Transformers and Associative Memories

Alberto Bietti

Flatiron Institute
Oberwolfach. September 19, 2023.
w/ Vivien Cabannes, Elvis Dohmatob, Diane Bouchacourt, Hervé Jegou, Léon Bottou (Meta)
8
SF

Transformers and language models

- Transformers: self-attention + MLPs + residual connections

write a poem about a deep learning theory workshop at Oberwolfach

园 In the heart of the Black Forest's sprawl,
Oberwolfach stood, proud and tall.
Where thinkers and dreamers, one and all,
Gathered to answer deep learning's call.

Mist kissed mornings, silent as a wraith,
Theories floated, light as a waith.
Neurons and layers, weights and bias,
In that haven, ideas would never tire us.
[6 Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to petition the Government for a redress of grievances.

This is known as the First Amendment to the United States Constitution and it is designed to protect the fundamental rights of citizens of the United States. It guarantees citizens the right to practice any religion of their choosing, the freedom of speech and of the press, and the right to peacefully assemble and to petition the government.

Transformers and language models

- Transformers: self-attention + MLPs + residual connections
- Large language models: train to predict next token on all the web (+ fine-tune)

(6)

In the heart of the Black Forest's sprawl,
Oberwolfach stood, proud and tall.
Where thinkers and dreamers, one and all,
Gathered to answer deep learning's call.

Mist kissed mornings, silent as a wraith,
Theories floated, light as a waith.
Neurons and layers, weights and bias,
In that haven, ideas would never tire us.
write a poem about a deep learning theory workshop at Oberwolfach
[6 Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to petition the Government for a redress of grievances.

This is known as the First Amendment to the United States Constitution and it is designed to protect the fundamental rights of citizens of the United States. It guarantees citizens the right to practice any religion of their choosing, the freedom of speech and of the press, and the right to peacefully assemble and to petition the government.

Transformers and language models

- Transformers: self-attention + MLPs + residual connections
- Large language models: train to predict next token on all the web (+ fine-tune)
- In-context "reasoning" vs memorization: transformers seem to use a mix of "reasoning" from context and "knowledge" from training set

write a poem about a deep learning theory workshop at
Oberwolfach
[3 Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to petition the Government for a redress of grievances.

This is known as the First Amendment to the United States Constitution and it is designed to protect the fundamental rights of citizens of the United States. It guarantees citizens the right to practice any religion of their choosing, the freedom of speech and of the press, and the right to peacefully assemble and to petition the government.

Motivating questions

- Interpretability: what's happening inside a transformer?

Motivating questions

- Interpretability: what's happening inside a transformer?
- Training dynamics: how is this learned during training?

Motivating questions

- Interpretability: what's happening inside a transformer?
- Training dynamics: how is this learned during training?
- Role of depth: can we go beyond shallow models?

Motivating questions

- Interpretability: what's happening inside a transformer?
- Training dynamics: how is this learned during training?
- Role of depth: can we go beyond shallow models?
- Experimental/theory setup: what is a simple setup for studying this?

The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Sample each sequence $z_{1: T} \in[N]^{T}$ as follows

- Triggers: $q_{1}, \ldots, q_{K} \sim \pi_{q}$ (random or fixed once)
- Outputs: $o_{k} \sim \pi_{o}\left(\cdot \mid q_{k}\right)$ (random)

The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

> When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Sample each sequence $z_{1: T} \in[N]^{T}$ as follows

- Triggers: $q_{1}, \ldots, q_{K} \sim \pi_{q}$ (random or fixed once)
- Outputs: $o_{k} \sim \pi_{o}\left(\cdot \mid q_{k}\right)$ (random)
- Sequence-specific Markov model: $z_{1} \sim \pi_{1} z_{t} \mid z_{t-1} \sim p\left(\cdot \mid z_{t-1}\right)$

$$
p(j \mid i)= \begin{cases}\mathbb{1}\left\{j=o_{k}\right\}, & \text { if } i=q_{k}, \quad k=1, \ldots, K \\ \pi_{b}(j \mid i), & \text { o/w. }\end{cases}
$$

The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)


```
When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.
```

Sample each sequence $z_{1: T} \in[N]^{T}$ as follows

- Triggers: $q_{1}, \ldots, q_{K} \sim \pi_{q}$ (random or fixed once)
- Outputs: $o_{k} \sim \pi_{o}\left(\cdot \mid q_{k}\right)$ (random)
- Sequence-specific Markov model: $z_{1} \sim \pi_{1} z_{t} \mid z_{t-1} \sim p\left(\cdot \mid z_{t-1}\right)$

$$
p(j \mid i)= \begin{cases}\mathbb{1}\left\{j=o_{k}\right\}, & \text { if } i=q_{k}, \quad k=1, \ldots, K \\ \pi_{b}(j \mid i), & \text { o/w. }\end{cases}
$$

π_{b} : global bigrams model (estimated from Karpathy's character-level Shakespeare)

Transformers I: embeddings and residual stream

- Input sequence: $\left[z_{1}, \ldots, z_{T}\right] \in[N]^{T}$
- Embedding layer:

$$
x_{t}:=w_{E}\left(z_{t}\right)+p_{t} \in \mathbb{R}^{d}
$$

- $w_{E}(z)$: token embedding of $z \in[N]$
- p_{t} : positional embedding at position $t \in[T]$

Transformers I: embeddings and residual stream

- Input sequence: $\left[z_{1}, \ldots, z_{T}\right] \in[N]^{T}$
- Embedding layer:

$$
x_{t}:=w_{E}\left(z_{t}\right)+p_{t} \in \mathbb{R}^{d}
$$

- $w_{E}(z)$: token embedding of $z \in[N]$
- p_{t} : positional embedding at position $t \in[T]$
- Intermediate layers: add outputs to the residual stream x_{t}

Transformers I: embeddings and residual stream

- Input sequence: $\left[z_{1}, \ldots, z_{T}\right] \in[N]^{T}$
- Embedding layer:

$$
x_{t}:=w_{E}\left(z_{t}\right)+p_{t} \in \mathbb{R}^{d}
$$

- $w_{E}(z)$: token embedding of $z \in[N]$
- p_{t} : positional embedding at position $t \in[T]$
- Intermediate layers: add outputs to the residual stream x_{t}
- Unembedding layer: logits for each $k \in[N]$,

$$
\left(\xi_{t}\right)_{k}=w_{u}(k)^{\top} x_{t}
$$

Transformers I: embeddings and residual stream

- Input sequence: $\left[z_{1}, \ldots, z_{T}\right] \in[N]^{T}$
- Embedding layer:

$$
x_{t}:=w_{E}\left(z_{t}\right)+p_{t} \in \mathbb{R}^{d}
$$

- $w_{E}(z)$: token embedding of $z \in[N]$
- p_{t} : positional embedding at position $t \in[T]$
- Intermediate layers: add outputs to the residual stream x_{t}
- Unembedding layer: logits for each $k \in[N]$,

- Loss for next-token prediction (cross-entropy)

$$
\sum_{t=1}^{T-1} \ell\left(z_{t+1}, \xi_{t}\right)
$$

Transformers II: self-attention

Causal self-attention layer:

$$
x_{t}^{\prime}=\sum_{s=1}^{t} \beta_{t} W_{O} W_{V} x_{s}, \quad \text { with } \beta_{s}=\frac{\exp \left(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t}\right)}{\sum_{s=1}^{t} \exp \left(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t}\right)}
$$

- $W_{K}, W_{Q} \in \mathbb{R}^{d \times d}$: key and query matrices
- $W_{V}, W_{O} \in \mathbb{R}^{d \times d}$: value and output matrices
- β_{s} : attention weights, $\sum_{s=1}^{t} \beta_{s}=1$

Transformers II: self-attention

Causal self-attention layer:

$$
x_{t}^{\prime}=\sum_{s=1}^{t} \beta_{t} W_{O} W_{V} x_{s}, \quad \text { with } \beta_{s}=\frac{\exp \left(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t}\right)}{\sum_{s=1}^{t} \exp \left(x_{s}^{\top} W_{K}^{\top} W_{Q x_{t}}\right)}
$$

- $W_{K}, W_{Q} \in \mathbb{R}^{d \times d}$: key and query matrices
- $W_{V}, W_{O} \in \mathbb{R}^{d \times d}$: value and output matrices
- β_{s} : attention weights, $\sum_{s=1}^{t} \beta_{s}=1$
- Single-head attention (in practice, multi-head with multiple such matrices, $d_{h} \times d$)

Transformers II: self-attention

Causal self-attention layer:

$$
x_{t}^{\prime}=\sum_{s=1}^{t} \beta_{t} W_{O} W_{V} x_{s}, \quad \text { with } \beta_{s}=\frac{\exp \left(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t}\right)}{\sum_{s=1}^{t} \exp \left(x_{s}^{\top} W_{K}^{\top} W_{Q} x_{t}\right)}
$$

- $W_{K}, W_{Q} \in \mathbb{R}^{d \times d}$: key and query matrices
- $W_{V}, W_{O} \in \mathbb{R}^{d \times d}$: value and output matrices
- β_{s} : attention weights, $\sum_{s=1}^{t} \beta_{s}=1$
- Single-head attention (in practice, multi-head with multiple such matrices, $d_{h} \times d$)
- Each x_{t}^{\prime} is then added to the corresponding residual stream

$$
x_{t}:=x_{t}+x_{t}^{\prime}
$$

Transformers III: feed-forward

Feed-forward layer: apply simple transformation to each token representation

- MLP (practice):

$$
x_{t}^{\prime}=W_{2} \sigma\left(W_{1} x_{t}\right), \quad W_{2} \in \mathbb{R}^{d \times D}, W_{1} \in \mathbb{R}^{D \times d}
$$

- Linear (in this work):

$$
x_{t}^{\prime}=W_{F} x_{t}, \quad W_{F} \in \mathbb{R}^{d \times d}
$$

Transformers III: feed-forward

Feed-forward layer: apply simple transformation to each token representation

- MLP (practice):

$$
x_{t}^{\prime}=W_{2} \sigma\left(W_{1} x_{t}\right), \quad W_{2} \in \mathbb{R}^{d \times D}, W_{1} \in \mathbb{R}^{D \times d}
$$

- Linear (in this work):

$$
x_{t}^{\prime}=W_{F} x_{t}, \quad W_{F} \in \mathbb{R}^{d \times d}
$$

- Added to the residual stream: $x_{t}:=x_{t}+x_{t}^{\prime}$

Transformers III: feed-forward

Feed-forward layer: apply simple transformation to each token representation

- MLP (practice):

$$
x_{t}^{\prime}=W_{2} \sigma\left(W_{1} x_{t}\right), \quad W_{2} \in \mathbb{R}^{d \times D}, W_{1} \in \mathbb{R}^{D \times d}
$$

- Linear (in this work):

$$
x_{t}^{\prime}=W_{F} x_{t}, \quad W_{F} \in \mathbb{R}^{d \times d}
$$

- Added to the residual stream: $x_{t}:=x_{t}+x_{t}^{\prime}$
- Some evidence that feed-forward layers store "global knowledge" (Geva et al., 2020; Meng et al., 2022)

Transformers on the bigram task

- 1-layer transformer fails: $\sim 55 \%$ accuracy on in-context output predictions
- 2-layer transformer succeeds: $\sim 99 \%$ accuracy

Transformers on the bigram task

- 1-layer transformer fails: $\sim 55 \%$ accuracy on in-context output predictions
- 2-layer transformer succeeds: ~99\% accuracy
- Attention maps reveal a structured 2-layer "induction" mechanism (Elhage et al., 2021)

Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

- 1st layer: previous-token head
- attends to previous token and copies it to residual stream

Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

- 1st layer: previous-token head
- attends to previous token and copies it to residual stream
- 2nd layer: induction head
- attends to output of previous token head, copies attended token

Matrices as associative memories

- Consider sets of nearly orthonormal embeddings $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{v_{j}\right\}_{j \in \mathcal{J}}$:

$$
\begin{array}{ll}
\left\|u_{i}\right\| \approx 1 & \text { and } \quad u_{i}^{\top} u_{j} \approx 0 \\
\left\|v_{i}\right\| \approx 1 & \text { and } \quad v_{i}^{\top} v_{j} \approx 0
\end{array}
$$

Matrices as associative memories

- Consider sets of nearly orthonormal embeddings $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{v_{j}\right\}_{j \in \mathcal{J}}$:

$$
\begin{aligned}
\left\|u_{i}\right\| & \text { and } \quad u_{i}^{\top} u_{j} \approx 0 \\
\left\|v_{i}\right\| \approx 1 & \text { and } \quad v_{i}^{\top} v_{j} \approx 0
\end{aligned}
$$

- Consider pairwise associations $(i, j) \in \mathcal{M}$ with weights $\alpha_{i j}$ and define:

$$
W=\sum_{(i, j) \in \mathcal{M}} \alpha_{i j} v_{j} u_{i}^{\top}
$$

- We have $v_{j}^{\top} W u_{i} \approx \alpha_{i j}$

Matrices as associative memories

- Consider sets of nearly orthonormal embeddings $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{v_{j}\right\}_{j \in \mathcal{J}}$:

$$
\begin{aligned}
\left\|u_{i}\right\| \approx 1 & \text { and } \quad u_{i}^{\top} u_{j} \approx 0 \\
\left\|v_{i}\right\| \approx 1 & \text { and } \quad v_{i}^{\top} v_{j} \approx 0
\end{aligned}
$$

- Consider pairwise associations $(i, j) \in \mathcal{M}$ with weights $\alpha_{i j}$ and define:

$$
W=\sum_{(i, j) \in \mathcal{M}} \alpha_{i j} v_{j} u_{i}^{\top}
$$

- We have $v_{j}^{\top} W u_{i} \approx \alpha_{i j}$
- Computed in Transformers for:
- Logits in next-token prediction $\left(v_{j}=w_{u}(j), u_{i}=x_{t}\right)$
- Logits in attention heads $\left(v_{j}=x_{k}, u_{i}=x_{q}\right)$

Matrices as associative memories

- Consider sets of nearly orthonormal embeddings $\left\{u_{i}\right\}_{i \in \mathcal{I}}$ and $\left\{v_{j}\right\}_{j \in \mathcal{J}}$:

$$
\begin{array}{ll}
\left\|u_{i}\right\| \approx 1 & \text { and } \quad u_{i}^{\top} u_{j} \approx 0 \\
\left\|v_{i}\right\| \approx 1 & \text { and } \quad v_{i}^{\top} v_{j} \approx 0
\end{array}
$$

- Consider pairwise associations $(i, j) \in \mathcal{M}$ with weights $\alpha_{i j}$ and define:

$$
W=\sum_{(i, j) \in \mathcal{M}} \alpha_{i j} v_{j} u_{i}^{\top}
$$

- We have $v_{j}^{\top} W u_{i} \approx \alpha_{i j}$
- Computed in Transformers for:
- Logits in next-token prediction $\left(v_{j}=w_{U}(j), u_{i}=x_{t}\right)$
- Logits in attention heads $\left(v_{j}=x_{k}, u_{i}=x_{q}\right)$
note: closely related to Hopfield and Willshaw networks (Hopfield, 1982; Willshaw et al., 1969)

Random embeddings in high dimension

- We consider embeddings u_{i}, v_{j} with i.i.d. $N(0,1 / d)$ entries, d large

$$
\left\|u_{i}\right\| \approx 1 \quad \text { and } \quad u_{i}^{\top} u_{j}=O(1 / \sqrt{d})
$$

Random embeddings in high dimension

- We consider embeddings u_{i}, v_{j} with i.i.d. $N(0,1 / d)$ entries, d large

$$
\left\|u_{i}\right\| \approx 1 \quad \text { and } \quad u_{i}^{\top} u_{j}=O(1 / \sqrt{d})
$$

- Remapping: multiply by random matrix W with $\mathcal{N}(0,1 / d)$ entries:

$$
\left\|W u_{i}\right\| \approx 1 \quad \text { and } \quad u_{i}^{\top} W u_{i}=O(1 / \sqrt{d})
$$

Random embeddings in high dimension

- We consider embeddings u_{i}, v_{j} with i.i.d. $N(0,1 / d)$ entries, d large

$$
\left\|u_{i}\right\| \approx 1 \quad \text { and } \quad u_{i}^{\top} u_{j}=O(1 / \sqrt{d})
$$

- Remapping: multiply by random matrix W with $\mathcal{N}(0,1 / d)$ entries:

$$
\left\|W u_{i}\right\| \approx 1 \quad \text { and } \quad u_{i}^{\top} W u_{i}=O(1 / \sqrt{d})
$$

- Value/Output matrices help with token remapping: Mr $\mapsto \mathrm{Mr}$, Bacon \mapsto Bacon

Gradient associative memories

Lemma (Gradients as memories)
Let p be a data distribution over $(z, y) \in[N]^{2}$, and consider the loss

$$
L(W)=\mathbb{E}_{(z, y) \sim p}[\ell(y, \xi w(z))], \quad \xi_{w}(z)_{k}=v_{k}^{\top} W u_{z},
$$

with ℓ the cross-entropy loss and u_{z}, v_{k} input/output embeddings.

Gradient associative memories

Lemma (Gradients as memories)
Let p be a data distribution over $(z, y) \in[N]^{2}$, and consider the loss

$$
L(W)=\mathbb{E}_{(z, y) \sim p}[\ell(y, \xi w(z))], \quad \xi_{w}(z)_{k}=v_{k}^{\top} W u_{z},
$$

with ℓ the cross-entropy loss and u_{z}, v_{k} input/output embeddings. Then,

$$
\nabla L(W)=\sum_{k=1}^{K} \mathbb{E}_{z}\left[(\hat{p} W(y=k \mid z)-p(y=k \mid z)) v_{k} u_{z}^{\top}\right]
$$

Gradient associative memories

Lemma (Gradients as memories)
Let p be a data distribution over $(z, y) \in[N]^{2}$, and consider the loss

$$
L(W)=\mathbb{E}_{(z, y) \sim p}\left[\ell\left(y, \xi_{w}(z)\right)\right], \quad \xi_{w}(z)_{k}=v_{k}^{\top} W u_{z},
$$

with ℓ the cross-entropy loss and u_{z}, v_{k} input/output embeddings. Then,

$$
\nabla L(W)=\sum_{k=1}^{K} \mathbb{E}_{z}\left[(\hat{p} W(y=k \mid z)-p(y=k \mid z)) v_{k} u_{z}^{\top}\right]
$$

Example: $z \sim \operatorname{Unif}([N]), y=f_{*}(z)$

Gradient associative memories

Lemma (Gradients as memories)
Let p be a data distribution over $(z, y) \in[N]^{2}$, and consider the loss

$$
L(W)=\mathbb{E}_{(z, y) \sim p}\left[\ell\left(y, \xi_{w}(z)\right)\right], \quad \xi_{W}(z)_{k}=v_{k}^{\top} W u_{z},
$$

with ℓ the cross-entropy loss and u_{z}, v_{k} input/output embeddings. Then,

$$
\nabla L(W)=\sum_{k=1}^{K} \mathbb{E}_{\mathbf{z}}\left[(\hat{p} W(y=k \mid z)-p(y=k \mid z)) v_{k} u_{z}^{\top}\right]
$$

Example: $z \sim \operatorname{Unif}([N]), y=f_{*}(z)$

- After one gradient step on the population loss, assuming near-orthonormal embeddings

$$
v_{k}^{\top} W_{1} u_{z} \approx \frac{\eta}{N}\left(\mathbb{1}\left\{f_{*}(z)=k\right\}-\frac{1}{N}\right)
$$

Gradient associative memories

Lemma (Gradients as memories)
Let p be a data distribution over $(z, y) \in[N]^{2}$, and consider the loss

$$
L(W)=\mathbb{E}_{(z, y) \sim p}[\ell(y, \xi w(z))], \quad \xi_{w}(z)_{k}=v_{k}^{\top} W u_{z},
$$

with ℓ the cross-entropy loss and u_{z}, v_{k} input/output embeddings. Then,

$$
\nabla L(W)=\sum_{k=1}^{K} \mathbb{E}_{\mathbf{z}}\left[(\hat{p} W(y=k \mid z)-p(y=k \mid z)) v_{k} u_{z}^{\top}\right]
$$

Example: $z \sim \operatorname{Unif}([N]), y=f_{*}(z)$

- After one gradient step on the population loss, assuming near-orthonormal embeddings

$$
v_{k}^{\top} W_{1} u_{z} \approx \frac{\eta}{N}\left(\mathbb{1}\left\{f_{*}(z)=k\right\}-\frac{1}{N}\right)
$$

- Corollary: $\hat{f}(z)=\arg \max _{k} v_{k}^{\top} W_{1} u_{z}$ has near-perfect accuracy

Gradient associative memories

Lemma (Gradients as memories)
Let p be a data distribution over $(z, y) \in[N]^{2}$, and consider the loss

$$
L(W)=\mathbb{E}_{(z, y) \sim p}\left[\ell\left(y, \xi_{w}(z)\right)\right], \quad \xi_{w}(z)_{k}=v_{k}^{\top} W u_{z},
$$

with ℓ the cross-entropy loss and u_{z}, v_{k} input/output embeddings. Then,

$$
\nabla L(W)=\sum_{k=1}^{K} \mathbb{E}_{\mathbf{z}}\left[(\hat{p} W(y=k \mid z)-p(y=k \mid z)) v_{k} u_{z}^{\top}\right]
$$

Example: $z \sim \operatorname{Unif}([N]), y=f_{*}(z)$

- After one gradient step on the population loss, assuming near-orthonormal embeddings

$$
v_{k}^{\top} W_{1} u_{z} \approx \frac{\eta}{N}\left(\mathbb{1}\left\{f_{*}(z)=k\right\}-\frac{1}{N}\right)
$$

- Corollary: $\hat{f}(z)=\arg \max _{k} v_{k}^{\top} W_{1} u_{z}$ has near-perfect accuracy

Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

Gradient associative memories with noisy inputs

Lemma (Gradients with noisy inputs)
Let p be a data distribution over $(x, y) \in \mathbb{R}^{d} \times[N]$, and consider the loss

$$
L(W)=\mathbb{E}_{(x, y) \sim \rho}\left[\ell\left(y, \xi_{W}(x)\right)\right], \quad \xi_{W}(z)_{k}=v_{k}^{\top} W x .
$$

Gradient associative memories with noisy inputs

Lemma (Gradients with noisy inputs)
Let p be a data distribution over $(x, y) \in \mathbb{R}^{d} \times[N]$, and consider the loss

$$
L(W)=\mathbb{E}_{(x, y) \sim \rho}\left[\ell\left(y, \xi_{W}(x)\right)\right], \quad \xi_{W}(z)_{k}=v_{k}^{\top} W x .
$$

Denoting $\mu_{k}:=\mathbb{E}[x \mid y=k]$ and $\hat{\mu}_{k}:=\mathbb{E}_{x}\left[\frac{\hat{\rho} w(k \mid x)}{\rho(y=k)} x\right]$, we have

$$
\nabla_{W} L(W)=\sum_{k=1}^{N} p(y=k) v_{k}\left(\hat{\mu}_{k}-\mu_{k}\right)^{\top} .
$$

Gradient associative memories with noisy inputs

Lemma (Gradients with noisy inputs)
Let p be a data distribution over $(x, y) \in \mathbb{R}^{d} \times[N]$, and consider the loss

$$
L(W)=\mathbb{E}_{(x, y) \sim \rho}\left[\ell\left(y, \xi_{W}(x)\right)\right], \quad \xi_{W}(z)_{k}=v_{k}^{\top} W x .
$$

Denoting $\mu_{k}:=\mathbb{E}[x \mid y=k]$ and $\hat{\mu}_{k}:=\mathbb{E}_{x}\left[\frac{\hat{\rho} \omega(k \mid x)}{\rho(y=k)} x\right]$, we have

$$
\nabla_{W} L(W)=\sum_{k=1}^{N} p(y=k) v_{k}\left(\hat{\mu}_{k}-\mu_{k}\right)^{\top} .
$$

- Motivation: the residual streams are sums of embeddings, some of which are irrelevant

Gradient associative memories with noisy inputs

Lemma (Gradients with noisy inputs)
Let p be a data distribution over $(x, y) \in \mathbb{R}^{d} \times[N]$, and consider the loss

$$
L(W)=\mathbb{E}_{(x, y) \sim \rho}\left[\ell\left(y, \xi_{W}(x)\right)\right], \quad \xi_{W}(z)_{k}=v_{k}^{\top} W x .
$$

Denoting $\mu_{k}:=\mathbb{E}[x \mid y=k]$ and $\hat{\mu}_{k}:=\mathbb{E}_{x}\left[\frac{\hat{\rho} \omega(k \mid x)}{\rho(y=k)} x\right]$, we have

$$
\nabla_{w} L(W)=\sum_{k=1}^{N} p(y=k) v_{k}\left(\hat{\mu}_{k}-\mu_{k}\right)^{\top} .
$$

- Motivation: the residual streams are sums of embeddings, some of which are irrelevant
- Example: $y \sim \operatorname{Unif}([N]), t \sim \operatorname{Unif}([T]), x=u_{y}+p_{t}$.

Gradient associative memories with noisy inputs

Lemma (Gradients with noisy inputs)
Let p be a data distribution over $(x, y) \in \mathbb{R}^{d} \times[N]$, and consider the loss

$$
L(W)=\mathbb{E}_{(x, y) \sim \rho}\left[\ell\left(y, \xi_{W}(x)\right)\right], \quad \xi_{W}(z)_{k}=v_{k}^{\top} W x .
$$

Denoting $\mu_{k}:=\mathbb{E}[x \mid y=k]$ and $\hat{\mu}_{k}:=\mathbb{E}_{x}\left[\frac{\hat{\rho} \omega(k \mid x)}{\rho(y=k)} x\right]$, we have

$$
\nabla_{w} L(W)=\sum_{k=1}^{N} p(y=k) v_{k}\left(\hat{\mu}_{k}-\mu_{k}\right)^{\top} .
$$

- Motivation: the residual streams are sums of embeddings, some of which are irrelevant
- Example: $y \sim \operatorname{Unif}([N]), t \sim \operatorname{Unif}([T]), x=u_{y}+p_{t}$. One gradient step:

$$
v_{k}^{\top} W_{1}\left(u_{y}+p_{t}\right) \approx \frac{\eta}{N} \mathbb{1}\{y=k\}+O\left(\frac{1}{N^{2}}\right)
$$

Induction head with associative memories

- Random embeddings $w_{E}(k), w_{U}(k)$, random matrices $W_{V}^{1}, W_{O}^{1}, W_{V}^{2}$, fix $W_{Q}=I$
- Remapped previous tokens: $w_{1}(k):=W_{O}^{1} W_{V}^{1} w_{E}(k)$

Induction head with associative memories

- Random embeddings $w_{E}(k), w_{U}(k)$, random matrices $W_{V}^{1}, W_{O}^{1}, W_{V}^{2}$, fix $W_{Q}=I$
- Remapped previous tokens: $w_{1}(k):=W_{O}^{1} W_{V}^{1} w_{E}(k)$

Q: Does this match practice?

Empirically probing the dynamics

Train only $W_{K}^{1}, W_{K}^{2}, W_{O}^{2}$, loss on deterministic output tokens only

- "Memory recall probes": for target memory $W_{*}=\sum_{(i, j) \in \mathcal{M}} v_{j} u_{i}^{\top}$, compute

$$
R\left(\hat{W}, W_{*}\right)=\frac{1}{|\mathcal{M}|} \sum_{(i, j) \in \mathcal{M}} \mathbb{1}\left\{j=\arg \max _{j^{\prime}} v_{j^{\prime}}^{\top} \hat{W} u_{i}\right\}
$$

Empirically probing the dynamics

Train only $W_{K}^{1}, W_{K}^{2}, W_{O}^{2}$, loss on deterministic output tokens only

- "Memory recall probes": for target memory $W_{*}=\sum_{(i, j) \in \mathcal{M}} v_{j} u_{i}^{\top}$, compute

$$
R\left(\hat{W}, W_{*}\right)=\frac{1}{|\mathcal{M}|} \sum_{(i, j) \in \mathcal{M}} \mathbb{1}\left\{j=\arg \max _{j^{\prime}} v_{j^{\prime}}^{\top} \hat{W} u_{i}\right\}
$$

- Natural learning "order": W_{O}^{2} first, W_{K}^{2} next, W_{K}^{1} last
- Joint learning is faster

Theoretical analysis with single gradient steps

Setting

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture

Theoretical analysis with single gradient steps

Setting

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture

Theorem (informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on the population loss, assuming near-orthonormal embeddings: first on W_{O}^{2}, then W_{K}^{2}, then W_{K}^{1}.

Theoretical analysis with single gradient steps

Setting

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture

Theorem (informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on the population loss, assuming near-orthonormal embeddings: first on W_{O}^{2}, then W_{K}^{2}, then W_{K}^{1}.

Key ideas

- Attention is uniform at initialization \Longrightarrow inputs are sums of embeddings
- W_{O}^{2} : correct output appears w.p. 1 , while other tokens are noisy and cond. indep. of z_{T}
- $W_{K}^{1 / 2}$: correct associations lead to more focused attention

Global vs in-context learning and role of data

Train on all tokens, with added W_{F} after second attention layer

attention and feed-forward probes

- Global bigrams learned quickly with W_{F} before induction mechanism

Global vs in-context learning and role of data

Train on all tokens, with added W_{F} after second attention layer

attention and feed-forward probes

- Global bigrams learned quickly with W_{F} before induction mechanism
- More frequent triggers \Longrightarrow faster learning of induction head

Global vs in-context learning and role of data

Train on all tokens, with added W_{F} after second attention layer

attention and feed-forward probes

- Global bigrams learned quickly with W_{F} before induction mechanism
- More frequent triggers \Longrightarrow faster learning of induction head
- More uniform output tokens helps OOD performance

What about more complex models?

- Factorizations (e.g., $W_{K}^{\top} W_{Q}$): $y^{\top} U V x$
- Low rank factorization can save parameters/compute
- One joint gradient step from random initialization still works

What about more complex models?

- Factorizations (e.g., $W_{K}^{\top} W_{Q}$): $y^{\top} U V x$
- Low rank factorization can save parameters/compute
- One joint gradient step from random initialization still works
- Non-linear MLP: $y^{\top} U \sigma(V x)$
- More expressive when x, y are superpositions/sums of embeddings
- One gradient step still ok

What about more complex models?

- Factorizations (e.g., $W_{K}^{\top} W_{Q}$): $y^{\top} U V x$
- Low rank factorization can save parameters/compute
- One joint gradient step from random initialization still works
- Non-linear MLP: $y^{\top} U \sigma(V x)$
- More expressive when x, y are superpositions/sums of embeddings
- One gradient step still ok
- Layer-norm: $y^{\top} \frac{W x}{\|W x\|}$
- Prevents repeated updates when $W x$ and y are already aligned
- First gradient step from random initialization is unchanged

What about more complex models?

- Factorizations (e.g., $W_{K}^{\top} W_{Q}$): $y^{\top} U V x$
- Low rank factorization can save parameters/compute
- One joint gradient step from random initialization still works
- Non-linear MLP: $y^{\top} U \sigma(V x)$
- More expressive when x, y are superpositions/sums of embeddings
- One gradient step still ok
- Layer-norm: $y^{\top} \frac{W x}{\|W x\|}$
- Prevents repeated updates when $W x$ and y are already aligned
- First gradient step from random initialization is unchanged
- Trained embeddings
- Single gradient steps capture basic co-occurrence statistics/BoW/topics
- Or more complex learning of structured embeddings (e.g., "grokking")

What about more complex models?

- Factorizations (e.g., $W_{K}^{\top} W_{Q}$): $y^{\top} U V x$
- Low rank factorization can save parameters/compute
- One joint gradient step from random initialization still works
- Non-linear MLP: $y^{\top} U \sigma(V x)$
- More expressive when x, y are superpositions/sums of embeddings
- One gradient step still ok
- Layer-norm: $y^{\top} \frac{W_{x}}{\|W x\|}$
- Prevents repeated updates when $W x$ and y are already aligned
- First gradient step from random initialization is unchanged
- Trained embeddings
- Single gradient steps capture basic co-occurrence statistics/BoW/topics
- Or more complex learning of structured embeddings (e.g., "grokking")

Does it work empirically on the bigram task? Yes!

- Memory recall probes $\rightarrow 1$ as in previous experiment

What about more complex models?

- Factorizations (e.g., $W_{K}^{\top} W_{Q}$): $y^{\top} U V x$
- Low rank factorization can save parameters/compute
- One joint gradient step from random initialization still works
- Non-linear MLP: $y^{\top} U \sigma(V x)$
- More expressive when x, y are superpositions/sums of embeddings
- One gradient step still ok
- Layer-norm: $y^{\top} \frac{W x}{\|W x\|}$
- Prevents repeated updates when $W x$ and y are already aligned
- First gradient step from random initialization is unchanged
- Trained embeddings
- Single gradient steps capture basic co-occurrence statistics/BoW/topics
- Or more complex learning of structured embeddings (e.g., "grokking")

Does it work empirically on the bigram task? Yes!

- Memory recall probes $\rightarrow 1$ as in previous experiment
- But: adding heads and layers loses identifiability

What about finite samples/width? "scaling laws"/rates

Setting

- $z_{i} \sim p(z), y_{i}=f^{*}\left(z_{i}\right), i=1, \ldots, n, S_{n}=\left\{z_{i}\right\}_{i}$

$$
L\left(\hat{f}_{n}\right)=\mathbb{P}\left(y \neq \hat{f}_{n}(z)\right)
$$

What about finite samples/width? "scaling laws"/rates

Setting

- $z_{i} \sim p(z), y_{i}=f^{*}\left(z_{i}\right), i=1, \ldots, n, S_{n}=\left\{z_{i}\right\}_{i}$

$$
L\left(\hat{f}_{n}\right)=\mathbb{P}\left(y \neq \hat{f}_{n}(z)\right)
$$

- Zipf law: $p(z) \propto z^{-\alpha}$ (up to permutation)

What about finite samples/width? "scaling laws"/rates

Setting

- $z_{i} \sim p(z), y_{i}=f^{*}\left(z_{i}\right), i=1, \ldots, n, S_{n}=\left\{z_{i}\right\}_{i}$

$$
L\left(\hat{f}_{n}\right)=\mathbb{P}\left(y \neq \hat{f}_{n}(z)\right)
$$

- Zipf law: $p(z) \propto z^{-\alpha}$ (up to permutation)
- Random embeddings $u_{z}, v_{y} \in \mathbb{R}^{d}$ with $\mathcal{N}(0,1 / d)$

What about finite samples/width? "scaling laws"/rates

Setting

- $z_{i} \sim p(z), y_{i}=f^{*}\left(z_{i}\right), i=1, \ldots, n, S_{n}=\left\{z_{i}\right\}_{i}$

$$
L\left(\hat{f}_{n}\right)=\mathbb{P}\left(y \neq \hat{f}_{n}(z)\right)
$$

- Zipf law: $p(z) \propto z^{-\alpha}$ (up to permutation)
- Random embeddings $u_{z}, v_{y} \in \mathbb{R}^{d}$ with $\mathcal{N}(0,1 / d)$

Theorem (informal, BCD23+, in prep.)
Consider the estimator $\hat{f}_{n, d}(x)=\arg \max _{y} v_{y}^{\top} W_{n, d} u_{z}$, with $W_{n, d}=\sum_{z=1}^{N} q(z) v_{f^{*}(z)} u_{z}^{\top}$.
(1) For $q(z)=\sum_{i} \mathbb{1}\left\{z=z_{i}\right\}: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-\frac{\alpha-1}{2 \alpha}}$
(2) For $q(z)=\mathbb{1}\left\{z \in S_{n}\right\}$, and $d \gg N$, for any $k: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-k}$
(3) For $q(z)=\mathbb{1}\left\{z\right.$ seen at least s times in $\left.S_{n}\right\}: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-\alpha+1}$

What about finite samples/width? "scaling laws"/rates

Setting

- $z_{i} \sim p(z), y_{i}=f^{*}\left(z_{i}\right), i=1, \ldots, n, S_{n}=\left\{z_{i}\right\}_{i}$

$$
L\left(\hat{f}_{n}\right)=\mathbb{P}\left(y \neq \hat{f}_{n}(z)\right)
$$

- Zipf law: $p(z) \propto z^{-\alpha}$ (up to permutation)
- Random embeddings $u_{z}, v_{y} \in \mathbb{R}^{d}$ with $\mathcal{N}(0,1 / d)$

Theorem (informal, BCD23+, in prep.)
Consider the estimator $\hat{f}_{n, d}(x)=\arg \max _{y} v_{y}^{\top} W_{n, d} u_{z}$, with $W_{n, d}=\sum_{z=1}^{N} q(z) v_{f^{*}(z)} u_{z}^{\top}$.
(1) For $q(z)=\sum_{i} \mathbb{1}\left\{z=z_{i}\right\}: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-\frac{\alpha-1}{2 \alpha}}$
(2) For $q(z)=\mathbb{1}\left\{z \in S_{n}\right\}$, and $d \gg N$, for any $k: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-k}$
(3) For $q(z)=\mathbb{1}\left\{z\right.$ seen at least s times in $\left.S_{n}\right\}: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-\alpha+1}$

- Finite-memory version of (Hutter, 2021)

What about finite samples/width? "scaling laws"/rates

Setting

- $z_{i} \sim p(z), y_{i}=f^{*}\left(z_{i}\right), i=1, \ldots, n, S_{n}=\left\{z_{i}\right\}_{i}$

$$
L\left(\hat{f}_{n}\right)=\mathbb{P}\left(y \neq \hat{f}_{n}(z)\right)
$$

- Zipf law: $p(z) \propto z^{-\alpha}$ (up to permutation)
- Random embeddings $u_{z}, v_{y} \in \mathbb{R}^{d}$ with $\mathcal{N}(0,1 / d)$

Theorem (informal, BCD23+, in prep.)
Consider the estimator $\hat{f}_{n, d}(x)=\arg \max _{y} v_{y}^{\top} W_{n, d} u_{z}$, with $W_{n, d}=\sum_{z=1}^{N} q(z) v_{f^{*}(z)} u_{z}^{\top}$.
(1) For $q(z)=\sum_{i} \mathbb{1}\left\{z=z_{i}\right\}: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-\frac{\alpha-1}{2 \alpha}}$
(2) For $q(z)=\mathbb{1}\left\{z \in S_{n}\right\}$, and $d \gg N$, for any $k: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-k}$
(3) For $q(z)=\mathbb{1}\left\{z\right.$ seen at least s times in $\left.S_{n}\right\}: L\left(\hat{f}_{n, d}\right) \lesssim n^{-\frac{\alpha-1}{\alpha}}+d^{-\alpha+1}$

- Finite-memory version of (Hutter, 2021)
- 2 and 3 are related to Adam and layer-norm

Discussion and next steps

Summary

- Bigram model: simple but rich toy model for discrete data
- Transformer weights as associative memories
- Learning via few top-down gradient steps

Discussion and next steps

Summary

- Bigram model: simple but rich toy model for discrete data
- Transformer weights as associative memories
- Learning via few top-down gradient steps

Future directions

- More complex "reasoning" mechanisms, links with "emergence"
- Learning dynamics: multiple gradient steps? joint training? embeddings?
- Applications: interpretability, model editing, factual recall, efficient fine-tuning
- LLM large-width scalings (links with $\mu \mathrm{P}$)
- Replace weights by hash tables?? (a.k.a. Leon's dream)

Discussion and next steps

Summary

- Bigram model: simple but rich toy model for discrete data
- Transformer weights as associative memories
- Learning via few top-down gradient steps

Future directions

- More complex "reasoning" mechanisms, links with "emergence"
- Learning dynamics: multiple gradient steps? joint training? embeddings?
- Applications: interpretability, model editing, factual recall, efficient fine-tuning
- LLM large-width scalings (links with $\mu \mathrm{P}$)
- Replace weights by hash tables?? (a.k.a. Leon's dream)

Thank you!

References I

J. Ba, M. A. Erdogdu, T. Suzuki, Z. Wang, D. Wu, and G. Yang. High-dimensional asymptotics of feature learning: How one gradient step improves the representation. Advances in Neural Information Processing Systems (NeurIPS), 2022.
A. Damian, J. Lee, and M. Soltanolkotabi. Neural networks can learn representations with gradient descent. In Conference on Learning Theory (COLT), 2022.
N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, N. DasSarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
M. Geva, R. Schuster, J. Berant, and O. Levy. Transformer feed-forward layers are key-value memories. arXiv preprint arXiv:2012.14913, 2020.
J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8):2554-2558, 1982.
M. Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.

References II

K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual associations in GPT. Advances in Neural Information Processing Systems (NeurIPS), 2022.
C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, S. Johnston, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic associative memory. Nature, 222(5197):960-962, 1969.
G. Yang and E. J. Hu. Tensor programs iv: Feature learning in infinite-width neural networks. In Proceedings of the International Conference on Machine Learning (ICML), 2021.

