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What are Transformer LLMs doing?

Reasoning over context

o Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)

o Many results on expressivity (e.g., circuits, formal languages, graph connectivity)
» e.g., (Merrill et al., 2022; Liu et al., 2023; Sanford et al., 2023)
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What are Transformer LLMs doing?

Reasoning over context

o Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
o Many results on expressivity (e.g., circuits, formal languages, graph connectivity)
» e.g., (Merrill et al., 2022; Liu et al., 2023; Sanford et al., 2023)

Knowledge storage
o Memorization, factual recall, parameter scaling
» (Geva et al., 2020; Meng et al., 2022; Allen-Zhu and Li, 2024)

o Allows higher-level reasoning

6 Dan Hendrycks & @DanHendrycks - Mar 14, 2023 a5 param
It knows many esoteric facts (e.g., the meaning of obscure songs, knows
what area a researcher works in, can contrast ML optimizers like Adam vs
AdamW like in a PhD oral exam, and so on).

N~10000000
« N=5000000

learned knowledge (bits)

My rule-of-thumb is that
"if it's on the internet 5 or more times, GPT-4 remembers it." o
(OF] 028 Q 184 ihr 25K Qo model size (#params)
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What are Transformer LLMs doing?

Reasoning over context

o Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
o Many results on expressivity (e.g., circuits, formal languages, graph connectivity)
» e.g., (Merrill et al., 2022; Liu et al., 2023; Sanford et al., 2023)

Knowledge storage
o Memorization, factual recall, parameter scaling
» (Geva et al., 2020; Meng et al., 2022; Allen-Zhu and Li, 2024)

o Allows higher-level reasoning

Goal: tractable model for both + training dynamics?
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Transformer setup

Input: sequence of discrete tokens (zy,...,z7) € [N]"
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Transformer setup

Input: sequence of discrete tokens (zy,...,z7) € [N]"
Embeddings

o input e, positional p;, output v, in R9

o this talk: fixed to random init N'(0,1/d)
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Transformer setup

Input: sequence of discrete tokens (zy,...,z7) € [N]"
Embeddings

o input e, positional p;, output v, in R9

o this talk: fixed to random init N'(0,1/d)

Residual streams (Elhage et al., 2021)
o embed each token z; € [N] as x; := e, + p;
o (causal) self-attention x; := x; + MHSA(X¢, x1:¢)

H & TywhT yh
. exp(x ' W' Wixe)
MHSA(x, = E E BIWET W .. with g7 =
e et oY ’ =1 exp(: TWET Wixe)

where Wy, Wo, Wy, Wo € R%*9 (key/query/value/output matrices)
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Transformer setup

Input: sequence of discrete tokens (zy,...,z7) € [N]"
Embeddings

o input e, positional p;, output v, in R9

o this talk: fixed to random init N'(0,1/d)

Residual streams (Elhage et al., 2021)
o embed each token z; € [N] as x; := e, + p;
o (causal) self-attention x; := x; + MHSA(X¢, x1:¢)
o feed-forward x; := x; + MLP(x;)

MLP(x;) = Vo (Ux:)
where U, V € R™*9 often m = 4d
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Transformer setup

Input: sequence of discrete tokens (zy,...,z7) € [N]"
Embeddings

o input e, positional p;, output v, in R9

o this talk: fixed to random init N'(0,1/d)

Residual streams (Elhage et al., 2021)

o embed each token z; € [N] as x; := e, + p;
(causal) self-attention x; := x¢ + MHSA(x¢, x1:¢)
feed-forward x; := x¢ + MLP(x)

©

©

©

residual stream x; is a sum of embeddings/“features”
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Transformer setup

Input: sequence of discrete tokens (zy,...,z7) € [N]"
Embeddings

o input e, positional p;, output v, in R9

o this talk: fixed to random init N'(0,1/d)

Residual streams (Elhage et al., 2021)

o embed each token z; € [N] as x; := e, + p;
(causal) self-attention x; := x¢ + MHSA(x¢, x1:¢)
feed-forward x; := x¢ + MLP(x)

©

©

©

residual stream x; is a sum of embeddings/“features”

Next-token prediction

o cross-entropy loss

Z Uzt41; (UJTXt)j)

t<T
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QOutline

@ Associative memories

2) Application to Transformers |: reasoning (B. et al., 2023)

3) Application to Transformers II: factual recall (Nichani et al., 2024)



Weights as associative memories
o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

le.|~1 and e e, ~0

|uy||~1 and wu,"u, =0
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Weights as associative memories
o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

le.|~1 and e e, ~0

|uy||~1 and wu,"u, =0
o Consider pairwise associations (z,y) € M with weights o, and define:

-
W = Z Olzy Uy €,
(zy)em
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Weights as associative memories
o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

lle-|l =1 and e, e, ~0

|uy||~1 and wu,"u, =0

o Consider pairwise associations (z,y) € M with weights o, and define:

W = Z 042),uyez—r — uyTWeZ R gy
(zy)em

o Examples in Transformers:
» Logits in attention heads: x, Wikqxq
> Logits in next-token prediction: u, Uo(Vx:) or u] Woyx
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Weights as associative memories
o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

le.|~1 and e e, ~0

|uy||~1 and wu,"u, =0

o Consider pairwise associations (z,y) € M with weights o, and define:

W = Z 042),uyez—r — uyTWeZ R gy
(zy)em

o Examples in Transformers:
» Logits in attention heads: x, Wikqxq
> Logits in next-token prediction: u, Uo(Vx:) or u] Woyx

o Related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969); Iscen et al. (2017)
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Weights as associative memories
o Consider sets of nearly orthonormal embeddings {¢.},cz and {u,},cy:

lle-|l =1 and e, e, ~0

|uy||~1 and wu,"u, =0

o Consider pairwise associations (z,y) € M with weights o, and define:

W = Z 042),uyez—r — uyTWeZ R gy
(zy)em

o Examples in Transformers:
» Logits in attention heads: x, Wikqxq
> Logits in next-token prediction: u, Uo(Vx:) or u] Woyx

o Related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969); Iscen et al. (2017)
o Note: attention itself is also related to AM (Ramsauer et al., 2020; Schlag et al., 2021)
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Gradient associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings.
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Gradient associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1
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Gradient associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
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Gradient associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(Z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings

W, = ;\7/; (]1{;‘*(2) =k} — /{/) me," = u Wie, ~ % (]l{f*(Z) =k} — ,{,)
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Gradient associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(Z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings

W, = ;\7/; (]1{;‘*(2) =k} — /{/) me," = u Wie, ~ % (]l{f*(Z) =k} — ,{,)

» Corollary: f(z) = arg maxy u, " Whe, has near-perfect accuracy

o More generally, replace vy by “backward” vector
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Gradient associative memories

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over (z,y) € [N]?, and consider the loss
L( W) = IE(z,y)fvp[g(ya Fw(Z))], FW(Z)k = UkTW@Z?

with ¢ the cross-entropy loss and e,, uy input/output embeddings. Then,

K
VL(W) =Y E[(bw(y = k|z) — p(y = K|2))uke. ]
k=1

o Example: z ~ Unif([N]), y = f.(2)
» After one gradient step on the population loss, assuming near-orthonormal embeddings

W, = ;\7/; (]1{;‘*(2) =k} — /{/) me," = u Wie, ~ % (]l{f*(Z) =k} — ,{,)

» Corollary: ?(z) = arg maxy ;| Wie, has near-perfect accuracy
o More generally, replace vy by “backward” vector
Note: related to (Ba et al., 2022; Damian et al., 2022; Oymak et al., 2023; Yang and Hu, 2021)
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Capacity: Intuition

o Random embeddings ¢, u, ~ N(0, 31)
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Capacity: Intuition

o Random embeddings ¢, u, ~ N(0, 31)
o For some f* : [N] — [M]

N
W= Z uf*(z)ez—r € RdXd

— *
o When can we recover arg maxy v, = *(z) for all z?

Vz,y = uyTWeZ Zu Uf+(z e e,
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Capacity: Intuition

o Random embeddings ¢, u, ~ N(0, 31)
o For some f* : [N] — [M]

W = Zuf RdXd

— *
o When can we recover arg maxy v, = *(z) for all z?

Vz,y = uyTWeZ Zu Uf+(z e e,

1, ify=1~F*(z)

0, otherwise. d

E['Yz,y] = {

Alberto Bietti Transformers and Associative Memories

Var[vzy] < ‘{f*(z/) :y}| +
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Capacity: Intuition

o Random embeddings ¢, u, ~ N(0, 31)
o For some f* : [N] — [M]

W = Zuf RdXd

— *
o When can we recover arg maxy v, = *(z) for all z?

Vz,y = uyTWeZ Zu Uf+(z e e,

d d?

o Examples: (Cabannes, Dohmatob, and B., 2024a; Nichani, Lee, and B., 2024)
» f* injective: can store up to N ~ d” associations (much better than one hot!)

0, otherwise.

B {1, =) g < U =0 @) £ 2
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Capacity: Intuition
o Random embeddings ¢, u, ~ N(0, 31)
o For some f* : [N] — [M]

N
W= Z uf*(z)ez—r € RdXd
z=1

o When can we recover arg maxy v, = *(z) for all z?
0y T _ T x
Yz, = uy, We, = Z Uy Ups(z1)€, €z
z/

1, ify=1~F*(z)
0, otherwise.

f* 1y — f* / ?
Bley] = (P =l U@ 20 2
d d
o Examples: (Cabannes, Dohmatob, and B., 2024a; Nichani, Lee, and B., 2024)

» f* injective: can store up to N ~ d” associations (much better than one hot!)
» *(z) =z mod 2: can store up to N = d associations

Var[yz,y] <
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Capacity: Intuition

o Random embeddings ¢, u, ~ N(0, 31)
o For some f* : [N] — [M]

W = Zuf RdXd

— *
o When can we recover arg maxy v, = *(z) for all z?

Vz,y = uyTWeZ Zu Uf+(z e e,

B {1, =) g < U =0 @) £ 2

d d?

o Examples: (Cabannes, Dohmatob, and B., 2024a; Nichani, Lee, and B., 2024)
» f* injective: can store up to N ~ d” associations (much better than one hot!)
» *(z) =z mod 2: can store up to N = d associations
» Scaling laws: store the most frequent tokens with under-parameterized model

0, otherwise.
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Capacity =~ number of parameters

Low-rank
o W =W]"Ws, with Wy, W, € R™<9 (e.g., key-query or output-value matrices)
o can store N ~ md associations when m < d

o construction: random W, one step on W5

(Nichani, Lee, and B., 2024), related to Krotov and Hopfield (2016); Demircigil et al. (2017)
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Low-rank
o W =W]"Ws, with Wy, W, € R™<9 (e.g., key-query or output-value matrices)
o can store N ~ md associations when m < d

o construction: random W, one step on W5

Non-linear MLP
o f(z) = argmax, u, | Wio(W, e,), Wy, Wy € RIX™
o can store N &~ md associations for any width m

o construction: using Hermite polynomials of degree ~ log N/ log d in kernel regime

(Nichani, Lee, and B., 2024), related to Krotov and Hopfield (2016); Demircigil et al. (2017)
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Capacity =~ number of parameters

Low-rank
o W =W]"Ws, with Wy, W, € R™<9 (e.g., key-query or output-value matrices)

o can store N ~ md associations when m < d

o construction: random W, one step on W5

Non-linear MLP
o f(z) = argmax, u, | Wio(W, e,), Wy, Wy € RIX™

o can store N &~ md associations for any width m
o construction: using Hermite polynomials of degree ~ log N/ log d in kernel regime

Multi-input
o f(z1,2) = argmax, u, " Wio(W, (e, + &.,))

o also N = md capacity

MFO 2025

(Nichani, Lee, and B., 2024), related to Krotov and Hopfield (2016); Demircigil et al. (2017)
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Capacity =~ number of parameters

Low-rank
o W =W]"Ws, with Wy, W, € R™<9 (e.g., key-query or output-value matrices)
o can store N ~ md associations when m < d

o construction: random W, one step on W5

Non-linear MLP
o f(z) = argmax, u, | Wio(W, e,), Wy, Wy € RIX™
o can store N &~ md associations for any width m

o construction: using Hermite polynomials of degree ~ log N/ log d in kernel regime

Multi-input
o f(z1,2) = argmax, u, " Wio(W, (e, + &.,))

o also N = md capacity

Note: matches information-theoretic lower bounds
(Nichani, Lee, and B., 2024), related to Krotov and Hopfield (2016); Demircigil et al. (2017)
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Outline

(@ Application to Transformers I: reasoning (B. et al., 2023)
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The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Vir White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.
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The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Vir White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix trigger tokens: q1,...,qk
Sample each sequence zi.7 € [N]7 as follows

o Output tokens: o, ~ mo(-|qx) (random)
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The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Vir White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix e | TR
Sample each sequence zi.7 € [N]7 as follows
o Output tokens: o, ~ mo(-|qx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(:|z¢—1) with

1{j=o, ifi=q, k=1,....,K
m(jl7), o/w.

p(ili) =
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The bigram data model for in-context reasoning

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Vir White went ... then

\ >< / When Mr White went to the mall, it started raining, then Mr White witnessed an odd

occurrence. While walking around the mall with his family, Mr White heard the sound of a

output helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix e | TR
Sample each sequence zi.7 € [N]7 as follows
o Output tokens: o, ~ mo(-|qx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(:|z¢—1) with

1{j=o, ifi=q, k=1,....,K
m(jl7), o/w.

p(jli) =
7p: global bigrams model (estimated from Karpathy's character-level Shakespeare)
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Transformers on the bigram task
When IVir White went ... then

T

output
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Transformers on the bigram task

When Vir White went ... then Vir
output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions
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o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions

o 2-layer transformer succeeds: ~ 99% accuracy
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Transformers on the bigram task

When Vir White went ... then Vir
output
o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions

o 2-layer transformer succeeds: ~ 99% accuracy

See (Sanford, Hsu, and Telgarsky, 2023, 2024) for representational lower bounds
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, White} ... {T, Vr, White}
. {t+1, Mr, White} ... {T, Vir}
/ k_/
{t, M} {t+1, White} o AT

o

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, White} ... {T, Vr, White}
. {t+1, Mr, White} ... {T, Vir}
/ k_/
{t, M} {t+1, White} o AT

o

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
o 2nd layer: induction head
» attends to output of previous token head, copies attended token

o Matches observed attention scores:
1
", ',
| |
l.

n "

rsabtslLabtsl, ab
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N'(0,1/d) entries and d large

|ui| =1 and o u; = O(1/Vd)

i
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N'(0,1/d) entries and d large
|ui| =1 and o u; = O(1/Vd)

i

o Remapping: multiply by random matrix W with N'(0,1/d) entries:

[Wuil| ~1 and o Wuj = O(1/Vd)
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N'(0,1/d) entries and d large
|ui| =1 and o u; = O(1/Vd)

i

o Remapping: multiply by random matrix W with N'(0,1/d) entries:

[Wuil| ~1 and o Wuj = O(1/Vd)

o Value/Output matrices help with token remapping: — Mr, White — White

{t+1, Mr, White} ... {T, VIr, White}
{t+1, Mr, White} ... {T, 1}
~_
{t, 1} {t+1, White} ... {T, M1}
.
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Induction head with associative memories

bz [ ] [+ ]

wg(a)
Attn2: >, wy (k)wg (k)" 2172,

Layer 1 ‘ * ‘ wg(a) ‘

wy(a) [ wg(b)

IVIII‘I, -

Attnl: > ps_1p] Residual | Predlctmn

/\
Layer 0 ‘ Pt—1 ‘ wg(a) ‘ ‘ ‘ ub(b
Sequence ’—2—‘ b fi

.

1 T T

Wiq = ZPrPt—lv WKQ = Z exdr, Wiy = Z Uk »
t=2 keqQ k=1

o Random embeddings ek, g, random matrix W}, (frozen at init)

o Remapped previous tokens: & := W}, ek
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Induction head with associative memories

Layer 2 ‘ * ‘ * ‘ ‘ * ‘ * ‘

Attn2: 3, wi(b)wp(k)" _.--* WZH‘ S wu(k)wp(k)T

Layer 1 ‘ * ‘ wg(a) ‘

wi(a) [u:E(b) ‘
P

WAW 7"

Attnl: 3 ps_1p,] Residual | Predlctmn

/\
Layer 0 ‘ Pi—1 ‘ wg(a) ‘ ‘ ‘ wg(b) ‘
Sequence a b ’77

.

1 T T

Wiq = ZPrPt—lv WKQ = Z g, Wiy = Z Uk »
t=2 keqQ k=1

o Random embeddings ek, g, random matrix W}, (frozen at init)

o Remapped previous tokens: & := W}, ek
Q: Does this match practice?
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Empirically probing the dynamics

Train only W}(Q, W,%Q, W(%V, loss on deterministic output tokens only

2
. freeze W3 freeze W} and W2 freeze W3 freeze W}
10 10- 10- 1o0-
9
£ 08 0.8- 08- 0.8-
g os- 06- 06- 06-
% 0a- 04- 04- 04 ]
S 02 02- 02- 02-
00 ; i ; e 0.0 e e e e 0 e e = e
0 200 400 600 800 1000 O 200 400 600 80 1000 0 200 400 600 800 1000 O 200 400 600 800 1000
10- 10- 10- 10-
— s p— e
5 o8- 08 o 0.8+ /
o - o - -
H 06 06 / 06
Soa 0a- 04- 0a- — woz
g — w2
£o2 02- / 02- 02- WKL (t<64)
— wa
00 00- 00- 00-

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration iteration iteration

o “Memory recall probes”: for target memory W, = Z,{\il u,-e,-T, compute

M

1 N
R(W,W,) = o 1{i = arg max uJ-T We;}
1 J

i=
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Empirically probing the dynamics

Train only W}(Q, W,%Q, W(%V, loss on deterministic output tokens only

ntext accuracy

06-

freeze W3

400 600

400 600
iteration

800 1000

800 1000

10-
0.8-
06-
0.4-
02-
00- !
10-
0.8-
06-
0.4-
02-

0.0-

o “Memory recall probes”: for

R(W,

freeze W} and W2 freeze W} freeze W}
10- 10-
o8- 0.8-
06 06-
0a- 0.4-
02- 02-
; " ;00 ; ; ; ; 00 " ; " ; 5
0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000
10- 10-
p— e
0s- P 05~
056 / 06-
04 04- — wo2
— w2
[ 024 02- Wl (t<64)
J — wia
00- 0.0-
0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000
iteration iteration iteration

target memory W, = Z,{\il u,-e,-T, compute

1 M

i=

o Natural learning “order": W(%V first, W,%Q next, W&Q last

o Joint learning is faster

Alberto Bietti
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1{i = arg max uJ-T Wej}
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Gradient steps for the bigram task
Setting: transformer on the bigram task
o Focus on predicting second output token
o All distributions are uniform

©

Some simplifications to architecture
Infinite width, infinite data, N> T

©
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Gradient steps for the bigram task
Setting: transformer on the bigram task
o Focus on predicting second output token

o All distributions are uniform

©

Some simplifications to architecture
Infinite width, infinite data, N> T

©

Theorem (B. et al., 2023, informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss: first on W3, then W3, then Wig.
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Gradient steps for the bigram task
Setting: transformer on the bigram task
o Focus on predicting second output token

o All distributions are uniform

©

Some simplifications to architecture

Infinite width, infinite data, N > T

©

Theorem (B. et al., 2023, informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss: first on W3, then W3, then Wig.

Key ideas
o Attention is uniform at initialization = inputs are sums of embeddings
o W(2)v: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z7

1/2 . .
o WKé : correct associations lead to more focused attention
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Gradient steps for the bigram task
Setting: transformer on the bigram task
o Focus on predicting second output token

o All distributions are uniform

©

Some simplifications to architecture
Infinite width, infinite data, N> T

©

Theorem (B. et al., 2023, informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss: first on W3, then W3, then Wig.

Key ideas
o Attention is uniform at initialization = inputs are sums of embeddings
o W(2)v: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z7
o W:(g: correct associations lead to more focused attention

see also (Snell et al., 2021; Oymak et al., 2023)
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Key idea: gradient associative memories with noisy inputs

Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € RY x [N], and consider the loss

L(W) = Exyyplly, Fw (), Fw(2)k = ux" W
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Key idea: gradient associative memories with noisy inputs
Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € RY x [N], and consider the loss

L(W) = Exyyplly, Fw (), Fw(2)k = ux" W

Denoting 11 == E[x|y = k| and [1, := Ey [pW(k|X x], we have

N
VwL(W Z K)u(fie — /zk)T.
k=1
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Key idea: gradient associative memories with noisy inputs
Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € RY x [N], and consider the loss

L(W) = Exyyplly, Fw (), Fw(2)k = ux" W

Denoting 11 == E[x|y = k| and [1, := Ex[%x], we have

N
VwL(W) = Z K)u(fie — /zk)T.

o Example: y ~ Unif([N]), t ~ Unif([T]), x = e, + pt.
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Key idea: gradient associative memories with noisy inputs
Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € RY x [N], and consider the loss

L(W) = Exyyplly, Fw (), Fw(2)k = ux" W

Denoting 11 == E[x|y = k| and [1, := EX[%X], we have

N
Vwl(W) =" ply = k)ur(fie — 1)
k=1

o Example: y ~ Unif([N]), t ~ Unif([T]), x = e, + pt. One gradient step:

1
l WAle, +pr) ~ 3y 1y = Kb+ 0 (1)
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Key idea: gradient associative memories with noisy inputs
Insight: residual streams, attention output at init, are noisy sums of embeddings

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € RY x [N], and consider the loss

L(W) = Exyyplly, Fw (), Fw(2)k = ux" W

Denoting 11 == E[x|y = k| and [1, := EX[%X], we have

N
Vwl(W) =" ply = k)ur(fie — 1)
k=1

o Example: y ~ Unif([N]), t ~ Unif([T]), x = e, + pt. One gradient step:

1
l WAle, +pr) ~ 3y 1y = Kb+ 0 (1)

o Similar arguments for attention matrices
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Global vs in-context associations

in-context vs global loss attention and feed-forward probes
5 —— K=1, fix q frequent 0.8 —— Wo2 recall 2.2
—— K=5, fix q rare —— WKk2 recall 2.0
4- —— K=1, random q = 06- ~— WK1 recall (t<64) .
—— K=5, random q 9] T ™M —n~ | -1873
3- L =
I 20.4- 16 &
8 5 S
2° g 14 Y
£02
1- 1.2
0- i i i i i i 00- . . . . i WfKL‘ e
0 100 200 300 400 500 0 100 200 300 400 500
iteration iteration

o Global bigrams are learned much faster than induction head, tend to be stored in MLPs
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Global vs in-context associations

in-context vs global loss attention and feed-forward probes
5- —— K=1, fix q frequent 08~ —— Wo2 recall =22
—— K=5, fix q rare —— WKk2 recall

WK1 recall (t<64)

K=1, random q = 0.6-
1 8 ™M -1873
n 3 s
o 204 16 5
o° S S
o =
% 1.4
£02
1- 1.2
o- 00- — WFKL -1.0
0 100 200 300 400 500 0 100 200 300 400 500
iteration iteration

o Global bigrams are learned much faster than induction

Factual: average probability

probability

— the”: full
== 'the LASER
—— 'Spain" full
== 'Spain’: LASER

T T T T T T
10 10 10° 10° 10* 10°
training steps

head, tend to be stored in MLPs

Trade-offs between global and in-context predictions (Chen, Bruna, and B., 2024)

o Trade-offs also appear in LLMs
» “Madrid is located in" — {the, Spain} on Pythia-1B

» Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context
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Global vs in-context associations

in-context vs global loss attention and feed-forward probes
- - Factual: average probabili
5 —— K=1, fix q frequent 08 —— Wo2 recall S22 10° ge p ty
—— K=5, fix q rare —— WKk2 recall 20
4- K=1, random q =06 WK1 recall (t<64) 10"
. —— K=5, random g § ™Mo—n 18 3 .
& T I L\ —— >04 168 Z
FE e v b e o DR g = 8
2- £ I g
[7) 14 2
€02 s, —— ‘the”: full
14 ’ 1.2 10 — = ‘thet LASER
= 'Spain": full
— WFKL -10 1070 Free—= —— 'Spain: LASER
0- 0 0 0 0 0 0 0.0- 4 4 4 4 4 4 \“ T | T T T T
0 100 200 300 400 500 0 100 200 300 400 500 10 10 10° 10° 10* 10°

iteration iteration training steps

o Global bigrams are learned much faster than induction head, tend to be stored in MLPs

Trade-offs between global and in-context predictions (Chen, Bruna, and B., 2024)
o Trade-offs also appear in LLMs
» “Madrid is located in" — {the, Spain} on Pythia-1B
» Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context

Theorem (Chen et al., 2024, informal)

In toy setting, feed-forward layer learns global bigram after O(1) samples, attention
after O(N) samples due to noise.
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Outline

@ Application to Transformers Il: factual recall (Nichani et al., 2024)
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Toy model of factual recall

The capital of France is Paris

o s € S: subject token
r € R: relation token
a*(s,r) € A,: attribute/fact to be stored

z; € N: noise tokens

©

©

©
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Toy model of factual recall

The capital of France is Paris

o s € S: subject token
r € R: relation token
a*(s,r) € A,: attribute/fact to be stored

z; € N: noise tokens

©

©

©

Q: How many parameters do Transformers need to solve this?
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How many parameters do we need?

o One-layer Transformer, with or without MLP, random embeddings
o Embedding dimension d, head dimension dp, MLP width m, H heads

Theorem (Nichani et al., 2024, informal)
o Attention + MLP: Hdy 2 S + R and md 2 SR succeeds
o Attention-only: d 2 R + Amax and Hdp 2 S succeeds (Amax := max, |A,|)

Alberto Bietti Transformers and Associative Memories MFO 2025

21/23



How many parameters do we need?

o One-layer Transformer, with or without MLP, random embeddings
o Embedding dimension d, head dimension dp, MLP width m, H heads

Theorem (Nichani et al., 2024, informal)
o Attention + MLP: Hdy 2 S + R and md 2 SR succeeds
o Attention-only: d 2 R + Amax and Hdp 2 S succeeds (Amax := max, |A,|)

o Total parameters scale with number of facts SR (up to Amax)
o Constructions are based on associative memories
o Attention-only needs large enough d

o Noise is negligible (log factors)
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How many parameters do we need?

o One-layer Transformer, with or without MLP, random embeddings
o Embedding dimension d, head dimension dp, MLP width m, H heads

Theorem (Nichani et al., 2024, informal)
o Attention + MLP: Hd, 2 S + R and md 2 SR succeeds
o Attention-only: d 2 R + Amax and Hdp 2 S succeeds (Amax := max, |A,|)
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Training dynamics
o One-layer Transformer with linear attention and one-hot embeddings

o Gradient flow with initialization Woy(a, z), wko(z) = a > 0

Theorem (Nichani et al., 2024, informal)
o We have global convergence to zero loss

o There is an intermediate phase where the model predicts with p(a|r) instead of p(als,r)
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Training dynamics
o One-layer Transformer with linear attention and one-hot embeddings

o Gradient flow with initialization Woy(a, z), wko(z) = a > 0

Theorem (Nichani et al., 2024, informal)
o We have global convergence to zero loss

o There is an intermediate phase where the model predicts with p(a|r) instead of p(als,r)

o Intermediate phase corresponds to hallucination (over A,, ignoring s)

3.5

3.0
25

220

y Loss

Cross Entro
.
0

°1.0
0.5

0.0

0 2000 4000 6000 8000
Steps of GD
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Concluding remarks

Transformer weights as associative memories
o Storage capacity and gradient-based learning
o Toy models of reasoning and factual recall
o Linear models <3
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Concluding remarks

Transformer weights as associative memories
o Storage capacity and gradient-based learning
o Toy models of reasoning and factual recall
o Linear models <3

Extensions (Cabannes et al., 2024a,b)
o Scaling laws for power law data (finite d and n)

o Optimization beyond one step
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Concluding remarks

Transformer weights as associative memories
o Storage capacity and gradient-based learning
o Toy models of reasoning and factual recall
o Linear models <3

Extensions (Cabannes et al., 2024a,b)
o Scaling laws for power law data (finite d and n)

o Optimization beyond one step

Future directions

©

Finite sample results
More complex reasoning problems
Fine-grained optimization

© © ©

Learning embeddings
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Concluding remarks

Transformer weights as associative memories
o Storage capacity and gradient-based learning
o Toy models of reasoning and factual recall
o Linear models <3

Extensions (Cabannes et al., 2024a,b)
o Scaling laws for power law data (finite d and n)

o Optimization beyond one step

Future directions

©

Finite sample results
More complex reasoning problems
Fine-grained optimization

© © ©

Learning embeddings

Thank you!
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