Scaling laws with finite capacity
Random embeddings uz , vy ∈ Rd with i.i.d. N (0, 1/d) entries
Estimator: f̂n,d (x) = arg maxy v>y Wn,duz , with

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Theorem (Cabannes, Dohmatob, B., 2024, informal)
1 For q(z) =

∑
i 1{z = zi}: L(f̂n,d) . n−

α−1
α + d−

α−1
2α

2 For q(z) = 1{z ∈ Sn}, and d � N: L(f̂n,d) . n−
α−1

α + d−k for any k
3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) . n−

α−1
α + d−α+1

n−
α−1

α is the same as (Hutter, 2021)
q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)
Extensions to md memories for MLPs with md parameters (w/ E. Nichani, J. Lee)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 19 / 25

Scaling laws with finite capacity
Random embeddings uz , vy ∈ Rd with i.i.d. N (0, 1/d) entries
Estimator: f̂n,d (x) = arg maxy v>y Wn,duz , with

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Theorem (Cabannes, Dohmatob, B., 2024, informal)
1 For q(z) =

∑
i 1{z = zi}: L(f̂n,d) . n−

α−1
α + d−

α−1
2α

2 For q(z) = 1{z ∈ Sn}, and d � N: L(f̂n,d) . n−
α−1

α + d−k for any k

3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) . n−
α−1

α + d−α+1

n−
α−1

α is the same as (Hutter, 2021)
q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)
Extensions to md memories for MLPs with md parameters (w/ E. Nichani, J. Lee)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 19 / 25

Scaling laws with finite capacity
Random embeddings uz , vy ∈ Rd with i.i.d. N (0, 1/d) entries
Estimator: f̂n,d (x) = arg maxy v>y Wn,duz , with

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Theorem (Cabannes, Dohmatob, B., 2024, informal)
1 For q(z) =

∑
i 1{z = zi}: L(f̂n,d) . n−

α−1
α + d−

α−1
2α

2 For q(z) = 1{z ∈ Sn}, and d � N: L(f̂n,d) . n−
α−1

α + d−k for any k
3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) . n−

α−1
α + d−α+1

n−
α−1

α is the same as (Hutter, 2021)
q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)
Extensions to md memories for MLPs with md parameters (w/ E. Nichani, J. Lee)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 19 / 25

Scaling laws with finite capacity
Random embeddings uz , vy ∈ Rd with i.i.d. N (0, 1/d) entries
Estimator: f̂n,d (x) = arg maxy v>y Wn,duz , with

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Theorem (Cabannes, Dohmatob, B., 2024, informal)
1 For q(z) =

∑
i 1{z = zi}: L(f̂n,d) . n−

α−1
α + d−

α−1
2α

2 For q(z) = 1{z ∈ Sn}, and d � N: L(f̂n,d) . n−
α−1

α + d−k for any k
3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) . n−

α−1
α + d−α+1

n−
α−1

α is the same as (Hutter, 2021)
q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)

Extensions to md memories for MLPs with md parameters (w/ E. Nichani, J. Lee)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 19 / 25

Scaling laws with finite capacity
Random embeddings uz , vy ∈ Rd with i.i.d. N (0, 1/d) entries
Estimator: f̂n,d (x) = arg maxy v>y Wn,duz , with

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Theorem (Cabannes, Dohmatob, B., 2024, informal)
1 For q(z) =

∑
i 1{z = zi}: L(f̂n,d) . n−

α−1
α + d−

α−1
2α

2 For q(z) = 1{z ∈ Sn}, and d � N: L(f̂n,d) . n−
α−1

α + d−k for any k
3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) . n−

α−1
α + d−α+1

n−
α−1

α is the same as (Hutter, 2021)
q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)
Extensions to md memories for MLPs with md parameters (w/ E. Nichani, J. Lee)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 19 / 25

Outline

1 Application to Transformers (B., Cabannes, Bouchacourt, Jegou, and Bottou, 2023b)

2 Scaling laws for associative memories (Cabannes, Dohmatob, and B., 2024a)

3 Learning with gradient steps (B. et al., 2023b; Cabannes et al., 2024a,b)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 20 / 25

Gradients as associative memories

Simple model to learn associative memories:

z ∈ [N]→ uz ∈ Rd →Wuz ∈ Rd → (vk
>Wuz)k ∈ RM

uz , vy : nearly-orthonormal input/output embeddings, assume fixed
Cross-entropy loss for logits ξ ∈ RM : `(y , ξ) = −ξy + log(

∑
k exp ξk)

Example: one gradient step
Data model: z ∼ Unif([N]), y = f∗(z) ∈ [N]
After one gradient step from W0 = 0, step-size η:

vk
>W1uz ≈

η

N 1{f∗(z) = k}+ O
(
η

N2

)
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 21 / 25

Gradients as associative memories

Simple model to learn associative memories:

z ∈ [N]→ uz ∈ Rd →Wuz ∈ Rd → (vk
>Wuz)k ∈ RM

uz , vy : nearly-orthonormal input/output embeddings, assume fixed

Cross-entropy loss for logits ξ ∈ RM : `(y , ξ) = −ξy + log(
∑

k exp ξk)

Example: one gradient step
Data model: z ∼ Unif([N]), y = f∗(z) ∈ [N]
After one gradient step from W0 = 0, step-size η:

vk
>W1uz ≈

η

N 1{f∗(z) = k}+ O
(
η

N2

)
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 21 / 25

Gradients as associative memories

Simple model to learn associative memories:

z ∈ [N]→ uz ∈ Rd →Wuz ∈ Rd → (vk
>Wuz)k ∈ RM

uz , vy : nearly-orthonormal input/output embeddings, assume fixed
Cross-entropy loss for logits ξ ∈ RM : `(y , ξ) = −ξy + log(

∑
k exp ξk)

Example: one gradient step
Data model: z ∼ Unif([N]), y = f∗(z) ∈ [N]
After one gradient step from W0 = 0, step-size η:

vk
>W1uz ≈

η

N 1{f∗(z) = k}+ O
(
η

N2

)
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 21 / 25

Gradients as associative memories

Simple model to learn associative memories:

z ∈ [N]→ uz ∈ Rd →Wuz ∈ Rd → (vk
>Wuz)k ∈ RM

uz , vy : nearly-orthonormal input/output embeddings, assume fixed
Cross-entropy loss for logits ξ ∈ RM : `(y , ξ) = −ξy + log(

∑
k exp ξk)

Example: one gradient step
Data model: z ∼ Unif([N]), y = f∗(z) ∈ [N]
After one gradient step from W0 = 0, step-size η:

vk
>W1uz ≈

η

N 1{f∗(z) = k}+ O
(
η

N2

)

Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 21 / 25

Gradients as associative memories

Simple model to learn associative memories:

z ∈ [N]→ uz ∈ Rd →Wuz ∈ Rd → (vk
>Wuz)k ∈ RM

uz , vy : nearly-orthonormal input/output embeddings, assume fixed
Cross-entropy loss for logits ξ ∈ RM : `(y , ξ) = −ξy + log(

∑
k exp ξk)

Example: one gradient step
Data model: z ∼ Unif([N]), y = f∗(z) ∈ [N]
After one gradient step from W0 = 0, step-size η:

vk
>W1uz ≈

η

N 1{f∗(z) = k}+ O
(
η

N2

)
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 21 / 25

Gradient associative memories with noisy inputs

In practice, inputs are often a collection of tokens / sum of embeddings

z = {z1, . . . , zs} ⊂ [N], x =
s∑

j=1
uzs ∈ Rd

I e.g., bag of words, output of attention operation, residual connections

Some elements may be irrelevant for prediction

Example: filter out exogenous noise with one gradient step
Data model: y ∼ Unif([N]), t ∼ Unif([T]), x = uy + nt ∈ Rd

After one gradient step from W0 = 0

vk
>W1x ≈

η

N 1{k = y}+ O
(
η

N2

)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 22 / 25

Gradient associative memories with noisy inputs

In practice, inputs are often a collection of tokens / sum of embeddings

z = {z1, . . . , zs} ⊂ [N], x =
s∑

j=1
uzs ∈ Rd

I e.g., bag of words, output of attention operation, residual connections
Some elements may be irrelevant for prediction

Example: filter out exogenous noise with one gradient step
Data model: y ∼ Unif([N]), t ∼ Unif([T]), x = uy + nt ∈ Rd

After one gradient step from W0 = 0

vk
>W1x ≈

η

N 1{k = y}+ O
(
η

N2

)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 22 / 25

Gradient associative memories with noisy inputs

In practice, inputs are often a collection of tokens / sum of embeddings

z = {z1, . . . , zs} ⊂ [N], x =
s∑

j=1
uzs ∈ Rd

I e.g., bag of words, output of attention operation, residual connections
Some elements may be irrelevant for prediction

Example: filter out exogenous noise with one gradient step
Data model: y ∼ Unif([N]), t ∼ Unif([T]), x = uy + nt ∈ Rd

After one gradient step from W0 = 0

vk
>W1x ≈

η

N 1{k = y}+ O
(
η

N2

)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 22 / 25

Gradient steps for the bigram task
Setting: transformer on the bigram task

Focus on predicting second output token
All distributions are uniform
Some simplifications to architecture
Infinite width, infinite data, N � T

Theorem (B. et al., 2023b, informal)
In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss: first on W 2

OV , then W 2
KQ, then W 1

KQ.

Key ideas
Attention is uniform at initialization =⇒ inputs are sums of embeddings
W 2

O: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of zT

W 1/2
K : correct associations lead to more focused attention

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 23 / 25

Gradient steps for the bigram task
Setting: transformer on the bigram task

Focus on predicting second output token
All distributions are uniform
Some simplifications to architecture
Infinite width, infinite data, N � T

Theorem (B. et al., 2023b, informal)
In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss: first on W 2

OV , then W 2
KQ, then W 1

KQ.

Key ideas
Attention is uniform at initialization =⇒ inputs are sums of embeddings
W 2

O: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of zT

W 1/2
K : correct associations lead to more focused attention

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 23 / 25

Gradient steps for the bigram task
Setting: transformer on the bigram task

Focus on predicting second output token
All distributions are uniform
Some simplifications to architecture
Infinite width, infinite data, N � T

Theorem (B. et al., 2023b, informal)
In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss: first on W 2

OV , then W 2
KQ, then W 1

KQ.

Key ideas
Attention is uniform at initialization =⇒ inputs are sums of embeddings
W 2

O: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of zT

W 1/2
K : correct associations lead to more focused attention

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 23 / 25

Imbalanced data, finite capacity

L(W) = Ez∼p[`(f ∗(z),VWuz)], `: cross-entropy loss

Optimization improves capacity with imbalance: (Cabannes, Dohmatob, and B., 2024a)
One population gradient step is similar to q(z) ≈ p(z): inefficient for power law
Many steps lead to q(z) ≈ 1: more efficient (for d ≥ N)

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)
Orthogonal embeddings =⇒ logarithmic growth of margins for any step-size
Correlated embeddings + imbalance =⇒ oscillatory regimes
Large step-sizes help reach perfect accuracy faster despite oscillations (empirically)
Over-optimization can hurt in under-parameterized settings (empirically)

�10 0 10

↵ = �0.5, p1 = 0.75

�10 0 10

↵ = 0.95, p1 = 0.75

Figure 1: Level lines of L(W) for N = d = 2 as a function
of �i(W) := (u2 � u1)

>Wfi where (fi) is a basis of R2.
Token embeddings have correlation ↵ (16). We equally plot
the value of L01(W), dark blue meaning perfect accuracy,
and white meaning null accuracy.

Hence, the margins only increase during training, and the
larger the learning rate, the faster the evolution. Indeed,
one gradient step is enough to learn all the associations
x ! f⇤(x), i.e. fW1

(x) = f⇤(x) for any initialization.
Continuing the training will continue to increase the mar-
gins, ultimately ensuring the convergence of Wt to the max-
margin solution of the classification problem, as character-
ized by Theorem 3, making the final classifier robust to
embedding displacements (Cortes & Vapnik, 1995).

To conclude, when the embeddings are orthogonal, the mem-
ories do not interfere much, and one can learn all the associ-
ations with one giant gradient step. This case still presents
several behaviors of interest. First of all, Equation (15)
shows that the association x ! y is learned faster when x is
frequent, i.e. p(x) is large. Indeed, early in training, one can
envision W 'Px p(x)uy ⌦ ex. However, later in training,
the training dynamics will start saturating in the direction
uy ⌦ ex for the frequent tokens, allowing the less frequent
ones to catch up. The catch-up is facilitated by large learn-
ing rates. Ultimately, as shown by Equation (3), the final
W does not depend on the token frequencies (see Byrd &
Lipton, 2019 for related observations). In other terms, if the
model has enough capacity to learn all the data (in our case,
orthogonality implies d � N), then at the end of the train-
ing, it allocates equal capacity to every token even though
some tokens are much rarer. Nonetheless, curating data to
make them less redundant can make learning more efficient.

4.2. Particles Interfering

Let us now consider the case where N  d, but where
memories interfere between them. We first notice that in the
case when the input embeddings are orthogonal, correlated
output embeddings introduce limited competition, and this
case can largely be understood as a simplified version of the
interaction between input embeddings.

Let us analyze the simple but instructive case N = 2 of two
input tokens with f⇤(x) = x, and

↵ij = hei, eji = 1i=j + ↵1i 6=j , ↵ 2 [�1, 1]. (16)

In other terms, the input embeddings are normalized and are

0 5

�10

0

10
↵ = 0.95, p1 = 0.75

� = 10 � = 1

0 20

0.0

0.5

1.0

t ! L(Wt)

L(Wt)

L01(Wt)

Figure 2: Loss spikes. Trajectories of Wt in the setting of
Figure 1 for two learning rates ⌘, ⌘ = 10 in green, ⌘ = 1
in red, and their traces in term of losses as a function of the
number of epochs, here t 2 [35].

↵-correlated. Two margins are at play:

mi = wii � wij = (ui � uj)
>Wei, {i, j} = {1, 2}.

The interacting system (12) becomes,

�mi = c⌘t

✓
pi

1 + exp(mi)
� ↵pj

1 + exp(mj)

◆
, (17)

where c = ku1 � u2k2 and we denote pi = p(i) for read-
ability. In the gradient dynamics, x = 1 pushes W in the
direction (u1 � u2) ⌦ e1, which, when ↵  0, is positively
correlated with the direction (u2 � u1) ⌦ e2 promoted by
x = 2. As can be seen in Equation (17), when ↵  0, both
margins increase during training, there is no competition
between the memories, and a single gradient step is enough
to reach perfect accuracy. To solve Equation (17), let us
introduce the orthogonal family

f1 = e1 + e2, f2 = e1 � e2,

and project the dynamics on those directions with

�i =
1

2
(u1 � u2)

>Wfi. (18)

The evolution of the �i is governed by

d�1

dct
=

(1 + ↵)p1

1 + exp (�2 + �1)
� (1 + ↵)p2

1 + exp (�2 � �1)

d�2

dct
=

(1 � ↵)p1

1 + exp (�2 + �1)
+

(1 � ↵)p2

1 + exp (�2 � �1)
, (19)

From the second differential equation, we see that �2 always
increases during the dynamics. The growth of �2 will slow
down the growth of �1. These together imply that W grows
logarithmically in one direction (f2, which turns out to be
the max-margin direction) and stays bounded in the orthog-
onal direction, which we prove in Appendix C.1 and is the
object of the following theorem.
Theorem 4 (Two particles interacting). Let N = 2 with
f⇤(x) = x. Assume without restriction that p1 � p2. When
Equation (16) holds, if W is initialized at zero, i.e. W0 = 0,
for gradient flow,

�2(t) = log(ctt + 1) + O

✓
log(c2t + 1)

c2t + 1

◆
,

�1(t) =
1

2
log
�
p1/p2

�
+ O(1/t),

5

�2 0 2
�2

0

2
N = 3, E = 0.27

�1.0 �0.5 0.0 0.5

0

1

N = 30, E = 0.22

�10 0 10

SGD trajectory

� = 0.1

0 500 1000

0.25

0.50

0.75

t � L(Wt)

L(Wt)/2

L01(Wt)

Figure 4: Forgetting. Similar plots as in Figures 1 and 2, yet in the limited capacity case d < N . In those situations, competition
between the memories can lead to sub-optimal minimizer of L, which we illustrate with SGD on the bottom plots. The sub-optimality
is reflected in the excess of risk E = L01(arg minW L(W)) � minW L01(W).

�10 0 10

Losses

�10 0 10

Sharpness

0 20

t ! kr2L(Wt)k⇤

�10 0 10

Losses

�10 0 10

Sharpness

0 20

t ! kr2L(Wt)k⇤

Figure 5: Sharpness profile. Gradient descent trajectories in the setting of Figures 2 and 4 with learning rates ⌘ = 10 (green) and
⌘ = 1 (red). We plot the level lines of the sharpness, i.e. the operator norm of r2L(W), as well as the trace of the trajectories in
terms of sharpness. The left plots are in the overparameterized regime, the right ones in the underparameterized one.

tories of Wt for two different learning rates, and the trace
of these trajectories in the training loss and accuracy plots
which are usually monitored by practitioners training neural
networks.

5. Numerical Analysis
This section complements previous derivations with numeri-
cal analysis. It discusses underparameterized regimes, large
versions of model (1), as well as more complicated ones.

5.1. Limited capacity

Let us start the numerical analysis with the case where
N > d. In those cases, one can not necessarily store all
associations in memory, and the model has to favor some of
them. It was shown in Cabannes et al. (2024) that the ideal
W can usually store about d memories similarly to Hopfield
network scalings. However, this ideal W is not always the
one minimizing the cross-entropy loss.

We plot our problem in the case M = d = 2 thanks to
the statistics �i of (21). Figure 4 reveals a striking fact:
the cross-entropy loss is not calibrated for our model, i.e.,
minimizing L(W) does not always minimize L01(W). In-
deed, even in the case N = 3, one can find examples where
competition between the memories leads the minimizer of
L to “forget” the most frequent association. When N be-
comes large in front of d, these cases become the norm. On
these landscapes, one can come up with examples of catas-
trophic forgetting, where the dynamics is first dominated by
frequent tokens that are well memorized until rare classes
come into play, perturbing the minimizer of L, ultimately

leading to convergence to a sub-optimal place. We illustrate
it on the right of Figure 4.

To further illustrate the differences between the dynamics
in over- and under-parameterized regimes, Figure 5 illus-
trates the sharpness, as defined by the operator norm of
the Hessian of L(W) along two descent trajectories. We
compute the Hessian in closed-form to show its level lines,
illustrating that the sharpness of the logistic loss is mainly
high for small values of the norm of W . We observe three
types of behaviors. In the separable case, e.g. when d � N ,
the transitory regime goes through relatively sharp regions,
before the stationary regime where the sharpness decreases
until reaching zero at infinity. In the non-separable case,
with is typical when d < N , either the learning rate is small
enough and we converge to the minimum of L presenting a
sharpness H⇤ greater than 2/⌘, or the learning rate is greater
than 2/H⇤ and we oscillate around the minimizer of L.

5.2. Larger dimension

When the dimension d is larger, although we can not plot
the weight-space, we can plot the evolution of certain statis-
tics, such as the margin, along descent trajectories. In Fig-
ure 6, we consider a setup with N = M = 5, f⇤(x) = x,
and p(x) / 1/x, in different dimensions (with random
embeddings). We show the evolution of the margins

mt(x) = huf⇤(x), Wexi � max
j 6=x

huj , Wexi. (22)

Perfect accuracy is achieved when mt(x) > 0 for all x.
We see the faster increase of margins for more frequent
tokens, faster convergence with large step-size ⌘, at the
cost of oscillations, and benefits of larger d. The latter are

7

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 24 / 25

Imbalanced data, finite capacity

L(W) = Ez∼p[`(f ∗(z),VWuz)], `: cross-entropy loss

Optimization improves capacity with imbalance: (Cabannes, Dohmatob, and B., 2024a)
One population gradient step is similar to q(z) ≈ p(z): inefficient for power law
Many steps lead to q(z) ≈ 1: more efficient (for d ≥ N)

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)
Orthogonal embeddings =⇒ logarithmic growth of margins for any step-size
Correlated embeddings + imbalance =⇒ oscillatory regimes
Large step-sizes help reach perfect accuracy faster despite oscillations (empirically)
Over-optimization can hurt in under-parameterized settings (empirically)

�10 0 10

↵ = �0.5, p1 = 0.75

�10 0 10

↵ = 0.95, p1 = 0.75

Figure 1: Level lines of L(W) for N = d = 2 as a function
of �i(W) := (u2 � u1)

>Wfi where (fi) is a basis of R2.
Token embeddings have correlation ↵ (16). We equally plot
the value of L01(W), dark blue meaning perfect accuracy,
and white meaning null accuracy.

Hence, the margins only increase during training, and the
larger the learning rate, the faster the evolution. Indeed,
one gradient step is enough to learn all the associations
x ! f⇤(x), i.e. fW1

(x) = f⇤(x) for any initialization.
Continuing the training will continue to increase the mar-
gins, ultimately ensuring the convergence of Wt to the max-
margin solution of the classification problem, as character-
ized by Theorem 3, making the final classifier robust to
embedding displacements (Cortes & Vapnik, 1995).

To conclude, when the embeddings are orthogonal, the mem-
ories do not interfere much, and one can learn all the associ-
ations with one giant gradient step. This case still presents
several behaviors of interest. First of all, Equation (15)
shows that the association x ! y is learned faster when x is
frequent, i.e. p(x) is large. Indeed, early in training, one can
envision W 'Px p(x)uy ⌦ ex. However, later in training,
the training dynamics will start saturating in the direction
uy ⌦ ex for the frequent tokens, allowing the less frequent
ones to catch up. The catch-up is facilitated by large learn-
ing rates. Ultimately, as shown by Equation (3), the final
W does not depend on the token frequencies (see Byrd &
Lipton, 2019 for related observations). In other terms, if the
model has enough capacity to learn all the data (in our case,
orthogonality implies d � N), then at the end of the train-
ing, it allocates equal capacity to every token even though
some tokens are much rarer. Nonetheless, curating data to
make them less redundant can make learning more efficient.

4.2. Particles Interfering

Let us now consider the case where N  d, but where
memories interfere between them. We first notice that in the
case when the input embeddings are orthogonal, correlated
output embeddings introduce limited competition, and this
case can largely be understood as a simplified version of the
interaction between input embeddings.

Let us analyze the simple but instructive case N = 2 of two
input tokens with f⇤(x) = x, and

↵ij = hei, eji = 1i=j + ↵1i 6=j , ↵ 2 [�1, 1]. (16)

In other terms, the input embeddings are normalized and are

0 5

�10

0

10
↵ = 0.95, p1 = 0.75

� = 10 � = 1

0 20

0.0

0.5

1.0

t ! L(Wt)

L(Wt)

L01(Wt)

Figure 2: Loss spikes. Trajectories of Wt in the setting of
Figure 1 for two learning rates ⌘, ⌘ = 10 in green, ⌘ = 1
in red, and their traces in term of losses as a function of the
number of epochs, here t 2 [35].

↵-correlated. Two margins are at play:

mi = wii � wij = (ui � uj)
>Wei, {i, j} = {1, 2}.

The interacting system (12) becomes,

�mi = c⌘t

✓
pi

1 + exp(mi)
� ↵pj

1 + exp(mj)

◆
, (17)

where c = ku1 � u2k2 and we denote pi = p(i) for read-
ability. In the gradient dynamics, x = 1 pushes W in the
direction (u1 � u2) ⌦ e1, which, when ↵  0, is positively
correlated with the direction (u2 � u1) ⌦ e2 promoted by
x = 2. As can be seen in Equation (17), when ↵  0, both
margins increase during training, there is no competition
between the memories, and a single gradient step is enough
to reach perfect accuracy. To solve Equation (17), let us
introduce the orthogonal family

f1 = e1 + e2, f2 = e1 � e2,

and project the dynamics on those directions with

�i =
1

2
(u1 � u2)

>Wfi. (18)

The evolution of the �i is governed by

d�1

dct
=

(1 + ↵)p1

1 + exp (�2 + �1)
� (1 + ↵)p2

1 + exp (�2 � �1)

d�2

dct
=

(1 � ↵)p1

1 + exp (�2 + �1)
+

(1 � ↵)p2

1 + exp (�2 � �1)
, (19)

From the second differential equation, we see that �2 always
increases during the dynamics. The growth of �2 will slow
down the growth of �1. These together imply that W grows
logarithmically in one direction (f2, which turns out to be
the max-margin direction) and stays bounded in the orthog-
onal direction, which we prove in Appendix C.1 and is the
object of the following theorem.
Theorem 4 (Two particles interacting). Let N = 2 with
f⇤(x) = x. Assume without restriction that p1 � p2. When
Equation (16) holds, if W is initialized at zero, i.e. W0 = 0,
for gradient flow,

�2(t) = log(ctt + 1) + O

✓
log(c2t + 1)

c2t + 1

◆
,

�1(t) =
1

2
log
�
p1/p2

�
+ O(1/t),

5

�2 0 2
�2

0

2
N = 3, E = 0.27

�1.0 �0.5 0.0 0.5

0

1

N = 30, E = 0.22

�10 0 10

SGD trajectory

� = 0.1

0 500 1000

0.25

0.50

0.75

t � L(Wt)

L(Wt)/2

L01(Wt)

Figure 4: Forgetting. Similar plots as in Figures 1 and 2, yet in the limited capacity case d < N . In those situations, competition
between the memories can lead to sub-optimal minimizer of L, which we illustrate with SGD on the bottom plots. The sub-optimality
is reflected in the excess of risk E = L01(arg minW L(W)) � minW L01(W).

�10 0 10

Losses

�10 0 10

Sharpness

0 20

t ! kr2L(Wt)k⇤

�10 0 10

Losses

�10 0 10

Sharpness

0 20

t ! kr2L(Wt)k⇤

Figure 5: Sharpness profile. Gradient descent trajectories in the setting of Figures 2 and 4 with learning rates ⌘ = 10 (green) and
⌘ = 1 (red). We plot the level lines of the sharpness, i.e. the operator norm of r2L(W), as well as the trace of the trajectories in
terms of sharpness. The left plots are in the overparameterized regime, the right ones in the underparameterized one.

tories of Wt for two different learning rates, and the trace
of these trajectories in the training loss and accuracy plots
which are usually monitored by practitioners training neural
networks.

5. Numerical Analysis
This section complements previous derivations with numeri-
cal analysis. It discusses underparameterized regimes, large
versions of model (1), as well as more complicated ones.

5.1. Limited capacity

Let us start the numerical analysis with the case where
N > d. In those cases, one can not necessarily store all
associations in memory, and the model has to favor some of
them. It was shown in Cabannes et al. (2024) that the ideal
W can usually store about d memories similarly to Hopfield
network scalings. However, this ideal W is not always the
one minimizing the cross-entropy loss.

We plot our problem in the case M = d = 2 thanks to
the statistics �i of (21). Figure 4 reveals a striking fact:
the cross-entropy loss is not calibrated for our model, i.e.,
minimizing L(W) does not always minimize L01(W). In-
deed, even in the case N = 3, one can find examples where
competition between the memories leads the minimizer of
L to “forget” the most frequent association. When N be-
comes large in front of d, these cases become the norm. On
these landscapes, one can come up with examples of catas-
trophic forgetting, where the dynamics is first dominated by
frequent tokens that are well memorized until rare classes
come into play, perturbing the minimizer of L, ultimately

leading to convergence to a sub-optimal place. We illustrate
it on the right of Figure 4.

To further illustrate the differences between the dynamics
in over- and under-parameterized regimes, Figure 5 illus-
trates the sharpness, as defined by the operator norm of
the Hessian of L(W) along two descent trajectories. We
compute the Hessian in closed-form to show its level lines,
illustrating that the sharpness of the logistic loss is mainly
high for small values of the norm of W . We observe three
types of behaviors. In the separable case, e.g. when d � N ,
the transitory regime goes through relatively sharp regions,
before the stationary regime where the sharpness decreases
until reaching zero at infinity. In the non-separable case,
with is typical when d < N , either the learning rate is small
enough and we converge to the minimum of L presenting a
sharpness H⇤ greater than 2/⌘, or the learning rate is greater
than 2/H⇤ and we oscillate around the minimizer of L.

5.2. Larger dimension

When the dimension d is larger, although we can not plot
the weight-space, we can plot the evolution of certain statis-
tics, such as the margin, along descent trajectories. In Fig-
ure 6, we consider a setup with N = M = 5, f⇤(x) = x,
and p(x) / 1/x, in different dimensions (with random
embeddings). We show the evolution of the margins

mt(x) = huf⇤(x), Wexi � max
j 6=x

huj , Wexi. (22)

Perfect accuracy is achieved when mt(x) > 0 for all x.
We see the faster increase of margins for more frequent
tokens, faster convergence with large step-size ⌘, at the
cost of oscillations, and benefits of larger d. The latter are

7

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 24 / 25

Imbalanced data, finite capacity

L(W) = Ez∼p[`(f ∗(z),VWuz)], `: cross-entropy loss

Optimization improves capacity with imbalance: (Cabannes, Dohmatob, and B., 2024a)
One population gradient step is similar to q(z) ≈ p(z): inefficient for power law
Many steps lead to q(z) ≈ 1: more efficient (for d ≥ N)

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)
Orthogonal embeddings =⇒ logarithmic growth of margins for any step-size
Correlated embeddings + imbalance =⇒ oscillatory regimes
Large step-sizes help reach perfect accuracy faster despite oscillations (empirically)
Over-optimization can hurt in under-parameterized settings (empirically)

�10 0 10

↵ = �0.5, p1 = 0.75

�10 0 10

↵ = 0.95, p1 = 0.75

Figure 1: Level lines of L(W) for N = d = 2 as a function
of �i(W) := (u2 � u1)

>Wfi where (fi) is a basis of R2.
Token embeddings have correlation ↵ (16). We equally plot
the value of L01(W), dark blue meaning perfect accuracy,
and white meaning null accuracy.

Hence, the margins only increase during training, and the
larger the learning rate, the faster the evolution. Indeed,
one gradient step is enough to learn all the associations
x ! f⇤(x), i.e. fW1

(x) = f⇤(x) for any initialization.
Continuing the training will continue to increase the mar-
gins, ultimately ensuring the convergence of Wt to the max-
margin solution of the classification problem, as character-
ized by Theorem 3, making the final classifier robust to
embedding displacements (Cortes & Vapnik, 1995).

To conclude, when the embeddings are orthogonal, the mem-
ories do not interfere much, and one can learn all the associ-
ations with one giant gradient step. This case still presents
several behaviors of interest. First of all, Equation (15)
shows that the association x ! y is learned faster when x is
frequent, i.e. p(x) is large. Indeed, early in training, one can
envision W 'Px p(x)uy ⌦ ex. However, later in training,
the training dynamics will start saturating in the direction
uy ⌦ ex for the frequent tokens, allowing the less frequent
ones to catch up. The catch-up is facilitated by large learn-
ing rates. Ultimately, as shown by Equation (3), the final
W does not depend on the token frequencies (see Byrd &
Lipton, 2019 for related observations). In other terms, if the
model has enough capacity to learn all the data (in our case,
orthogonality implies d � N), then at the end of the train-
ing, it allocates equal capacity to every token even though
some tokens are much rarer. Nonetheless, curating data to
make them less redundant can make learning more efficient.

4.2. Particles Interfering

Let us now consider the case where N  d, but where
memories interfere between them. We first notice that in the
case when the input embeddings are orthogonal, correlated
output embeddings introduce limited competition, and this
case can largely be understood as a simplified version of the
interaction between input embeddings.

Let us analyze the simple but instructive case N = 2 of two
input tokens with f⇤(x) = x, and

↵ij = hei, eji = 1i=j + ↵1i 6=j , ↵ 2 [�1, 1]. (16)

In other terms, the input embeddings are normalized and are

0 5

�10

0

10
↵ = 0.95, p1 = 0.75

� = 10 � = 1

0 20

0.0

0.5

1.0

t ! L(Wt)

L(Wt)

L01(Wt)

Figure 2: Loss spikes. Trajectories of Wt in the setting of
Figure 1 for two learning rates ⌘, ⌘ = 10 in green, ⌘ = 1
in red, and their traces in term of losses as a function of the
number of epochs, here t 2 [35].

↵-correlated. Two margins are at play:

mi = wii � wij = (ui � uj)
>Wei, {i, j} = {1, 2}.

The interacting system (12) becomes,

�mi = c⌘t

✓
pi

1 + exp(mi)
� ↵pj

1 + exp(mj)

◆
, (17)

where c = ku1 � u2k2 and we denote pi = p(i) for read-
ability. In the gradient dynamics, x = 1 pushes W in the
direction (u1 � u2) ⌦ e1, which, when ↵  0, is positively
correlated with the direction (u2 � u1) ⌦ e2 promoted by
x = 2. As can be seen in Equation (17), when ↵  0, both
margins increase during training, there is no competition
between the memories, and a single gradient step is enough
to reach perfect accuracy. To solve Equation (17), let us
introduce the orthogonal family

f1 = e1 + e2, f2 = e1 � e2,

and project the dynamics on those directions with

�i =
1

2
(u1 � u2)

>Wfi. (18)

The evolution of the �i is governed by

d�1

dct
=

(1 + ↵)p1

1 + exp (�2 + �1)
� (1 + ↵)p2

1 + exp (�2 � �1)

d�2

dct
=

(1 � ↵)p1

1 + exp (�2 + �1)
+

(1 � ↵)p2

1 + exp (�2 � �1)
, (19)

From the second differential equation, we see that �2 always
increases during the dynamics. The growth of �2 will slow
down the growth of �1. These together imply that W grows
logarithmically in one direction (f2, which turns out to be
the max-margin direction) and stays bounded in the orthog-
onal direction, which we prove in Appendix C.1 and is the
object of the following theorem.
Theorem 4 (Two particles interacting). Let N = 2 with
f⇤(x) = x. Assume without restriction that p1 � p2. When
Equation (16) holds, if W is initialized at zero, i.e. W0 = 0,
for gradient flow,

�2(t) = log(ctt + 1) + O

✓
log(c2t + 1)

c2t + 1

◆
,

�1(t) =
1

2
log
�
p1/p2

�
+ O(1/t),

5

�2 0 2
�2

0

2
N = 3, E = 0.27

�1.0 �0.5 0.0 0.5

0

1

N = 30, E = 0.22

�10 0 10

SGD trajectory

� = 0.1

0 500 1000

0.25

0.50

0.75

t � L(Wt)

L(Wt)/2

L01(Wt)

Figure 4: Forgetting. Similar plots as in Figures 1 and 2, yet in the limited capacity case d < N . In those situations, competition
between the memories can lead to sub-optimal minimizer of L, which we illustrate with SGD on the bottom plots. The sub-optimality
is reflected in the excess of risk E = L01(arg minW L(W)) � minW L01(W).

�10 0 10

Losses

�10 0 10

Sharpness

0 20

t ! kr2L(Wt)k⇤

�10 0 10

Losses

�10 0 10

Sharpness

0 20

t ! kr2L(Wt)k⇤

Figure 5: Sharpness profile. Gradient descent trajectories in the setting of Figures 2 and 4 with learning rates ⌘ = 10 (green) and
⌘ = 1 (red). We plot the level lines of the sharpness, i.e. the operator norm of r2L(W), as well as the trace of the trajectories in
terms of sharpness. The left plots are in the overparameterized regime, the right ones in the underparameterized one.

tories of Wt for two different learning rates, and the trace
of these trajectories in the training loss and accuracy plots
which are usually monitored by practitioners training neural
networks.

5. Numerical Analysis
This section complements previous derivations with numeri-
cal analysis. It discusses underparameterized regimes, large
versions of model (1), as well as more complicated ones.

5.1. Limited capacity

Let us start the numerical analysis with the case where
N > d. In those cases, one can not necessarily store all
associations in memory, and the model has to favor some of
them. It was shown in Cabannes et al. (2024) that the ideal
W can usually store about d memories similarly to Hopfield
network scalings. However, this ideal W is not always the
one minimizing the cross-entropy loss.

We plot our problem in the case M = d = 2 thanks to
the statistics �i of (21). Figure 4 reveals a striking fact:
the cross-entropy loss is not calibrated for our model, i.e.,
minimizing L(W) does not always minimize L01(W). In-
deed, even in the case N = 3, one can find examples where
competition between the memories leads the minimizer of
L to “forget” the most frequent association. When N be-
comes large in front of d, these cases become the norm. On
these landscapes, one can come up with examples of catas-
trophic forgetting, where the dynamics is first dominated by
frequent tokens that are well memorized until rare classes
come into play, perturbing the minimizer of L, ultimately

leading to convergence to a sub-optimal place. We illustrate
it on the right of Figure 4.

To further illustrate the differences between the dynamics
in over- and under-parameterized regimes, Figure 5 illus-
trates the sharpness, as defined by the operator norm of
the Hessian of L(W) along two descent trajectories. We
compute the Hessian in closed-form to show its level lines,
illustrating that the sharpness of the logistic loss is mainly
high for small values of the norm of W . We observe three
types of behaviors. In the separable case, e.g. when d � N ,
the transitory regime goes through relatively sharp regions,
before the stationary regime where the sharpness decreases
until reaching zero at infinity. In the non-separable case,
with is typical when d < N , either the learning rate is small
enough and we converge to the minimum of L presenting a
sharpness H⇤ greater than 2/⌘, or the learning rate is greater
than 2/H⇤ and we oscillate around the minimizer of L.

5.2. Larger dimension

When the dimension d is larger, although we can not plot
the weight-space, we can plot the evolution of certain statis-
tics, such as the margin, along descent trajectories. In Fig-
ure 6, we consider a setup with N = M = 5, f⇤(x) = x,
and p(x) / 1/x, in different dimensions (with random
embeddings). We show the evolution of the margins

mt(x) = huf⇤(x), Wexi � max
j 6=x

huj , Wexi. (22)

Perfect accuracy is achieved when mt(x) > 0 for all x.
We see the faster increase of margins for more frequent
tokens, faster convergence with large step-size ⌘, at the
cost of oscillations, and benefits of larger d. The latter are

7

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 24 / 25

Discussion
Summary

Weights of intermediate layers as associative memories
Bigram model: simple model on discrete data for in-context reasoning
Learning mechanisms via few gradient steps
Statistical and optimization results

Future directions
More complex “reasoning” tasks
Learning embeddings
Finer grained analysis of optimization dynamics and scaling laws
Beyond text data: images and scientific data
Applications: interpretability, model editing, factual recall, efficient fine-tuning

Thank you!

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 25 / 25

Discussion
Summary

Weights of intermediate layers as associative memories
Bigram model: simple model on discrete data for in-context reasoning
Learning mechanisms via few gradient steps
Statistical and optimization results

Future directions
More complex “reasoning” tasks
Learning embeddings
Finer grained analysis of optimization dynamics and scaling laws
Beyond text data: images and scientific data
Applications: interpretability, model editing, factual recall, efficient fine-tuning

Thank you!

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 25 / 25

Discussion
Summary

Weights of intermediate layers as associative memories
Bigram model: simple model on discrete data for in-context reasoning
Learning mechanisms via few gradient steps
Statistical and optimization results

Future directions
More complex “reasoning” tasks
Learning embeddings
Finer grained analysis of optimization dynamics and scaling laws
Beyond text data: images and scientific data
Applications: interpretability, model editing, factual recall, efficient fine-tuning

Thank you!

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 25 / 25

References I

A. B., J. Bruna, C. Sanford, and M. J. Song. Learning single-index models with shallow neural
networks. Advances in Neural Information Processing Systems, 2022.

A. B., J. Bruna, and L. Pillaud-Vivien. On learning gaussian multi-index models with gradient flow.
arXiv preprint arXiv:2310.19793, 2023a.

A. B., V. Cabannes, D. Bouchacourt, H. Jegou, and L. Bottou. Birth of a transformer: A memory
viewpoint. In Advances in Neural Information Processing Systems (NeurIPS), 2023b.

J. Ba, M. A. Erdogdu, T. Suzuki, Z. Wang, D. Wu, and G. Yang. High-dimensional asymptotics of
feature learning: How one gradient step improves the representation. Advances in Neural Information
Processing Systems (NeurIPS), 2022.

F. Bach. Breaking the curse of dimensionality with convex neural networks. Journal of Machine
Learning Research (JMLR), 18(19):1–53, 2017.

G. Ben Arous, R. Gheissari, and A. Jagannath. Online stochastic gradient descent on non-convex losses
from high-dimensional inference. Journal of Machine Learning Research (JMLR), 2021.

V. Cabannes, E. Dohmatob, and A. B. Scaling laws for associative memories. In International
Conference on Learning Representations (ICLR), 2024a.

V. Cabannes, B. Simsek, and A. B. Learning associative memories with gradient descent. In
Proceedings of the International Conference on Machine Learning (ICML), 2024b.

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 26 / 25

References II

L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized models
using optimal transport. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

A. Damian, J. Lee, and M. Soltanolkotabi. Neural networks can learn representations with gradient
descent. In Conference on Learning Theory (COLT), 2022.

Y. Dandi, F. Krzakala, B. Loureiro, L. Pesce, and L. Stephan. Learning two-layer neural networks, one
(giant) step at a time. arXiv preprint arXiv:2305.18270, 2023.

N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen,
T. Conerly, N. DasSarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, A. Jones,
J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and
C. Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.

J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

M. Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.
T. Kohonen. Correlation matrix memories. IEEE Transactions on Computers, 1972.
S. Mei, T. Misiakiewicz, and A. Montanari. Mean-field theory of two-layers neural networks:

dimension-free bounds and kernel limit. In Conference on Learning Theory (COLT), 2019.

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 27 / 25

References III
E. Nichani, A. Damian, and J. D. Lee. Provable guarantees for nonlinear feature learning in three-layer

neural networks. arXiv preprint arXiv:2305.06986, 2023.
C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell, Y. Bai,

A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, S. Johnston, A. Jones,
J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and
C. Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.

C. Sanford, D. Hsu, and M. Telgarsky. Representational strengths and limitations of transformers. In
Advances in Neural Information Processing Systems (NeurIPS), 2023.

C. Sanford, D. Hsu, and M. Telgarsky. One-layer transformers fail to solve the induction heads task.
arXiv preprint arXiv:2408.14332, 2024.

G. Wahba. Spline models for observational data, volume 59. Siam, 1990.
K. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt. Interpretability in the wild: a

circuit for indirect object identification in gpt-2 small. arXiv preprint arXiv:2211.00593, 2022.
D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic associative memory.

Nature, 222(5197):960–962, 1969.
G. Yang and E. J. Hu. Tensor programs iv: Feature learning in infinite-width neural networks. In

Proceedings of the International Conference on Machine Learning (ICML), 2021.

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 28 / 25

Learning associations

Motivation:
DL theory often focuses on learning/approximation of continuous target functions

I e.g., smooth functions, sparse polynomials

In practice, discrete structure and memorization are often crucial
I language: words, syntactic rules, semantic concepts, facts
I vision: “visual words”, features, objects

Statistical learning setup:
Data distribution p(z , y) over pairs of discrete tokens (z , y) ∈ [N]× [M]
We want a predictor f̂ : [N]→ [M] with small 0-1 loss:

L01(f̂) = P(y 6= f̂ (z))

Typically f̂ (z) = arg maxy fy (z) with fy : [N]→ R for each y ∈ [M]

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 29 / 25

Learning associations

Motivation:
DL theory often focuses on learning/approximation of continuous target functions

I e.g., smooth functions, sparse polynomials
In practice, discrete structure and memorization are often crucial

I language: words, syntactic rules, semantic concepts, facts
I vision: “visual words”, features, objects

Statistical learning setup:
Data distribution p(z , y) over pairs of discrete tokens (z , y) ∈ [N]× [M]
We want a predictor f̂ : [N]→ [M] with small 0-1 loss:

L01(f̂) = P(y 6= f̂ (z))

Typically f̂ (z) = arg maxy fy (z) with fy : [N]→ R for each y ∈ [M]

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 29 / 25

Learning associations

Motivation:
DL theory often focuses on learning/approximation of continuous target functions

I e.g., smooth functions, sparse polynomials
In practice, discrete structure and memorization are often crucial

I language: words, syntactic rules, semantic concepts, facts
I vision: “visual words”, features, objects

Statistical learning setup:
Data distribution p(z , y) over pairs of discrete tokens (z , y) ∈ [N]× [M]

We want a predictor f̂ : [N]→ [M] with small 0-1 loss:

L01(f̂) = P(y 6= f̂ (z))

Typically f̂ (z) = arg maxy fy (z) with fy : [N]→ R for each y ∈ [M]

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 29 / 25

Learning associations

Motivation:
DL theory often focuses on learning/approximation of continuous target functions

I e.g., smooth functions, sparse polynomials
In practice, discrete structure and memorization are often crucial

I language: words, syntactic rules, semantic concepts, facts
I vision: “visual words”, features, objects

Statistical learning setup:
Data distribution p(z , y) over pairs of discrete tokens (z , y) ∈ [N]× [M]
We want a predictor f̂ : [N]→ [M] with small 0-1 loss:

L01(f̂) = P(y 6= f̂ (z))

Typically f̂ (z) = arg maxy fy (z) with fy : [N]→ R for each y ∈ [M]

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 29 / 25

Learning associations

Motivation:
DL theory often focuses on learning/approximation of continuous target functions

I e.g., smooth functions, sparse polynomials
In practice, discrete structure and memorization are often crucial

I language: words, syntactic rules, semantic concepts, facts
I vision: “visual words”, features, objects

Statistical learning setup:
Data distribution p(z , y) over pairs of discrete tokens (z , y) ∈ [N]× [M]
We want a predictor f̂ : [N]→ [M] with small 0-1 loss:

L01(f̂) = P(y 6= f̂ (z))

Typically f̂ (z) = arg maxy fy (z) with fy : [N]→ R for each y ∈ [M]

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 29 / 25

Matrices as associative memories

Consider sets of nearly orthonormal embeddings {ui}i∈I and {vj}j∈J :

‖ui‖ ≈ 1 and ui
>uj ≈ 0

‖vi‖ ≈ 1 and vi
>vj ≈ 0

Consider pairwise associations (i , j) ∈M with weights αij and define:

W =
∑

(i ,j)∈M
αijvjui

>

We then have vj
>Wui ≈ αij

Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 30 / 25

Matrices as associative memories

Consider sets of nearly orthonormal embeddings {ui}i∈I and {vj}j∈J :

‖ui‖ ≈ 1 and ui
>uj ≈ 0

‖vi‖ ≈ 1 and vi
>vj ≈ 0

Consider pairwise associations (i , j) ∈M with weights αij and define:

W =
∑

(i ,j)∈M
αijvjui

>

We then have vj
>Wui ≈ αij

Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 30 / 25

Matrices as associative memories

Consider sets of nearly orthonormal embeddings {ui}i∈I and {vj}j∈J :

‖ui‖ ≈ 1 and ui
>uj ≈ 0

‖vi‖ ≈ 1 and vi
>vj ≈ 0

Consider pairwise associations (i , j) ∈M with weights αij and define:

W =
∑

(i ,j)∈M
αijvjui

>

We then have vj
>Wui ≈ αij

Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 30 / 25

Matrices as associative memories

Consider sets of nearly orthonormal embeddings {ui}i∈I and {vj}j∈J :

‖ui‖ ≈ 1 and ui
>uj ≈ 0

‖vi‖ ≈ 1 and vi
>vj ≈ 0

Consider pairwise associations (i , j) ∈M with weights αij and define:

W =
∑

(i ,j)∈M
αijvjui

>

We then have vj
>Wui ≈ αij

Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 30 / 25

Learning associative memories with gradients
Simple differentiable model to learn such associative memories:

z ∈ [N]→ uz ∈ Rd →Wuz ∈ Rd → (vk
>Wuz)k ∈ RM

uz , vy : nearly-orthogonal input/output embeddings, assume fixed
Cross-entropy loss for logits ξ ∈ RM : `(y , ξ) = −ξy + log(

∑
k exp ξk)

Lemma (Gradients as memories)
Let p be a data distribution over (z , y) ∈ [N]× [M], and consider the loss

L(W) = E(z,y)∼p[`(y , ξW (z))], ξW (z)k = vk
>Wuz ,

with ` the cross-entropy loss and uz , vk input/output embeddings. Then,

∇L(W) =
M∑

k=1
Ez [(p̂W (y = k|z)− p(y = k|z))vkuz

>],

with p̂W (y = k|z) = exp(ξW (z)k)/
∑

j exp(ξW (z)j).

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 31 / 25

Learning associative memories with gradients
Simple differentiable model to learn such associative memories:

z ∈ [N]→ uz ∈ Rd →Wuz ∈ Rd → (vk
>Wuz)k ∈ RM

uz , vy : nearly-orthogonal input/output embeddings, assume fixed

Cross-entropy loss for logits ξ ∈ RM : `(y , ξ) = −ξy + log(
∑

k exp ξk)

Lemma (Gradients as memories)
Let p be a data distribution over (z , y) ∈ [N]× [M], and consider the loss

L(W) = E(z,y)∼p[`(y , ξW (z))], ξW (z)k = vk
>Wuz ,

with ` the cross-entropy loss and uz , vk input/output embeddings. Then,

∇L(W) =
M∑

k=1
Ez [(p̂W (y = k|z)− p(y = k|z))vkuz

>],

with p̂W (y = k|z) = exp(ξW (z)k)/
∑

j exp(ξW (z)j).

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 31 / 25

Learning associative memories with gradients
Simple differentiable model to learn such associative memories:

z ∈ [N]→ uz ∈ Rd →Wuz ∈ Rd → (vk
>Wuz)k ∈ RM

uz , vy : nearly-orthogonal input/output embeddings, assume fixed
Cross-entropy loss for logits ξ ∈ RM : `(y , ξ) = −ξy + log(

∑
k exp ξk)

Lemma (Gradients as memories)
Let p be a data distribution over (z , y) ∈ [N]× [M], and consider the loss

L(W) = E(z,y)∼p[`(y , ξW (z))], ξW (z)k = vk
>Wuz ,

with ` the cross-entropy loss and uz , vk input/output embeddings. Then,

∇L(W) =
M∑

k=1
Ez [(p̂W (y = k|z)− p(y = k|z))vkuz

>],

with p̂W (y = k|z) = exp(ξW (z)k)/
∑

j exp(ξW (z)j).

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 31 / 25

Learning associative memories with gradients
Simple differentiable model to learn such associative memories:

z ∈ [N]→ uz ∈ Rd →Wuz ∈ Rd → (vk
>Wuz)k ∈ RM

uz , vy : nearly-orthogonal input/output embeddings, assume fixed
Cross-entropy loss for logits ξ ∈ RM : `(y , ξ) = −ξy + log(

∑
k exp ξk)

Lemma (Gradients as memories)
Let p be a data distribution over (z , y) ∈ [N]× [M], and consider the loss

L(W) = E(z,y)∼p[`(y , ξW (z))], ξW (z)k = vk
>Wuz ,

with ` the cross-entropy loss and uz , vk input/output embeddings.

Then,

∇L(W) =
M∑

k=1
Ez [(p̂W (y = k|z)− p(y = k|z))vkuz

>],

with p̂W (y = k|z) = exp(ξW (z)k)/
∑

j exp(ξW (z)j).

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 31 / 25

Learning associative memories with gradients
Simple differentiable model to learn such associative memories:

z ∈ [N]→ uz ∈ Rd →Wuz ∈ Rd → (vk
>Wuz)k ∈ RM

uz , vy : nearly-orthogonal input/output embeddings, assume fixed
Cross-entropy loss for logits ξ ∈ RM : `(y , ξ) = −ξy + log(

∑
k exp ξk)

Lemma (Gradients as memories)
Let p be a data distribution over (z , y) ∈ [N]× [M], and consider the loss

L(W) = E(z,y)∼p[`(y , ξW (z))], ξW (z)k = vk
>Wuz ,

with ` the cross-entropy loss and uz , vk input/output embeddings. Then,

∇L(W) =
M∑

k=1
Ez [(p̂W (y = k|z)− p(y = k|z))vkuz

>],

with p̂W (y = k|z) = exp(ξW (z)k)/
∑

j exp(ξW (z)j).

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 31 / 25

Example: one gradient step

Data model: z ∼ Unif([N]), y = f∗(z) ∈ [N]

After one gradient step on the population loss from W0 = 0 with step η, we have

W1 = W0 − η
N∑

k=1
Ez [(p̂W (y = k|z)− p(y = k|z))vkuz

>]

= η
∑
z,k

p(z)(p(y = k|z)− p̂W (y = k|z))vkuz
>

= η

N
∑
z,k

(1{k = f ∗(z)} − 1
N)vkuz

>

Then, for any (z , k) we have

vk
>W1uz ≈

η

N 1{f∗(z) = k}+ O
(
η

N2

)
Corollary: f̂ (z) = arg maxk vk

>W1uz has near-perfect accuracy
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 32 / 25

Example: one gradient step

Data model: z ∼ Unif([N]), y = f∗(z) ∈ [N]
After one gradient step on the population loss from W0 = 0 with step η, we have

W1 = W0 − η
N∑

k=1
Ez [(p̂W (y = k|z)− p(y = k|z))vkuz

>]

= η
∑
z,k

p(z)(p(y = k|z)− p̂W (y = k|z))vkuz
>

= η

N
∑
z,k

(1{k = f ∗(z)} − 1
N)vkuz

>

Then, for any (z , k) we have

vk
>W1uz ≈

η

N 1{f∗(z) = k}+ O
(
η

N2

)
Corollary: f̂ (z) = arg maxk vk

>W1uz has near-perfect accuracy
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 32 / 25

Example: one gradient step

Data model: z ∼ Unif([N]), y = f∗(z) ∈ [N]
After one gradient step on the population loss from W0 = 0 with step η, we have

W1 = W0 − η
N∑

k=1
Ez [(p̂W (y = k|z)− p(y = k|z))vkuz

>]

= η
∑
z,k

p(z)(p(y = k|z)− p̂W (y = k|z))vkuz
>

= η

N
∑
z,k

(1{k = f ∗(z)} − 1
N)vkuz

>

Then, for any (z , k) we have

vk
>W1uz ≈

η

N 1{f∗(z) = k}+ O
(
η

N2

)

Corollary: f̂ (z) = arg maxk vk
>W1uz has near-perfect accuracy

Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 32 / 25

Example: one gradient step

Data model: z ∼ Unif([N]), y = f∗(z) ∈ [N]
After one gradient step on the population loss from W0 = 0 with step η, we have

W1 = W0 − η
N∑

k=1
Ez [(p̂W (y = k|z)− p(y = k|z))vkuz

>]

= η
∑
z,k

p(z)(p(y = k|z)− p̂W (y = k|z))vkuz
>

= η

N
∑
z,k

(1{k = f ∗(z)} − 1
N)vkuz

>

Then, for any (z , k) we have

vk
>W1uz ≈

η

N 1{f∗(z) = k}+ O
(
η

N2

)
Corollary: f̂ (z) = arg maxk vk

>W1uz has near-perfect accuracy

Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 32 / 25

Example: one gradient step

Data model: z ∼ Unif([N]), y = f∗(z) ∈ [N]
After one gradient step on the population loss from W0 = 0 with step η, we have

W1 = W0 − η
N∑

k=1
Ez [(p̂W (y = k|z)− p(y = k|z))vkuz

>]

= η
∑
z,k

p(z)(p(y = k|z)− p̂W (y = k|z))vkuz
>

= η

N
∑
z,k

(1{k = f ∗(z)} − 1
N)vkuz

>

Then, for any (z , k) we have

vk
>W1uz ≈

η

N 1{f∗(z) = k}+ O
(
η

N2

)
Corollary: f̂ (z) = arg maxk vk

>W1uz has near-perfect accuracy
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 32 / 25

Gradient associative memories with noisy inputs
In practice, inputs are often a collection of tokens / sum of embeddings

z = {z1, . . . , zs} ⊂ [N], x =
s∑

j=1
uzs ∈ Rd

I e.g., bag of words, output of attention operation, residual connections

Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)
Let p be a data distribution over (x , y) ∈ Rd × [N], and consider the loss

L(W) = E(x ,y)∼p[`(y , ξW (x))], ξW (x)k = vk
>Wx .

Denoting µk := E[x |y = k] and µ̂k := Ex [p̂W (k|x)
p(y=k) x], we have

∇WL(W) =
N∑

k=1
p(y = k)vk(µ̂k − µk)>.

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 33 / 25

Gradient associative memories with noisy inputs
In practice, inputs are often a collection of tokens / sum of embeddings

z = {z1, . . . , zs} ⊂ [N], x =
s∑

j=1
uzs ∈ Rd

I e.g., bag of words, output of attention operation, residual connections
Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)
Let p be a data distribution over (x , y) ∈ Rd × [N], and consider the loss

L(W) = E(x ,y)∼p[`(y , ξW (x))], ξW (x)k = vk
>Wx .

Denoting µk := E[x |y = k] and µ̂k := Ex [p̂W (k|x)
p(y=k) x], we have

∇WL(W) =
N∑

k=1
p(y = k)vk(µ̂k − µk)>.

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 33 / 25

Gradient associative memories with noisy inputs
In practice, inputs are often a collection of tokens / sum of embeddings

z = {z1, . . . , zs} ⊂ [N], x =
s∑

j=1
uzs ∈ Rd

I e.g., bag of words, output of attention operation, residual connections
Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)
Let p be a data distribution over (x , y) ∈ Rd × [N], and consider the loss

L(W) = E(x ,y)∼p[`(y , ξW (x))], ξW (x)k = vk
>Wx .

Denoting µk := E[x |y = k] and µ̂k := Ex [p̂W (k|x)
p(y=k) x], we have

∇WL(W) =
N∑

k=1
p(y = k)vk(µ̂k − µk)>.

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 33 / 25

Gradient associative memories with noisy inputs
In practice, inputs are often a collection of tokens / sum of embeddings

z = {z1, . . . , zs} ⊂ [N], x =
s∑

j=1
uzs ∈ Rd

I e.g., bag of words, output of attention operation, residual connections
Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)
Let p be a data distribution over (x , y) ∈ Rd × [N], and consider the loss

L(W) = E(x ,y)∼p[`(y , ξW (x))], ξW (x)k = vk
>Wx .

Denoting µk := E[x |y = k] and µ̂k := Ex [p̂W (k|x)
p(y=k) x], we have

∇WL(W) =
N∑

k=1
p(y = k)vk(µ̂k − µk)>.

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 33 / 25

Example: filter out exogenous noise
Data model: y ∼ Unif([N]), t ∼ Unif([T]), x = uy + nt ∈ Rd

I where {nt}T
t=1 are another collection of embeddings, e.g., positional embeddings

After one gradient step on the population loss from W0 = 0 with step η, we have

W1 = W0 − η
N∑

k=1
p(y = k)vk(µ̂k − µk)>

= η

N

N∑
k=1

vk(E[uy + nt |y = k]− E[uy + nt])>

= η

N

N∑
k=1

vkuk
> − η

N2

∑
k,j

vkuj
>

Then, for any k, y , t, x = uy + nt , we have

vk
>W1x ≈

η

N 1{k = y}+ O
(
η

N2

)
Corollary: f̂ (x) = arg maxk vk

>W1x has near-perfect accuracy

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 34 / 25

Example: filter out exogenous noise
Data model: y ∼ Unif([N]), t ∼ Unif([T]), x = uy + nt ∈ Rd

I where {nt}T
t=1 are another collection of embeddings, e.g., positional embeddings

After one gradient step on the population loss from W0 = 0 with step η, we have

W1 = W0 − η
N∑

k=1
p(y = k)vk(µ̂k − µk)>

= η

N

N∑
k=1

vk(E[uy + nt |y = k]− E[uy + nt])>

= η

N

N∑
k=1

vkuk
> − η

N2

∑
k,j

vkuj
>

Then, for any k, y , t, x = uy + nt , we have

vk
>W1x ≈

η

N 1{k = y}+ O
(
η

N2

)
Corollary: f̂ (x) = arg maxk vk

>W1x has near-perfect accuracy

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 34 / 25

Example: filter out exogenous noise
Data model: y ∼ Unif([N]), t ∼ Unif([T]), x = uy + nt ∈ Rd

I where {nt}T
t=1 are another collection of embeddings, e.g., positional embeddings

After one gradient step on the population loss from W0 = 0 with step η, we have

W1 = W0 − η
N∑

k=1
p(y = k)vk(µ̂k − µk)>

= η

N

N∑
k=1

vk(E[uy + nt |y = k]− E[uy + nt])>

= η

N

N∑
k=1

vkuk
> − η

N2

∑
k,j

vkuj
>

Then, for any k, y , t, x = uy + nt , we have

vk
>W1x ≈

η

N 1{k = y}+ O
(
η

N2

)

Corollary: f̂ (x) = arg maxk vk
>W1x has near-perfect accuracy

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 34 / 25

Example: filter out exogenous noise
Data model: y ∼ Unif([N]), t ∼ Unif([T]), x = uy + nt ∈ Rd

I where {nt}T
t=1 are another collection of embeddings, e.g., positional embeddings

After one gradient step on the population loss from W0 = 0 with step η, we have

W1 = W0 − η
N∑

k=1
p(y = k)vk(µ̂k − µk)>

= η

N

N∑
k=1

vk(E[uy + nt |y = k]− E[uy + nt])>

= η

N

N∑
k=1

vkuk
> − η

N2

∑
k,j

vkuj
>

Then, for any k, y , t, x = uy + nt , we have

vk
>W1x ≈

η

N 1{k = y}+ O
(
η

N2

)
Corollary: f̂ (x) = arg maxk vk

>W1x has near-perfect accuracy

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 34 / 25

Link with feature learning
Maximal updates:

First gradient update from standard initialization ([W0]ij ∼ N (0, 1/d)) take the form

W1 = W0 + ∆W ∈ Rd×d , ∆W :=
∑

j
αjvju>j , αj = Θd (1)

For any input embedding uj , we have, thanks to near-orthonormality

‖W0uj‖ = Θd (1) and ‖∆Wuj‖ = Θd (1)

Contribution of updates is of similar order to initialization (not true for NTK!)
Related to µP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Large gradient steps on shallow networks:
Useful for feature learning in single-index and multi-index models

y = f ∗(x) + noise, f ∗(x) = g∗(Wx), W ∈ Rr×d

Sufficient to break the curse of dimensionality when r � d
(Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 35 / 25

Link with feature learning
Maximal updates:

First gradient update from standard initialization ([W0]ij ∼ N (0, 1/d)) take the form

W1 = W0 + ∆W ∈ Rd×d , ∆W :=
∑

j
αjvju>j , αj = Θd (1)

For any input embedding uj , we have, thanks to near-orthonormality

‖W0uj‖ = Θd (1) and ‖∆Wuj‖ = Θd (1)

Contribution of updates is of similar order to initialization (not true for NTK!)
Related to µP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Large gradient steps on shallow networks:
Useful for feature learning in single-index and multi-index models

y = f ∗(x) + noise, f ∗(x) = g∗(Wx), W ∈ Rr×d

Sufficient to break the curse of dimensionality when r � d
(Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 35 / 25

Link with feature learning
Maximal updates:

First gradient update from standard initialization ([W0]ij ∼ N (0, 1/d)) take the form

W1 = W0 + ∆W ∈ Rd×d , ∆W :=
∑

j
αjvju>j , αj = Θd (1)

For any input embedding uj , we have, thanks to near-orthonormality

‖W0uj‖ = Θd (1) and ‖∆Wuj‖ = Θd (1)

Contribution of updates is of similar order to initialization (not true for NTK!)
Related to µP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Large gradient steps on shallow networks:
Useful for feature learning in single-index and multi-index models

y = f ∗(x) + noise, f ∗(x) = g∗(Wx), W ∈ Rr×d

Sufficient to break the curse of dimensionality when r � d
(Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 35 / 25

Link with feature learning
Maximal updates:

First gradient update from standard initialization ([W0]ij ∼ N (0, 1/d)) take the form

W1 = W0 + ∆W ∈ Rd×d , ∆W :=
∑

j
αjvju>j , αj = Θd (1)

For any input embedding uj , we have, thanks to near-orthonormality

‖W0uj‖ = Θd (1) and ‖∆Wuj‖ = Θd (1)

Contribution of updates is of similar order to initialization (not true for NTK!)
Related to µP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Large gradient steps on shallow networks:
Useful for feature learning in single-index and multi-index models

y = f ∗(x) + noise, f ∗(x) = g∗(Wx), W ∈ Rr×d

Sufficient to break the curse of dimensionality when r � d
(Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 35 / 25

Associative memories inside deep models

x x̄W

Consider W that connects two nodes x , x̄ in a feedforward computational graph

The loss gradient takes the form

∇WL = E[∇x̄` · x>]

where ∇x̄` is the backward vector (loss gradient w.r.t. x̄)
Often, this expectation may lead to associative memories as before
A similar form can arise in attention matrices (see later!)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 36 / 25

Associative memories inside deep models

x x̄W

Consider W that connects two nodes x , x̄ in a feedforward computational graph
The loss gradient takes the form

∇WL = E[∇x̄` · x>]

where ∇x̄` is the backward vector (loss gradient w.r.t. x̄)
Often, this expectation may lead to associative memories as before
A similar form can arise in attention matrices (see later!)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 36 / 25

Questions

Finite capacity? how much can we “store” with finite d?

Finite samples? how well can we learn with finite data?
Role of optimization algorithms? multiple gradient steps? Adam?

=⇒ study through scaling laws (a.k.a. generalization bounds/statistical rates)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 37 / 25

Questions

Finite capacity? how much can we “store” with finite d?
Finite samples? how well can we learn with finite data?

Role of optimization algorithms? multiple gradient steps? Adam?

=⇒ study through scaling laws (a.k.a. generalization bounds/statistical rates)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 37 / 25

Questions

Finite capacity? how much can we “store” with finite d?
Finite samples? how well can we learn with finite data?
Role of optimization algorithms? multiple gradient steps? Adam?

=⇒ study through scaling laws (a.k.a. generalization bounds/statistical rates)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 37 / 25

Questions

Finite capacity? how much can we “store” with finite d?
Finite samples? how well can we learn with finite data?
Role of optimization algorithms? multiple gradient steps? Adam?

=⇒ study through scaling laws (a.k.a. generalization bounds/statistical rates)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 37 / 25

Setup with heavy-tailed data

Setting
zi ∼ p(z), yi = f ∗(zi), n samples: Sn = {z1, . . . , zn}, 0/1 loss:

L(f̂n) = P(y 6= f̂n(z))

Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

p(z) ∝ z−α

Hutter (2021): with infinite memory, we have

L(f̂n) . n−
α−1

α

Q: What about finite capacity?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 38 / 25

Setup with heavy-tailed data

Setting
zi ∼ p(z), yi = f ∗(zi), n samples: Sn = {z1, . . . , zn}, 0/1 loss:

L(f̂n) = P(y 6= f̂n(z))
Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

p(z) ∝ z−α

Hutter (2021): with infinite memory, we have

L(f̂n) . n−
α−1

α

Q: What about finite capacity?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 38 / 25

Setup with heavy-tailed data

Setting
zi ∼ p(z), yi = f ∗(zi), n samples: Sn = {z1, . . . , zn}, 0/1 loss:

L(f̂n) = P(y 6= f̂n(z))
Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

p(z) ∝ z−α

Hutter (2021): with infinite memory, we have

L(f̂n) . n−
α−1

α

Q: What about finite capacity?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 38 / 25

Setup with heavy-tailed data

Setting
zi ∼ p(z), yi = f ∗(zi), n samples: Sn = {z1, . . . , zn}, 0/1 loss:

L(f̂n) = P(y 6= f̂n(z))
Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

p(z) ∝ z−α

Hutter (2021): with infinite memory, we have

L(f̂n) . n−
α−1

α

Q: What about finite capacity?

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 38 / 25

Scaling laws with finite capacity
Random embeddings uz , vy ∈ Rd with N (0, 1/d) entries
Estimator: f̂n,d (x) = arg maxy v>y Wn,duz , with

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Single population gradient step: q(z) ≈ p(z)

Theorem (Cabannes, Dohmatob, B., 2023, informal)
1 For q(z) =

∑
i 1{z = zi}: L(f̂n,d) . n−

α−1
α + d−

α−1
2α

2 For q(z) = 1{z ∈ Sn}, and d � N: L(f̂n,d) . n−
α−1

α + d−k for any k
3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) . n−

α−1
α + d−α+1

n−
α−1

α is the same as (Hutter, 2021)
q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 39 / 25

Scaling laws with finite capacity
Random embeddings uz , vy ∈ Rd with N (0, 1/d) entries
Estimator: f̂n,d (x) = arg maxy v>y Wn,duz , with

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Single population gradient step: q(z) ≈ p(z)

Theorem (Cabannes, Dohmatob, B., 2023, informal)
1 For q(z) =

∑
i 1{z = zi}: L(f̂n,d) . n−

α−1
α + d−

α−1
2α

2 For q(z) = 1{z ∈ Sn}, and d � N: L(f̂n,d) . n−
α−1

α + d−k for any k
3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) . n−

α−1
α + d−α+1

n−
α−1

α is the same as (Hutter, 2021)
q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 39 / 25

Scaling laws with finite capacity
Random embeddings uz , vy ∈ Rd with N (0, 1/d) entries
Estimator: f̂n,d (x) = arg maxy v>y Wn,duz , with

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Single population gradient step: q(z) ≈ p(z)

Theorem (Cabannes, Dohmatob, B., 2023, informal)
1 For q(z) =

∑
i 1{z = zi}: L(f̂n,d) . n−

α−1
α + d−

α−1
2α

2 For q(z) = 1{z ∈ Sn}, and d � N: L(f̂n,d) . n−
α−1

α + d−k for any k
3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) . n−

α−1
α + d−α+1

n−
α−1

α is the same as (Hutter, 2021)
q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 39 / 25

Scaling laws with finite capacity
Random embeddings uz , vy ∈ Rd with N (0, 1/d) entries
Estimator: f̂n,d (x) = arg maxy v>y Wn,duz , with

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Single population gradient step: q(z) ≈ p(z)

Theorem (Cabannes, Dohmatob, B., 2023, informal)
1 For q(z) =

∑
i 1{z = zi}: L(f̂n,d) . n−

α−1
α + d−

α−1
2α

2 For q(z) = 1{z ∈ Sn}, and d � N: L(f̂n,d) . n−
α−1

α + d−k for any k

3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) . n−
α−1

α + d−α+1

n−
α−1

α is the same as (Hutter, 2021)
q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 39 / 25

Scaling laws with finite capacity
Random embeddings uz , vy ∈ Rd with N (0, 1/d) entries
Estimator: f̂n,d (x) = arg maxy v>y Wn,duz , with

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Single population gradient step: q(z) ≈ p(z)

Theorem (Cabannes, Dohmatob, B., 2023, informal)
1 For q(z) =

∑
i 1{z = zi}: L(f̂n,d) . n−

α−1
α + d−

α−1
2α

2 For q(z) = 1{z ∈ Sn}, and d � N: L(f̂n,d) . n−
α−1

α + d−k for any k
3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) . n−

α−1
α + d−α+1

n−
α−1

α is the same as (Hutter, 2021)
q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 39 / 25

Scaling laws with finite capacity
Random embeddings uz , vy ∈ Rd with N (0, 1/d) entries
Estimator: f̂n,d (x) = arg maxy v>y Wn,duz , with

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Single population gradient step: q(z) ≈ p(z)

Theorem (Cabannes, Dohmatob, B., 2023, informal)
1 For q(z) =

∑
i 1{z = zi}: L(f̂n,d) . n−

α−1
α + d−

α−1
2α

2 For q(z) = 1{z ∈ Sn}, and d � N: L(f̂n,d) . n−
α−1

α + d−k for any k
3 For q(z) = 1{z seen at least s times in Sn}: L(f̂n,d) . n−

α−1
α + d−α+1

n−
α−1

α is the same as (Hutter, 2021)
q = 1 is best if we have enough capacity
Can store at most d memories (approximation error: d−α+1)

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 39 / 25

Scaling laws with optimization algorithms

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Different algorithms lead to different memory schemes q(z):

One step of SGD with large batch: q(z) ≈ p(z)
SGD with batch size one + large step-size, d � N: q(z) ≈ 1
For d ≤ N, smaller step-sizes can help later in training
Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

101 102 103

d

10−2

10−1

E
rr

or

SGD, |B|=64, T=10240

γ=0.1

γ=1.0

γ=10.0

γ=100.0

101 102 103

d

10−1

E
rr

or

SGD, T=1024

|B| = 16, γ = 1

|B| = 1024, γ = 10

101 102 103

d

10−1

E
rr

o
r

γ=1.0, |B|=1024, T=10240

SGD

Adam

SGD+LN

Adam+LN

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 40 / 25

Scaling laws with optimization algorithms

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Different algorithms lead to different memory schemes q(z):
One step of SGD with large batch: q(z) ≈ p(z)

SGD with batch size one + large step-size, d � N: q(z) ≈ 1
For d ≤ N, smaller step-sizes can help later in training
Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

101 102 103

d

10−2

10−1

E
rr

or

SGD, |B|=64, T=10240

γ=0.1

γ=1.0

γ=10.0

γ=100.0

101 102 103

d

10−1

E
rr

or

SGD, T=1024

|B| = 16, γ = 1

|B| = 1024, γ = 10

101 102 103

d

10−1

E
rr

o
r

γ=1.0, |B|=1024, T=10240

SGD

Adam

SGD+LN

Adam+LN

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 40 / 25

Scaling laws with optimization algorithms

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Different algorithms lead to different memory schemes q(z):
One step of SGD with large batch: q(z) ≈ p(z)
SGD with batch size one + large step-size, d � N: q(z) ≈ 1

For d ≤ N, smaller step-sizes can help later in training
Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

101 102 103

d

10−2

10−1

E
rr

or

SGD, |B|=64, T=10240

γ=0.1

γ=1.0

γ=10.0

γ=100.0

101 102 103

d

10−1

E
rr

or

SGD, T=1024

|B| = 16, γ = 1

|B| = 1024, γ = 10

101 102 103

d

10−1

E
rr

o
r

γ=1.0, |B|=1024, T=10240

SGD

Adam

SGD+LN

Adam+LN

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 40 / 25

Scaling laws with optimization algorithms

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Different algorithms lead to different memory schemes q(z):
One step of SGD with large batch: q(z) ≈ p(z)
SGD with batch size one + large step-size, d � N: q(z) ≈ 1
For d ≤ N, smaller step-sizes can help later in training

Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

101 102 103

d

10−2

10−1

E
rr

or

SGD, |B|=64, T=10240

γ=0.1

γ=1.0

γ=10.0

γ=100.0

101 102 103

d

10−1

E
rr

or

SGD, T=1024

|B| = 16, γ = 1

|B| = 1024, γ = 10

101 102 103

d

10−1

E
rr

o
r

γ=1.0, |B|=1024, T=10240

SGD

Adam

SGD+LN

Adam+LN

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 40 / 25

Scaling laws with optimization algorithms

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Different algorithms lead to different memory schemes q(z):
One step of SGD with large batch: q(z) ≈ p(z)
SGD with batch size one + large step-size, d � N: q(z) ≈ 1
For d ≤ N, smaller step-sizes can help later in training
Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

101 102 103

d

10−2

10−1

E
rr

or

SGD, |B|=64, T=10240

γ=0.1

γ=1.0

γ=10.0

γ=100.0

101 102 103

d

10−1

E
rr

or

SGD, T=1024

|B| = 16, γ = 1

|B| = 1024, γ = 10

101 102 103

d

10−1

E
rr

o
r

γ=1.0, |B|=1024, T=10240

SGD

Adam

SGD+LN

Adam+LN

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 40 / 25

Scaling laws with optimization algorithms

Wn,d =
N∑

z=1
q(z)vf ∗(z)u>z

Different algorithms lead to different memory schemes q(z):
One step of SGD with large batch: q(z) ≈ p(z)
SGD with batch size one + large step-size, d � N: q(z) ≈ 1
For d ≤ N, smaller step-sizes can help later in training
Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

101 102 103

d

10−2

10−1

E
rr

or

SGD, |B|=64, T=10240

γ=0.1

γ=1.0

γ=10.0

γ=100.0

101 102 103

d

10−1

E
rr

or
SGD, T=1024

|B| = 16, γ = 1

|B| = 1024, γ = 10

101 102 103

d

10−1

E
rr

or

γ=1.0, |B|=1024, T=10240

SGD

Adam

SGD+LN

Adam+LN

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 40 / 25

Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)
Nearest-neighbor lookup: set uz = vf ∗(z) and take f̂ (z) = arg maxy v>y uz

Attention: soft-max instead of hard-max to retrieve from context
MLP: f̂ (z) = arg maxy v>y

∑N
z ′=1 vf ∗(z ′)σ(u>z ′uz − b)

But: higher computational cost, more sensitive to noise, harder to learn

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 41 / 25

Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)

Nearest-neighbor lookup: set uz = vf ∗(z) and take f̂ (z) = arg maxy v>y uz

Attention: soft-max instead of hard-max to retrieve from context
MLP: f̂ (z) = arg maxy v>y

∑N
z ′=1 vf ∗(z ′)σ(u>z ′uz − b)

But: higher computational cost, more sensitive to noise, harder to learn

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 41 / 25

Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)
Nearest-neighbor lookup: set uz = vf ∗(z) and take f̂ (z) = arg maxy v>y uz

Attention: soft-max instead of hard-max to retrieve from context
MLP: f̂ (z) = arg maxy v>y

∑N
z ′=1 vf ∗(z ′)σ(u>z ′uz − b)

But: higher computational cost, more sensitive to noise, harder to learn

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 41 / 25

Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)
Nearest-neighbor lookup: set uz = vf ∗(z) and take f̂ (z) = arg maxy v>y uz

Attention: soft-max instead of hard-max to retrieve from context

MLP: f̂ (z) = arg maxy v>y
∑N

z ′=1 vf ∗(z ′)σ(u>z ′uz − b)

But: higher computational cost, more sensitive to noise, harder to learn

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 41 / 25

Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)
Nearest-neighbor lookup: set uz = vf ∗(z) and take f̂ (z) = arg maxy v>y uz

Attention: soft-max instead of hard-max to retrieve from context
MLP: f̂ (z) = arg maxy v>y

∑N
z ′=1 vf ∗(z ′)σ(u>z ′uz − b)

But: higher computational cost, more sensitive to noise, harder to learn

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 41 / 25

Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)
Nearest-neighbor lookup: set uz = vf ∗(z) and take f̂ (z) = arg maxy v>y uz

Attention: soft-max instead of hard-max to retrieve from context
MLP: f̂ (z) = arg maxy v>y

∑N
z ′=1 vf ∗(z ′)σ(u>z ′uz − b)

But: higher computational cost, more sensitive to noise, harder to learn

Alberto Bietti Transformers and Associative Memories CMO-BIRS 2024 41 / 25

	Introduction, associative memories
	Application to Transformers *bietti2023birth
	Scaling laws for associative memories *cabannes2024scaling
	Learning with gradient steps bietti2023birth,cabannes2024scaling,cabannes2024learning
	References

