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Motivation: large-scale machine learning

Minimizing large finite sums of functions
Given data points x

i

, i = 1, . . . , n, learn some model parameters ◊ in Rp

by minimizing

min
◊œRp

1
n

nÿ

i=1
¸(x

i

, ◊) + Â(◊),

where ¸ measures the data fit, and Â is a regularization function.

Minimizing expectations
If the amount of data is infinite, we may want to directly minimize the
expected cost

min
◊œRp

Ex[¸(x, ◊)] + Â(◊),

leading to a stochastic optimization problem.
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Methodology
We will consider optimization methods that iteratively build a model of
the objective before updating the variable:

◊
t

œ arg min
◊œRp

g
t

(◊),

where g
t

is easy to minimize and exploits the objective structure: large
finite sum, expectation, (strong) convexity, composite?

There is a large body of related work
Kelley’s and bundle methods;
incremental and online EM algorithms;
incremental and stochastic proximal gradient methods;
variance-reduction techniques for minimizing finite sums.

[Neal and Hinton, 1998; Duchi and Singer, 2009; Bertsekas, 2011; Schmidt et al., 2017;
Defazio et al., 2014a; Shalev-Shwartz and Zhang, 2013; Lan and Zhou, 2015]...
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Setting: MM with first-order surrogate functionsSetting: first-order surrogate functions

ht(�)
f (�)gt(�)

�t�1

�t

gt(�t) � f (�t) for �t in arg min��� gt(�);

the approximation error ht
�
= gt � f is di�erentiable, and �ht is

L-Lipschitz. Moreover, ht(�t�1) = 0 and �ht(�t�1) = 0;

we may also need gt to be strongly convex.
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g
t

(◊
t

) Ø f (◊
t

) for ◊
t

in arg min◊œ� g
t

(◊);
the approximation error h

t

:= g
t

≠ f is di�erentiable, and Òh
t

is
L-Lipschitz. Moreover, h

t

(◊
t≠1) = 0 and Òh

t

(◊
t≠1) = 0;

we may also need g
t

to be strongly convex;
example: quadratic upper bound from smoothness.
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Theoretical guarantees of the basic MM algorithm
When using first-order surrogates,

for convex problems: O(L/‘) iterations for f (◊
t

) ≠ f ı Æ ‘.
for µ-strongly convex ones: O((L/µ) log(1/‘)).
for non-convex problems: f (◊

t

) monotonically decreases and

lim inf
tæ+Œ

inf
◊œ�

Òf (◊
t

, ◊ ≠ ◊
t

)
Î◊ ≠ ◊

t

Î2
Ø 0, (1)

which we call asymptotic stationary point condition.
Directional derivative:

Òf (◊, Ÿ) = lim
Áæ0+

f (◊ + ÁŸ) ≠ f (◊)
Á

.

when � = Rp and f is smooth, (1) is equivalent to Òf (◊
t

) æ 0.

Alberto Bietti MISO May 24, 2017 5 / 25



Outline

1 Stochastic MM algorithm

2 Incremental MM algorithm

3 Faster algorithm for smooth and strongly convex functions

4 Hybrid incremental/stochastic algorithm

Alberto Bietti MISO May 24, 2017 6 / 25



Stochastic majorization minimization [Mairal, 2013]
Assume that f is an expectation:

f (◊) = Ex[¸(◊, x)].

Recipe
Draw a single function f

t

: ◊ ‘æ ¸(◊, x
t

) at iteration t;
Choose a first-order surrogate function g̃

t

for f
t

at ◊
t≠1;

Update the model g
t

= (1≠w
t

)g
t≠1 + w

t

g̃
t

with appropriate w
t

;
Update ◊

t

by minimizing g
t

.
Related work:

online EM
online matrix factorization

[Neal and Hinton, 1998; Cappé and Moulines, 2009; Mairal et al., 2010; Razaviyayn
et al., 2016]...
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Stochastic majorization minimization [Mairal, 2013]

Theoretical Guarantees - Non-Convex Problems
under a set of reasonable assumptions,

f (◊
t

) almost surely converges;
the function g

t

asymptotically behaves as a first-order surrogate;
asymptotic stationary point conditions hold almost surely.

Theoretical Guarantees - Convex Problems
under a few assumptions, for proximal gradient surrogates, we obtain
similar expected rates as SGD with averaging: O(1/t) for strongly
convex problems, O(log(t)/

Ô
t) for convex ones.

The most interesting feature of this principle is probably the ability
to deal with some non-smooth non-convex problems.
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Outline

1 Stochastic MM algorithm

2 Incremental MM algorithm

3 Faster algorithm for smooth and strongly convex functions

4 Hybrid incremental/stochastic algorithm
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MISO (MM) for non-convex optimization [Mairal, 2015]

Assume that f is a finite sum:

f (◊) = 1
n

nÿ

i=1
f i(◊).

Recipe
Draw at random a single index i

t

at iteration t;
Compute a first-order surrogate g i

t

t

of f i

t at ◊
t≠1;

Incrementally update the approximate surrogate

g
t

:= 1
n

nÿ

i=1
g i

t

= g
t≠1 + 1

n (g i

t

t

≠ g i

t

t≠1).

Update ◊
t

by minimizing g
t

.
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MISO (MM) for non-convex optimization [Mairal, 2015]

Theoretical Guarantees - Non-Convex Problems
same as the basic MM algorithm with probability one.

Theoretical Guarantees - Convex Problems
when using proximal gradient surrogates,

for convex problems, O(nL/‘).
for µ-strongly convex problems, O((nL/µ) log(1/‘)).

The computational complexity is the same as ISTA.
Related work for non-convex problems:

incremental EM
more specific incremental MM algorithms.

[Neal and Hinton, 1998; Ahn et al., 2006].
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MISO-µ [Mairal, 2015; Lin et al., 2015]
µ-strongly convex, L-smooth functions f i , objective:

f (◊) := 1
n

nÿ

i=1
f i(◊) + Â(◊),

Strong convexity provides simple quadratic surrogate lower bounds:

g i

t

: ◊ ‘æ f i(◊
t≠1) + Òf i(◊

t≠1)€(◊ ≠ ◊
t≠1) + µ

2 Î◊ ≠ ◊
t≠1Î2

2 + Â(◊). (ı)

Recipe
Draw at random a single index i

t

at iteration t;
Update g i

t

t

= (1 ≠ –)g i

t

t≠1 + –(ı), with – = min
1
1, µn

2(L≠µ)

2

Incrementally update the full surrogate

g
t

:= 1
n

nÿ

i=1
g i

t

= g
t≠1 + 1

n (g i

t

t

≠ g i

t

t≠1).

Update ◊
t

by minimizing g
t

.
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t
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.
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MISO-µ [Mairal, 2015; Lin et al., 2015]

Convergence of MISO-µ
When the functions f

i

are µ-strongly convex, L-smooth:

E[f (◊
t

)] ≠ f ú Æ 1
·

(1 ≠ ·)t+1 (f (◊0) ≠ g0(◊0)) with · Ø min
;

µ

4L ,
1
2n

<
.

Furthermore, we also have fast convergence of the certificate

E[f (◊
t

) ≠ g
t

(◊
t

)] Æ 1
·

(1 ≠ ·)t (f ú ≠ g0(◊0)) .

Complexity: O((n + L/µ) log(1/‘)). (Like SAG/SAGA/SVRG/...)

Note: similar to variants of SDCA.

[Shalev-Shwartz and Zhang, 2013; Shalev-Shwartz, 2016; Defazio et al., 2014b]
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Hybrid stochastic/incremental optimization: motivation

Hybrid setting: finite sum + random perturbations fl

f (◊) := 1
n

nÿ

i=1
f i(◊) + Â(◊) with f i(◊) := Efl[f̃ i(◊, fl)]

Applications in machine learning
improve generalization
increase robustness
augment datasets using prior knowledge
stable feature selection
privacy ?
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Hybrid stochastic/incremental optimization: examples

Image data augmentation: add random transformations of each
image in the training set (crop, scale, rotate, brightness, contrast,
etc.)
Dropout: set coordinates of feature vectors to 0 with probability ”.

Invariant SVM using Selective Sampling

Figure 6: This figure shows 16 variations of a digit with all the transformations cited here.

3.2.5 Large translations

All the transformations described above are small sub-pixel transformations. Even though
the MNIST digit images are roughly centered, experiments indicate that we still need to
implement invariance with respect to translations of magnitude one or two pixels. Thus we
also apply randomly chosen translations of one or two pixels. These full-pixel translations
come on top of the sub-pixel translations implemented by the random deformation fields.

4. Application

This section reports experimental results achieved on the MNIST database using the tech-
niques described in the previous section. We have obtained state-of-the-art results using 10
SVM classifiers in one-versus-rest configuration. Each classifier is trained using 8 million
transformed examples using the standard RBF kernel < x, x� >= exp(���x � x��2). The
soft-margin C parameter was always 1000.

As explained before, the untransformed training examples and their two translation
tangent vectors are stored in memory. Transformed exemples are computed on the fly and
cached. We allowed 500MB for the cache of transformed examples, and 6.5GB for the cache
of kernel values. Indeed, despite the favorable characteristics of our algorithm, dealing with
millions of examples quickly yields tens of thousands support vectors.

13

2 Data Augmentation via Lévy Processes

(a) Gaussian noise

The colorful Norwegian city of
Bergen is also a gateway to majes-
tic fjords. Bryggen Hanseatic Wharf
will give you a sense of the local cul-
ture – take some time to snap photos
of the Hanseatic commercial build-
ings, which look like scenery from a
movie set.

The colorful of gateway to fjords.
Hanseatic Wharf will sense the cul-
ture – take some to snap photos the
commercial buildings, which look
scenery a

(b) Dropout noise

Figure 1.1: Two examples of transforming an original input X into a noisy, less
informative input �X. The new inputs clearly have the same label but contain less
information and thus are harder to classify.

is most likely still about travel. In both cases, the “expert knowledge” amounts
to a belief that a certain transform of the features should generally not a�ect an
example’s label.

One popular strategy for encoding such a belief is data augmentation: generat-
ing additional pseudo-examples or “hints” by applying label-invariant transforma-
tions to training examples’ features (Abu-Mostafa, 1990; Schölkopf et al., 1997;
Simard et al., 1998). That is, each example (X(i), Y (i)) is replaced by many pairs
( �X(i,b), Y (i)) for b = 1, . . . , B, where each �X(i,b) is a transformed version of X(i).
This strategy is simple and modular: after generating the pseudo-examples, we can
simply apply any supervised learning algorithm to the augmented dataset. Fig-
ure 1.1 illustrates two examples of this approach, an image transformed to a noisy
image and a text caption, transformed by deleting words.

Dropout training (Srivastava et al., 2014) is an instance of data augmentation
that, when applied to an input feature vector, zeros out a subset of the features ran-
domly. Intuitively, dropout implies a certain amount of signal redundancy across
features—that an input with about half the features masked should usually be
classified the same way as a fully-observed input. In the setting of document clas-

Figure: Data augmentation on MNIST digit (left), Dropout on text (right).
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Can we do better than SGD?

f (◊) := 1
n

nÿ

i=1
Efl[f̃ i(◊, fl)] + Â(◊)

Proximal SGD: O(‡2
tot

/µ‘) complexity with

‡2
tot

:= Var
i ,fl Òf̃

i

(x , fl) = E
i ,fl[ÎÒf̃ i(◊ú, fl) ≠ Òf (◊ú)Î2]

Can we do better? if perturbation variance is “small”

Variance decomposition: ‡2
tot

= ‡
p

2 + E
i

[ÎÒf i(◊ú) ≠ Òf (◊ú)Î2],

‡
p

2 := E
i

Varfl Òf̃
i

(x , fl) = 1
n

nÿ

i=1
Efl

Ë
ÎÒf̃ i(◊ú, fl) ≠ Òf i(◊ú)Î2

È
.

Stochastic MISO [Bietti and Mairal, 2017]: remove dependency on
variance over i with variance reduction. Complexity O(‡

p

2/µ‘).
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Examples of perturbation variance ‡2
fl

Application case Estimated ratio ‡2
tot

/‡2
p

Additive Gaussian noise N (0, –2I) ¥ 1 + 1/–2

Dropout with probability ” ¥ 1/”
Feature rescaling by s in U(1 ≠ w , 1 + w) ¥ 3/w2

ResNet-50, color perturbation 21.9
ResNet-50, rescaling + crop 13.6
Unsupervised CNN, rescaling + crop 9.6
Scattering, gamma correction 9.8
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Stochastic MISO [Bietti and Mairal, 2017]

f̃ i(·, fl) are µ-strongly convex, L-smooth
Similar lower bound surrogates to MISO, but approximate

f̃ i(◊
t≠1, fl

t

) + Òf̃ i(◊
t≠1, fl

t

)€(◊ ≠ ◊
t≠1) + µ

2 Î◊ ≠ ◊
t≠1Î2

2 + Â(◊). (ı)

Recipe
Draw at random a single index i

t

at iteration t;
Update g i

t

t

= (1 ≠ –
t

)g i

t

t≠1 + –
t

(ı);
Incrementally update the full surrogate

g
t

:= 1
n

nÿ

i=1
g i

t

= g
t≠1 + 1

n (g i

t

t

≠ g i

t

t≠1).

Update ◊
t

by minimizing g
t

.
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Stochastic MISO: convergence analysis (Â = 0)
Quadratic lower bounds g i

i

(◊) = c i

t

+ µ
2 Î◊ ≠ z i

t

Î2

Define the Lyapunov function (with z i

ú := ◊ú ≠ 1
µÒf i(◊ú))

C
t

= 1
2Î◊

t

≠ ◊úÎ2 + –
t

n2

nÿ

i=1
Îz i

t

≠ z i

úÎ2.

If (–
t

)
t

decreasing with –1 Æ min
Ó

1
2 , nµ

4(L≠µ)

Ô
, then

E[C
t

] Æ
3

1 ≠ –
t

n

4
E[C

t≠1] + 2
3

–
t

n

42 ‡2
p

µ2 .

Note:
Similar recursion for SGD with ‡2

tot

instead of ‡2
p

;
Same recursion for composite case, with di�erent C

t

.
See also [Shalev-Shwartz, 2016]
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Stochastic MISO: complexity

Two phases
Constant step-size –̄ down to noise level ‘̄
Then decay as –

t

= 2n/(“ + t) with –1 ¥ –̄
[Bottou et al., 2016] for SGD
Iterate averaging: from O(L‡2

p

/µ2‘) to O(‡2
p

/µ‘)

Complexity results
Method Asymptotic error Iteration complexity

SGD 0 O
3

L
µ

log 1
‘̄

+ ‡2
tot

µ‘

4
with ‘̄=O

3
‡2

tot
µ

4

N-SAGA ‘0 =O
A

‡2
p

µ

B
O

33
n + L

µ

4
log 1

‘

4
with ‘>‘0

S-MISO 0 O
A3

n + L
µ

4
log 1

‘̄
+

‡2
p

µ‘

B
with ‘̄=O

A
‡2

p

µ

B

[Bottou et al., 2016; Hofmann et al., 2015]
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S-MISO experiments: dropout

Dropout rate ” controls the variance of the perturbations.
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S-MISO experiments: image data augmentation

Random image crops and rescalings, CNN features. Di�erent conditioning,
controlled by µ.
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Conclusion
a large class of majorization-minimization algorithms for
non-convex, possibly non-smooth, optimization;
fast algorithms for minimizing large sums of convex functions
(using lower bounds).
a hybrid algorithm that interpolates between stochastic and
incremental settings and accelerates the hybrid setting
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Stochastic MISO: convergence analysis
Define the Lyapunov function (with zú

i

:= xú ≠ 1
µÒf

i

(xú))

C
t

= 1
2Îx

t

≠ xúÎ2 + –
t

n2

nÿ

i=1
Îz t

i

≠ zú
i

Î2.

Theorem (Recursion on C
t

, smooth case)
If (–

t

)
tØ1 are positive, non-increasing step-sizes with

–1 Æ min
;1

2 ,
n

2(2Ÿ ≠ 1)

<
,

with Ÿ = L/µ, then C
t

obeys the recursion

E[C
t

] Æ
3

1 ≠ –
t

n

4
E[C

t≠1] + 2
3

–
t

n

42 ‡2

µ2 .

Note: Similar recursion for SGD with ‡2
tot

instead of ‡2.
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Stochastic MISO: convergence with decreasing step-sizes

Similar to SGD [Bottou et al., 2016].

Theorem (Convergence of Lyapunov function)
Let the sequence of step-sizes (–

t

)
tØ1 be defined by

–
t

= 2n
“ + t for “ Ø 0 s.t. –1 Æ min

;1
2 ,

n
2(2Ÿ ≠ 1)

<
.

For t Ø 0,
E[C

t

] Æ ‹

“ + t + 1 ,

where
‹ := max

I
8‡2

µ2 , (“ + 1)C0

J

.

Q: How can we get rid of the dependence on C0?
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Practical step-size strategy

Following Bottou et al. [2016], we keep the step-size constant for a
few epochs in order to quickly “forget” the initial condition C0

Using a constant step-size –̄, we can converge linearly near a
constant error C̄ = 2–̄‡2

nµ2 (in practice: a few epochs)
We then start decreasing step-sizes with “ large enough s.t.
–1 = 2n/(“ + 1) ¥ –̄, no more C0 in the convergence rate!
Overall, complexity for reaching E[Îx

t

≠ xúÎ2] Æ ‘:

O
3

(n + L/µ) log C0
‘̄

4
+ O

A
‡2

µ2‘

B

.

For E[f (x
t

) ≠ f (xú)] Æ ‘, the second term becomes O(L‡2/µ2‘) via
smoothness. Iterate averaging brings this down to O(‡2/µ‘).
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Acceleration by iterate averaging
For function values, averaging helps bring the complexity term
O(L‡2/µ2‘) down to O(‡2/µ‘)
Similar technique to Lacoste-Julien et al. [2012], but allows small
initial step-sizes

Theorem (Convergence under iterate averaging)
Let the step-size sequence (–

t

)
tØ1 be defined by

–
t

= 2n
“ + t for “ Ø 1 s.t. –1 Æ min

;1
2 ,

n
4(2Ÿ ≠ 1)

<
.

We have

E[f (x̄
T

) ≠ f (xú)] Æ 2µ“(“ ≠ 1)C0
T (2“ + T ≠ 1) + 16‡2

µ(2“ + T ≠ 1) ,

where x̄
T

:= 2
T (2“+T≠1)

q
T≠1
t=0 (“ + t)x

t

.
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Stochastic MISO (composite, non-uniform sampling)

Input: step-sizes (–
t

)
tØ1, sampling distribution q;

for t = 1, . . . do
Sample an index i

t

≥ q, a perturbation fl
t

≥ J, and update:

z t

i

=
I

(1 ≠ –
t

q

i

n

)z t≠1
i

+ –
t

q

i

n

(x
t≠1 ≠ 1

µÒf̃
i

t

(x
t≠1, fl

t

)), if i = i
t

z t≠1
i

, otherwise

z̄
t

= 1
n

nÿ

i=1
z t

i

= z̄
t≠1 + 1

n (z t

i

t

≠ z t≠1
i

t

)

x
t

= prox
h/µ(z̄

t

).

end for

Note: Similar to RDA for n = 1 when –
t

= 1/t.
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General S-MISO: analysis

Lyapunov function

Cq

t

= F (xú) ≠ D
t

(x
t

) + µ–
t

n2

nÿ

i=1

1
q

i

nÎz t

i

≠ zú
i

Î2.

Bound on the iterates
µ

2 E[Îx
t

≠ xúÎ2] Æ E[F (xú) ≠ D
t

(x
t

)].

Recursion

E[Cq

t

] Æ
3

1 ≠ –
t

n

4
E[Cq

t≠1] + 2
3

–
t

n

42 ‡2
q

µ
,

with ‡2
q

= 1
n

q
i

‡2
i

q

i

n

.
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