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Motivation: large-scale machine learning

Minimizing large finite sums of functions
Given data points x;, i = 1,..., n, learn some model parameters 6 in R”
by minimizing

min = ZE(X,,Q) + ¥(6),

0cRP n

where ¢ measures the data fit, and % is a regularization function.

Minimizing expectations
If the amount of data is infinite, we may want to directly minimize the

expected cost
Gnglllgj Ex [g(xv 9)] + ¢(9),

leading to a stochastic optimization problem.
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Methodology

We will consider optimization methods that iteratively build a model of
the objective before updating the variable:

0; € i 0),
t argargﬁg,gt()

where g; is easy to minimize and exploits the objective structure: large
finite sum, expectation, (strong) convexity, composite?
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Methodology

We will consider optimization methods that iteratively build a model of
the objective before updating the variable:

0; € i 0),
t argargﬁg,gt()

where g; is easy to minimize and exploits the objective structure: large
finite sum, expectation, (strong) convexity, composite?

There is a large body of related work

o Kelley’s and bundle methods;
o incremental and online EM algorithms;
o incremental and stochastic proximal gradient methods;

o variance-reduction techniques for minimizing finite sums.

[Neal and Hinton, 1998; Duchi and Singer, 2009; Bertsekas, 2011; Schmidt et al., 2017;
Defazio et al., 2014a; Shalev-Shwartz and Zhang, 2013; Lan and Zhou, 2015]...
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Setting: MM with first-order surrogate functions

©

gt(0:) > f(0;) for 0 in arg mingeco gt(0);

the approximation error h; := g; — f is differentiable, and Vh; is
L-Lipschitz. Moreover, h:(0:—1) = 0 and Vh¢(0;—1) = 0;

we may also need g; to be strongly convex;

©

©

©

example: quadratic upper bound from smoothness.
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Theoretical guarantees of the basic MM algorithm

When using first-order surrogates,
o for convex problems: O(L/e¢) iterations for f(0;) — f* < e.
o for p-strongly convex ones: O((L/u)log(1/€)).

o for non-convex problems: f(6;) monotonically decreases and

fim inf inf 1 (0e:0 = 0c) >0,
t—+o00c0 |0 — 0|2

which we call asymptotic stationary point condition.
Directional derivative:

VA, k) = lim 0+ ER) = FO)

e—07t 5

o when © = RP and f is smooth, (1) is equivalent to Vf(6;) — 0.
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QOutline

@ Stochastic MM algorithm

2) Incremental MM algorithm

3) Faster algorithm for smooth and strongly convex functions

4) Hybrid incremental /stochastic algorithm



Stochastic majorization minimization [Mairal, 2013]
Assume that f is an expectation:

f(0) = Ex[¢(0,x)].

Recipe

©

Draw a single function f; : 0 — £(0,x;) at iteration t;

Choose a first-order surrogate function g; for f; at 6;_1;
Update the model g; = (1—w;)gi—1 + we8¢ with appropriate wy;
Update 0; by minimizing g;.

© © ©o

Related work:
o online EM

o online matrix factorization

[Neal and Hinton, 1998; Cappé and Moulines, 2009; Mairal et al., 2010; Razaviyayn
et al., 2016]...
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Stochastic majorization minimization [Mairal, 2013]

Theoretical Guarantees - Non-Convex Problems
under a set of reasonable assumptions,

o f(6:) almost surely converges;
o the function g; asymptotically behaves as a first-order surrogate;

o asymptotic stationary point conditions hold almost surely.

Theoretical Guarantees - Convex Problems

under a few assumptions, for proximal gradient surrogates, we obtain
similar expected rates as SGD with averaging: O(1/t) for strongly
convex problems, O(log(t)/+/t) for convex ones.

The most interesting feature of this principle is probably the ability
to deal with some non-smooth non-convex problems.
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1) Stochastic MM algorithm

Q Incremental MM algorithm

3) Faster algorithm for smooth and strongly convex functions

4) Hybrid incremental /stochastic algorithm



MISO (MM) for non-convex optimization [Mairal, 2015]

Assume that f is a finite sum:

£(6) = Z Fi(6

Recipe

o Draw at random a single index /; at iteration t;
o Compute a first-order surrogate g{f of fit at 0;_1;

o Incrementally update the approximate surrogate
1< 1, . ;
==Y gl=g1+ (g — g 1)
n— n

o Update 6; by minimizing g;.
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MISO (MM) for non-convex optimization [Mairal, 2015]

Theoretical Guarantees - Non-Convex Problems
same as the basic MM algorithm with probability one.

Theoretical Guarantees - Convex Problems
when using proximal gradient surrogates,

o for convex problems, O(nL/e).

o for p-strongly convex problems, O((nL/u)log(1/€)).
The computational complexity is the same as ISTA.
Related work for non-convex problems:

o incremental EM

o more specific incremental MM algorithms.

[Neal and Hinton, 1998; Ahn et al., 2006].
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(3 Faster algorithm for smooth and strongly convex functions
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MISO-1 [Mairal, 2015; Lin et al., 2015]

p-strongly convex, L-smooth functions ', objective:

1<K
F(0) = > F1(0) + (0,
i=1
Strong convexity provides simple quadratic surrogate lower bounds:

gl 0 F1(0r2) + VF(0e1) (60— 0-) + 516 — Ba])3 + 0(6). (+)

Alberto Bietti MISO May 24, 2017 13 /25



MISO-1 [Mairal, 2015; Lin et al., 2015]

p-strongly convex, L-smooth functions ', objective:

1<K
==Y () +
n“
i=1
Strong convexity provides simple quadratic surrogate lower bounds:

gl 0 F1(0r2) + VF(0e1) (60— 0-) + 516 — Ba])3 + 0(6). (+)

Recipe

o Draw at random a single index /; at iteration t;

o Update gff = (1 — a)g;* ; + a(*), with @ = min (1, 2(57%)
o Incrementally update the full surrogate
1 It it
gt th = g1+ (& — &)

i=1
o Update 6; by minimizing g;.

Alberto Bietti MISO May 24, 2017 13 /25



MISO-1 [Mairal, 2015; Lin et al., 2015]

Convergence of MISO-u
When the functions f; are u-strongly convex, L-smooth:

E[f(0:)] — " =< 1(1 — 7)1 (£(6o) — g0(6o)) with 7 > min {ZFL 21n}.

\‘

Furthermore, we also have fast convergence of the certificate

—

E[f(0:) — ge(0:)] < =(1 = 7)" (f* — go(60)) -

T
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MISO-1 [Mairal, 2015; Lin et al., 2015]

Convergence of MISO-u
When the functions f; are u-strongly convex, L-smooth:

E[F(00)] — £ < 2(1 — 1) (F(0) — go(0)) with = > min {fL 21n}.

\‘

Furthermore, we also have fast convergence of the certificate

—

E[f(0:) — ge(0:)] < =(1 = 7)" (f* — go(60)) -

Complexity: O((n+ L/s)log(1/€)). (Like SAG/SAGA/SVRG/...)

T

Note: similar to variants of SDCA.

[Shalev-Shwartz and Zhang, 2013; Shalev-Shwartz, 2016; Defazio et al., 2014b]
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(@ Hybrid incremental /stochastic algorithm
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Hybrid stochastic/incremental optimization: motivation

Hybrid setting: finite sum + random perturbations p
1 g Zi
f(0) =~ S OFO)+(0)  with £(8) :=E,[f'(6, p)]
i=1

Applications in machine learning

o improve generalization

o increase robustness

©

augment datasets using prior knowledge

stable feature selection

()

()

privacy ?
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Hybrid stochastic/incremental optimization: examples

o Image data augmentation: add random transformations of each
image in the training set (crop, scale, rotate, brightness, contrast,

etc.)
o Dropout: set coordinates of feature vectors to 0 with probability 9.

Figure: Data augmentation on MNIST digit (left), Dropout on text (right).

The colorful Norwegian city of
The colorful of gateway to fjords.
Hanseatic Wharf will sense the cul-
" wmmmpp- ture — take some to snap photos the
ne to snap photos

. ) . commercial buildings, which look
anseatic commercial build- scenery a
ings, which look like scenery from a

movie set.

Alberto Bietti MISO May 24, 2017 17 / 25



Can we do better than SGD?

(6) = S B [0, )] + 4(0)
i=1

o Proximal SGD: O(02,,/€) complexity with
Tror 1= Vari,, Vii(x, p) = Ei [ VF(0%, p) — VF(07)|I?]

o Can we do better? if perturbation variance is “small”
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Can we do better than SGD?

= LY B IF (0, )] + 0(6)
i=1

o Proximal SGD: O(02,,/€) complexity with
Tror 1= Vari,, Vii(x, p) = Ei [ VF(0%, p) — VF(07)|I?]

o Can we do better? if perturbation variance is “small”
o Variance decomposition: o2, = 0,% + E;[|VF(6*) — VF(6%)|?],

= E; Var, V(x, p) ZE IVF(6%, p) = VFI(07)]7].
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Can we do better than SGD?

= LY B IF (0, )] + 0(6)
i=1

o Proximal SGD: O(02,,/€) complexity with
0o 1= Vari, VEi(x, p) = Ei [IVF(6%, p) = VF(67)]]
o Can we do better? if perturbation variance is “small”

o Variance decomposition: o2, = 0,% + E;[|VF(6*) — VF(6%)|?],

= E; Var, V(x, p) ZE IVF(6%, p) = VFI(07)]7].

o Stochastic MISO [Bietti and Mairal, 2017]: remove dependency on
variance over i with variance reduction. Complexity O(c,2/pu€).

Alberto Bietti MISO May 24, 2017 18 / 25



Examples of perturbation variance o

2
p

Application case

Estimated ratio 02, /0

2
p

Additive Gaussian noise N (0, a?/) ~ 1+1/a?
Dropout with probability § ~ 1/
Feature rescaling by s in (1 —w,1+w) | =~ 3/w?
ResNet-50, color perturbation 21.9
ResNet-50, rescaling + crop 13.6
Unsupervised CNN, rescaling + crop 9.6
Scattering, gamma correction 9.8
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Stochastic MISO [Bietti and Mairal, 2017]

° ?i(.,p) are p-strongly convex, L-smooth

o Similar lower bound surrogates to MISO, but approximate
Fi(01,p0) + V(01,00 (0— 01) + 5110 = 0113+ 0(0). ()

Recipe
o Draw at random a single index /; at iteration t;
o Update gft = (1 — a)gl* | + as(%);
o Incrementally update the full surrogate

1& 1 i
g==> & =81+ (& — &' 1)
n <= n
o Update 6; by minimizing g;.
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Stochastic MISO: convergence analysis (¢ = 0)

o Quadratic lower bounds gf(6) = cf + 4|0 — z{||°
o Define the Lyapunov function (with z/ := §* — %Vf"(e*))

1 o <& : :
Co =510 07112+ %5 S ll2f — 21
i=1
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Stochastic MISO: convergence analysis (¢ = 0)

o Quadratic lower bounds gf(6) = cf + 4|0 — z{||°
o Define the Lyapunov function (with z/ := §* — %Vf"(e*))

*H9 _9*”24_72”21'_ i
i=1

o If (at)r decreasing with a; < min {%, ﬁ} then

o

7

“GI\)

N

E[C] < (1—) E[Cr1] + 2 ( - )2
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Stochastic MISO: convergence analysis (¢ = 0)

o Quadratic lower bounds gf(6) = cf + 4|0 — z{||°
o Define the Lyapunov function (with z/ := §* — %Vf"(e*))

*H9 _9*”24_72”21'_ i
i=1

o If (at)r decreasing with a; < min {%, ﬁ} then

N

E[C] < (1-) E[C_y] +2 ( : )2‘73.

7

Note:
o Similar recursion for SGD with o2, instead of ag;
o Same recursion for composite case, with different C;.
o See also [Shalev-Shwartz, 2016]
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Stochastic MISO: complexity

Two phases
o Constant step-size & down to noise level €
Then decay as ay = 2n/(y + t) with a1 = &
[Bottou et al., 2016] for SGD
Iterate averaging: from O(Lo*,%/,uze) to O(ag/ue)

© 0 ©
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Stochastic MISO: complexity

Two phases

o Constant step-size & down to noise level €

[Bottou et al., 2016] for SGD

© 0 ©

Complexity results

Then decay as a; = 2n/(y + t) with a1 = &

Iterate averaging: from O(Lo*,%/,uze) to O(ag/ue)

Method | Asymptotic error Iteration complexity
L 1 U‘c20t - Ut20t
SGD 0 O|l—-log= + =) with e=0|—=
poE e [
0,2) L 1 .
N-SAGA =0 — O([n+—)log—] with e>¢g
1 [t €
L 1 2 2
S-MISO 0 0 <n+) log= + 2| with =022
[t € pe [

[Bottou et al., 2016; Hofmann et al., 2015]
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S-MISO experiments: dropout

Dropout rate § controls the variance of the perturbations.

gene dropout, § = 0.30

ene dropout, § = 0.10
10° — 10° gene cropott. o= .20
— S-MISO 7—0.1
10»1 — S-MISO 5=1.0 [] 10‘1
= SGD7=0.1 2
20 — SGD =10 10
& 10 — N-SAGAn=0.1[] ¥ 3
“‘_ 10_3 N-SAGA n=1.0 “-_ 10
E N 10-4
10} 5 5
10
10»5 -6

L L L L L L L 1 L L L L L L L
0 50 100 150 200 250 300 350 400 0 0 50 100 150 200 250 300 350 400
epochs epochs
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S-MISO experiments: image data augmentation

Random image crops and rescalings, CNN features. Different conditioning,
controlled by p.

STL-10 ckn, p=10"3 STL-10 ckn, p=10"*

10° 10°
— S-MISO -0.1
1 — S-MISO =10
10 — SGDn::!.l E 10!
- —— SGDn=1.0
* 107 — N-SAG,AH:O 1l & 2
\ 3 . 10
Y 10' 4 %
104 1 1073
10-5 ! ! ! ! 10-4 ! ! ! !
0 100 200 300 400 500 0 100 200 300 400 500
epochs epochs
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Conclusion

o a large class of majorization-minimization algorithms for
non-convex, possibly non-smooth, optimization;

o fast algorithms for minimizing large sums of convex functions
(using lower bounds).

o a hybrid algorithm that interpolates between stochastic and
incremental settings and accelerates the hybrid setting
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Conclusion

o a large class of majorization-minimization algorithms for
non-convex, possibly non-smooth, optimization;

o fast algorithms for minimizing large sums of convex functions
(using lower bounds).

o a hybrid algorithm that interpolates between stochastic and
incremental settings and accelerates the hybrid setting

Related publications

@ J. Mairal. Optimization with First-Order Surrogate Functions. ICML, 2013.

O J. Mairal. Stochastic Majorization-Minimization Algorithms for Large-Scale
Optimization. NIPS, 2013.

@ J. Mairal. Incremental Majorization-Minimization Optimization with Application to
Large-Scale Machine Learning. SIAM Journal on Optimization, 2015;

@ H. Lin, J. Mairal, and Z. Harchaoui. A Universal Catalyst for First-Order
Optimization. NIPS, 2015;

A. Bietti, J. Mairal. Stochastic Optimization with Variance Reduction for Infinite
Datasets with Finite-Sum Structure. arXiv 1610.00970, 2017.

()
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Stochastic MISO: convergence analysis
Define the Lyapunov function (with z} := x* — in,-(x*))

1 (673 n
Ce = Sl — X2+ S22 12f 2P
i=1
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Stochastic MISO: convergence analysis
Define the Lyapunov function (with z := x* — fo( “)

1 ap &
Ce= 5 llxe — X1 + %5 S Iz — 27

Theorem (Recursion on C;, smooth case)

If (at)e>1 are positive, non-increasing step-sizes with

a <m|n{1 n}
! 2'2(2k— 1)

with k = L/u, then C; obeys the recursion

E[C,] < (1—) E[C;_ 1]+2( )222
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Stochastic MISO: convergence analysis
Define the Lyapunov function (with z} := x* — in,-(x*))

1 (673 n
Ce = Sl — X2+ S22 12f 2P
i=1

Theorem (Recursion on C;, smooth case)

If (at)e>1 are positive, non-increasing step-sizes with

(6 mins -, ———~<
t= 2202k — 1)/’

with k = L/u, then C; obeys the recursion

2

E[C] < (1 . O,‘:) E[Ce_1] + 2 (‘1‘:)2 %

Note: Similar recursion for SGD with o2, instead of .
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Stochastic MISO: convergence with decreasing step-sizes

Similar to SGD [Bottou et al., 2016].

Theorem (Convergence of Lyapunov function)

Let the sequence of step-sizes (ct)¢>1 be defined by

2n 1

v+t

1
ar=—— fory>0s.t a1<min{ n}.

2 2(2k — 1)
Fort >0,
v
ElGl < ——
G < yHt+1
where

802
v 1= max {/ﬂ’(7+ 1)C0} .
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Stochastic MISO: convergence with decreasing step-sizes

Similar to SGD [Bottou et al., 2016].

Theorem (Convergence of Lyapunov function)

Let the sequence of step-sizes (ct)¢>1 be defined by

2n fory >0 s.t <m'n{1 n }
oy = —— L. & | =0 U .
Tyt 7= L= 27226 — 1)
Fort >0,
12
ElGl < ——
[t]_’7+t+1’
where

802
v 1= max {/ﬁ,('y+ 1)C0} .

Q: How can we get rid of the dependence on Cy?
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Practical step-size strategy

o Following Bottou et al. [2016], we keep the step-size constant for a
few epochs in order to quickly “forget” the initial condition Cy
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Practical step-size strategy

o Following Bottou et al. [2016], we keep the step-size constant for a
few epochs in order to quickly “forget” the initial condition Cy

o Using a constant step-size &, we can converge linearly near a
= qo2 [+ .
constant error C = 2,?;2 (in practice: a few epochs)
o We then start decreasing step-sizes with ~ large enough s.t.
a1 =2n/(y+ 1) = &, no more (p in the convergence rate!
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Practical step-size strategy

o Following Bottou et al. [2016], we keep the step-size constant for a
few epochs in order to quickly “forget” the initial condition Cy

o Using a constant step-size &, we can converge linearly near a
= qo2 [+ .
constant error C = 2,?;2 (in practice: a few epochs)
o We then start decreasing step-sizes with ~ large enough s.t.
a1 =2n/(y+ 1) = &, no more (p in the convergence rate!

o Overall, complexity for reaching E[||x; — x*||?] < e

0 ((n+ L/ 1) log CO) +0 ("2> |

€ e

o For E[f(x;) — f(x*)] < ¢, the second term becomes O(La?/u?€) via
smoothness. Iterate averaging brings this down to O(c?/ pe).
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Acceleration by iterate averaging

o For function values, averaging helps bring the complexity term
O(Lo?/u?€) down to O(c?/ e)

o Similar technique to Lacoste-Julien et al. [2012], but allows small
initial step-sizes
Theorem (Convergence under iterate averaging)

Let the step-size sequence (at)s>1 be defined by

2n

= fory>1 st <min{1 n}
IR Gl
We have
_ . 2 - 1)G 1602
Elf(xr) - f(x)] < 20 DG

TCy+T-1) wply+T-1)

where X1 1= ﬁ ZtT:_ol(’Y + t)xe.
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Stochastic MISO (composite, non-uniform sampling)

Input: step-sizes (a)¢>1, sampling distribution g;
fort=1,...do
Sample an index iy ~ g, a perturbation p; ~ J, and update:

¢ {(1—:.f,)zftl+ as(x 71—*Vf:t(xt 1,pt)), ifi=1i
Z e ]

i t—1
z; 7,

otherwise

1

Zz =Z 1+ = (z —z )
Xy = prOXh/H(Zt).

end for
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Stochastic MISO (composite, non-uniform sampling)

Input: step-sizes (a)¢>1, sampling distribution g;
fort=1,...do

Sample an index iy ~ g, a perturbation p; ~ J, and update:

Z-t _ (1 - %)zitil + ;;1( -1- *Vﬁt(Xt 1710t)) if i = It
’ ,-t_l, otherwise

1
Et:sz =Z 1+ = (z —z )

Xy = prOXh/H(Zt).

end for

Note: Similar to RDA for n =1 when a; = 1/t.
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General S-MISO: analysis

o Lyapunov function

noe - 1 t *12
7_”2/ -z

j=1 1

Cﬁ = F(X*) — Dt(Xt) + ?

o Bound on the iterates
L E[lx — x*|"] < E[F(x*) = Di(x)].

o Recursion

2
E[CY] < (1 . O“) E[C ] +2 (O‘f>2 %a
= n t—1 n ,ua

2
. 2 _ 1 g;
with og = £ i
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