4th Italian Meeting on Probability and Mathematical Statistics. Rome, June 2024

Session: Deep Learning Theory

Understanding Transformers through Associative Memories

Alberto Bietti

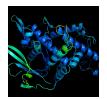
Flatiron Institute. Simons Foundation

4th Italian Meeting on Probability and Mathematical Statistics. Rome, June 2024

w/ Vivien Cabannes, Elvis Dohmatob, Diane Bouchacourt, Hervé Jegou, Léon Bottou (Meta)

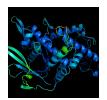
Success of deep learning

State-of-the-art models in various domains (images, language, speech, biology, ...)



Success of deep learning

State-of-the-art models in various domains (images, language, speech, biology, ...)



$$f(x) = W_L \sigma(W_{L-1} \cdots \sigma(W_1 x) \cdots)$$

Recipe: huge models + lots of data + compute + simple algorithms

Breaking the curse of dimensionality I: feature learning

Curse of dimensionality:

- Image/text/genomics/etc. data are **high-dimensional**: $x \in \mathbb{R}^d$, d large
- Curse of dimensionality \implies need additional **structure** for learning

Breaking the curse of dimensionality I: feature learning

Curse of dimensionality:

- Image/text/genomics/etc. data are **high-dimensional**: $x \in \mathbb{R}^d$, d large
- Curse of dimensionality \implies need additional **structure** for learning

Feature learning:

• Single-index/multi-index models:

$$\mathbb{E}[y|x] = f^*(w_1^\top x, \dots, w_r^\top x), \qquad r \ll d$$

Example: CNNs learn Gabor-like filters

Breaking the curse of dimensionality I: feature learning

Curse of dimensionality:

- Image/text/genomics/etc. data are **high-dimensional**: $x \in \mathbb{R}^d$, d large
- Curse of dimensionality \implies need additional **structure** for learning

Feature learning:

• Single-index/multi-index models:

$$\mathbb{E}[y|x] = f^*(w_1^\top x, \dots, w_r^\top x), \qquad r \ll d$$

- Example: CNNs learn Gabor-like filters
- **Goal**: $O(n^{-1/r})$ instead of $O(n^{-1/d})$ rates (Bach, 2017)
- Gradient descent can achieve this (e.g., Ba et al., 2022; B. et al., 2022; Damian et al., 2022)

• **Local structure**: split input into small local patches / "tokens": $x = (x_1, ..., x_T)$

Language Learning Models (LLMs) have revolutionized the field of natural language processing, enabling machines to understand and generate human-like text. At the core of LLMs lies the concept of tokens, which serve as the fundamental building blocks for processing and representing text data. In this blog post, we'll demystify tokens in LLMs, unraveling their significance and exploring how they contribute to the power and flexibility of these remarkable models.

• **Local structure**: split input into small local patches / "tokens": $x = (x_1, \dots, x_T)$

Language Learning Models (LLMs) have revolutionized the field of natural language processing, enabling machines to understand and generate human-like text. At the core of LLMs lies the concept of tokens, which serve as the fundamental building blocks for processing and representing text data. In this blog post, we'll demystify tokens in LLMs, unraveling their significance and exploring how they contribute to the power and flexibility of these remarkable models.

Target may involve interactions between tokens, e.g. (Wahba, 1990)

$$\mathbb{E}[y|x] = \sum_{i} f_{i}^{*}(x_{i}) + \sum_{i,j} f_{ij}^{*}(x_{i}, x_{j})$$

• **Local structure**: split input into small local patches / "tokens": $x = (x_1, \dots, x_T)$

Language Learning Models (LLMs) have revolutionized the field of natural language processing, enabling machines to understand and generate humanlike text. At the core of LLMs lies the concept of tokens, which serve as the fundamental building blocks for processing and representing text data. In this blog post, we'll demystify tokens in LLMs, unraveling their significance and exploring how they contribute to the power and flexibility of these remarkable models.

Target may involve interactions between tokens, e.g. (Wahba, 1990)

$$\mathbb{E}[y|x] = \sum_{i} f_{i}^{*}(x_{i}) + \sum_{i,j} f_{ij}^{*}(x_{i}, x_{j})$$

Role of architectures:

• Convolution: local interactions at different scales

• **Local structure**: split input into small local patches / "tokens": $x = (x_1, \dots, x_T)$

Language Learning Models (LLMs) have revolutionized the field of natural language processing, enabling machines to understand and generate humanlike text. At the core of LLMs lies the concept of tokens, which serve as the fundamental building blocks for processing and representing text data. In this blog post, we'll demystify tokens in LLMs, unraveling their significance and exploring how they contribute to the power and flexibility of these remarkable models.

Target may involve interactions between tokens, e.g. (Wahba, 1990)

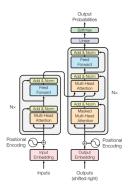
$$\mathbb{E}[y|x] = \sum_{i} f_{i}^{*}(x_{i}) + \sum_{i,j} f_{ij}^{*}(x_{i}, x_{j})$$

Role of architectures:

- Convolution: local interactions at different scales
- Attention: non-local interactions

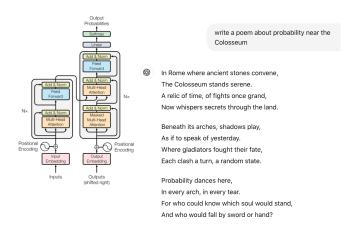
Transformers and language models

• **Transformers**: attention + MLPs + residual connections



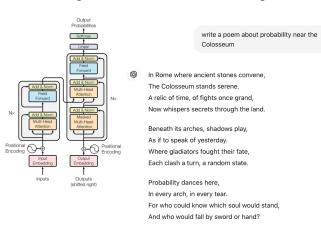
Transformers and language models

- **Transformers**: attention + MLPs + residual connections
- Large language models: train to predict next token on all the web (+ fine-tune)



Transformers and language models

- **Transformers**: attention + MLPs + residual connections
- Large language models: train to predict next token on all the web (+ fine-tune)
- In-context "reasoning" vs memorization: transformers seem to use a mix of "reasoning" from context and "knowledge" from training set



Congress shall make no law respecting an establishment of religion, or prohibiting the free exercise thereof; or abridging the freedom of speech, or of the press; or the right of the people peaceably to assemble, and to petition the Government for a redress of grievances.

This is known as the First Amendment to the United States Constitution and it is designed to protect the fundamental rights of citizens of the United States. It guarantees citizens the right to practice any religion of their choosing, the freedom of speech and of the press, and the right to peacefully assemble and to petition the government.

How Transformer language models use context

• Few-shot learning, basic "reasoning", math, linguistic capabilities

```
Translate English to French: task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

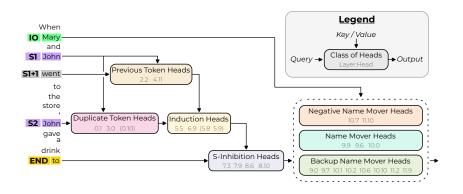
plush girafe => girafe peluche

cheese => prompt
```

(Brown et al., 2020)

How Transformer language models use context

- Few-shot learning, basic "reasoning", math, linguistic capabilities
- Transformers may achieve this using "circuits" of attention heads



(Wang et al., 2022)

• Interpretability: what mechanisms are used inside a transformer?

- Interpretability: what mechanisms are used inside a transformer?
- Memorization: how does memorization come into play?

- Interpretability: what mechanisms are used inside a transformer?
- Memorization: how does memorization come into play?
- Training dynamics: how is this learned with optimization?

- Interpretability: what mechanisms are used inside a transformer?
- Memorization: how does memorization come into play?
- Training dynamics: how is this learned with optimization?
- Role of depth: what are benefits of deep, compositional models?

- Interpretability: what mechanisms are used inside a transformer?
- Memorization: how does memorization come into play?
- Training dynamics: how is this learned with optimization?
- Role of depth: what are benefits of deep, compositional models?
- Experimental/theory setup: what is a simple setting for studying this?

- Interpretability: what mechanisms are used inside a transformer?
- Memorization: how does memorization come into play?
- Training dynamics: how is this learned with optimization?
- Role of depth: what are benefits of deep, compositional models?
- Experimental/theory setup: what is a simple setting for studying this?

This work: (B. et al., 2023, see also Vivien Cabannes' talk)

• Empirical+theoretical study by viewing parameters as associative memories

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Fix **trigger tokens**: q_1, \ldots, q_K

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Fix trigger tokens: q_1, \dots, q_K

Sample each sequence $z_{1:T} \in [N]^T$ as follows

• Output tokens: $o_k \sim \pi_o(\cdot|q_k)$ (random)

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Fix trigger tokens: q_1, \ldots, q_K

Sample each sequence $z_{1:T} \in [N]^T$ as follows

- Output tokens: $o_k \sim \pi_o(\cdot|q_k)$ (random)
- Sequence-specific Markov model: $z_1 \sim \pi_1$, $z_t | z_{t-1} \sim p(\cdot | z_{t-1})$ with

$$p(j|i) = \begin{cases} \mathbb{1}\{j = o_k\}, & \text{if } i = q_k, \quad k = 1, \dots, K \\ \pi_b(j|i), & \text{o/w.} \end{cases}$$

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr Bacon went to the mall, it started raining, then Mr Bacon decided to buy a raincoat and umbrella. He went to the store and bought a red raincoat and yellow polka dot umbrella.

Fix **trigger tokens**: q_1, \ldots, q_K

Sample each sequence $z_{1:T} \in [N]^T$ as follows

- Output tokens: $o_k \sim \pi_o(\cdot|q_k)$ (random)
- Sequence-specific Markov model: $z_1 \sim \pi_1$, $z_t | z_{t-1} \sim p(\cdot | z_{t-1})$ with

$$p(j|i) = \begin{cases} \mathbb{1}\{j = o_k\}, & \text{if } i = q_k, \quad k = 1, \dots, K \\ \pi_b(j|i), & \text{o/w.} \end{cases}$$

 π_b : global bigrams model (estimated from Karpathy's character-level Shakespeare)

• Input sequence: $[z_1, \dots, z_T] \in [N]^T$

- Input sequence: $[z_1, \ldots, z_T] \in [N]^T$
- Embedding layer:

$$\mathbf{x}_t := \mathbf{w}_E(\mathbf{z}_t) + \mathbf{p}_t \in \mathbb{R}^d$$

- $w_E(z)$: token embedding of $z \in [N]$
- ▶ p_t : positional embedding at position $t \in [T]$

- Input sequence: $[z_1, \ldots, z_T] \in [N]^T$
- Embedding layer:

$$\mathbf{x}_t := \mathbf{w}_E(\mathbf{z}_t) + \mathbf{p}_t \in \mathbb{R}^d$$

- $w_E(z)$: token embedding of $z \in [N]$
- ▶ p_t : positional embedding at position $t \in [T]$
- Intermediate layers: add outputs to the **residual stream** x_t
 - ► Repeat *L* times: **Attention** and **feed-forward** layers

- Input sequence: $[z_1, \ldots, z_T] \in [N]^T$
- Embedding layer:

$$x_t := w_E(z_t) + p_t \in \mathbb{R}^d$$

- $w_E(z)$: token embedding of $z \in [N]$
- ▶ p_t : positional embedding at position $t \in [T]$
- Intermediate layers: add outputs to the **residual stream** x_t
 - ► Repeat *L* times: **Attention** and **feed-forward** layers
- Unembedding layer: logits for each $k \in [N]$,

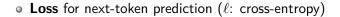
$$(\xi_t)_k = w_U(k)^\top x_t$$

- Input sequence: $[z_1, \ldots, z_T] \in [N]^T$
- Embedding layer:

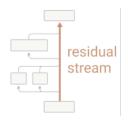
$$x_t := w_E(z_t) + p_t \in \mathbb{R}^d$$

- $w_E(z)$: token embedding of $z \in [N]$
- ▶ p_t : positional embedding at position $t \in [T]$
- Intermediate layers: add outputs to the **residual stream** x_t
 - ► Repeat *L* times: **Attention** and **feed-forward** layers
- Unembedding layer: logits for each $k \in [N]$,

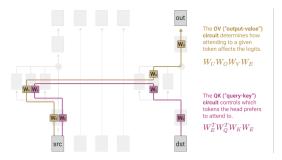
$$(\xi_t)_k = w_U(k)^\top x_t$$



$$\sum_{t=1}^{T-1} \ell(z_{t+1}, \xi_t)$$



Transformers II: self-attention

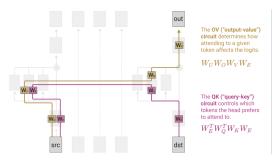


Causal self-attention layer (single head):

$$x_t' = \sum_{s=1}^t \beta_s W_O W_V x_s, \quad \text{ with } \beta_s = \frac{\exp(x_s^\top W_K^\top W_Q x_t)}{\sum_{s=1}^t \exp(x_s^\top W_K^\top W_Q x_t)}$$

- $W_K, W_Q \in \mathbb{R}^{d \times d}$: key and query matrices, $W_V, W_O \in \mathbb{R}^{d \times d}$: value and output matrices
- β_s : attention weights, $\sum_{s=1}^t \beta_s = 1$

Transformers II: self-attention



Causal self-attention layer (single head):

$$x_t' = \sum_{s=1}^t \beta_s W_O W_V x_s, \quad \text{ with } \beta_s = \frac{\exp(x_s^\top W_K^\top W_Q x_t)}{\sum_{s=1}^t \exp(x_s^\top W_K^\top W_Q x_t)}$$

- $W_K, W_Q \in \mathbb{R}^{d \times d}$: key and query matrices, $W_V, W_O \in \mathbb{R}^{d \times d}$: value and output matrices
- β_s : attention weights, $\sum_{s=1}^t \beta_s = 1$
- ullet Each x_t' is then added to the corresponding residual stream

$$x_t := x_t + x_t'$$

Alberto Bietti

Transformers III: feed-forward

Feed-forward layer: apply simple transformation to each token representation

MLP:

$$\mathbf{x}_t' = W_2 \sigma(W_1 \mathbf{x}_t), \qquad W_2 \in \mathbb{R}^{d \times D}, W_1 \in \mathbb{R}^{D \times d}$$

• Added to the residual stream: $x_t := x_t + x'_t$

Transformers III: feed-forward

Feed-forward layer: apply simple transformation to each token representation

MLP:

$$\mathbf{x}_t' = W_2 \sigma(W_1 \mathbf{x}_t), \qquad W_2 \in \mathbb{R}^{d \times D}, W_1 \in \mathbb{R}^{D \times d}$$

- Added to the residual stream: $x_t := x_t + x_t'$
- Some evidence that feed-forward layers store "global knowledge", e.g., for factual recall (Geva et al., 2020; Meng et al., 2022; Chen et al., 2024)

ullet 1-layer transformer fails: $\sim 55\%$ accuracy on in-context output predictions

- 1-layer transformer fails: $\sim 55\%$ accuracy on in-context output predictions
- \bullet 2-layer transformer succeeds: $\sim 99\%$ accuracy

- 1-layer transformer fails: $\sim 55\%$ accuracy on in-context output predictions
- 2-layer transformer succeeds: $\sim 99\%$ accuracy

See also representation lower bounds (Sanford, Hsu, and Telgarsky, 2023)

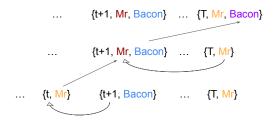
Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

- 1st layer: previous-token head
 - ▶ attends to previous token and copies it to residual stream

Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

- 1st layer: previous-token head
 - ▶ attends to previous token and copies it to residual stream
- 2nd layer: induction head
 - ► attends to output of previous token head, copies attended token

Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)



- 1st layer: previous-token head
 - ▶ attends to previous token and copies it to residual stream
- 2nd layer: induction head
 - ▶ attends to output of previous token head, copies attended token
- Matches observed attention scores:

• Consider sets of **nearly orthonormal embeddings** $\{u_i\}_{i\in\mathcal{I}}$ and $\{v_j\}_{j\in\mathcal{J}}$:

$$\|u_i\| \approx 1$$
 and $u_i^\top u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^\top v_j \approx 0$

• Consider sets of **nearly orthonormal embeddings** $\{u_i\}_{i\in\mathcal{I}}$ and $\{v_j\}_{j\in\mathcal{J}}$:

$$\|u_i\| \approx 1$$
 and $u_i^\top u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^\top v_j \approx 0$

• Consider **pairwise associations** $(i,j) \in \mathcal{M}$ with **weights** α_{ij} and define:

$$W = \sum_{(i,j)\in\mathcal{M}} \alpha_{ij} \mathbf{v}_j \mathbf{u}_i^{\top}$$

• We then have $\mathbf{v_j}^{\top} W \mathbf{u_i} \approx \alpha_{ij}$

• Consider sets of **nearly orthonormal embeddings** $\{u_i\}_{i\in\mathcal{I}}$ and $\{v_j\}_{j\in\mathcal{J}}$:

$$\|u_i\| \approx 1$$
 and $u_i^\top u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^\top v_j \approx 0$

• Consider pairwise associations $(i,j) \in \mathcal{M}$ with weights α_{ij} and define:

$$W = \sum_{(i,j)\in\mathcal{M}} \alpha_{ij} \mathbf{v}_j \mathbf{u}_i^{\top}$$

- We then have $\mathbf{v_j}^{\top} W \mathbf{u_i} \approx \alpha_{ij}$
- Computed in Transformers for logits in next-token prediction and self-attention

• Consider sets of nearly orthonormal embeddings $\{u_i\}_{i\in\mathcal{I}}$ and $\{v_j\}_{j\in\mathcal{J}}$:

$$\|u_i\| \approx 1$$
 and $u_i^\top u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^\top v_j \approx 0$

• Consider pairwise associations $(i,j) \in \mathcal{M}$ with weights α_{ij} and define:

$$W = \sum_{(i,j)\in\mathcal{M}} \alpha_{ij} \mathbf{v}_j \mathbf{u}_i^{\top}$$

- We then have $\mathbf{v_i}^{\top} W \mathbf{u_i} \approx \alpha_{ii}$
- Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

Random embeddings in high dimension

• We consider **random** embeddings u_i with i.i.d. N(0,1/d) entries and d large

$$\|u_i\| pprox 1$$
 and $u_i^ op u_j = O(1/\sqrt{d})$

Random embeddings in high dimension

• We consider **random** embeddings u_i with i.i.d. N(0,1/d) entries and d large

$$\|u_i\| pprox 1$$
 and $u_i^ op u_j = O(1/\sqrt{d})$

• **Remapping**: multiply by random matrix W with $\mathcal{N}(0,1/d)$ entries:

$$\| Wu_i \| pprox 1$$
 and $u_i^ op Wu_i = O(1/\sqrt{d})$

Random embeddings in high dimension

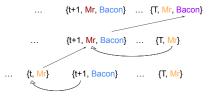
• We consider **random** embeddings u_i with i.i.d. N(0,1/d) entries and d large

$$\|u_i\| pprox 1$$
 and $u_i^ op u_j = O(1/\sqrt{d})$

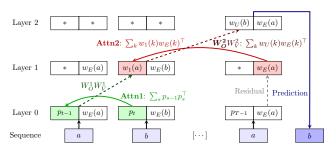
• **Remapping**: multiply by random matrix W with $\mathcal{N}(0,1/d)$ entries:

$$\| \textit{Wu}_i \| pprox 1$$
 and $\textit{u}_i^{ op} \textit{Wu}_i = \textit{O}(1/\sqrt{d})$

ullet Value/Output matrices help with token remapping: $Mr \mapsto Mr$, $Bacon \mapsto Bacon$



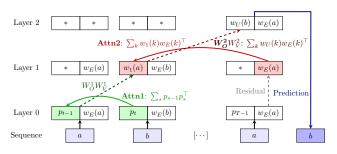
Induction head with associative memories



$$W_K^1 = \sum_{t=2}^T p_t p_{t-1}^\top, \quad W_K^2 = \sum_{k \in Q} w_E(k) w_1(k)^\top, \quad W_O^2 = \sum_{k=1}^N w_U(k) (W_V^2 w_E(k))^\top,$$

- Random embeddings $w_E(k)$, $w_U(k)$, random matrices W_V^1 , W_Q^1 , W_V^2 , fix $W_Q = I$
- **Remapped** previous tokens: $w_1(k) := W_O^1 W_V^1 w_E(k)$

Induction head with associative memories



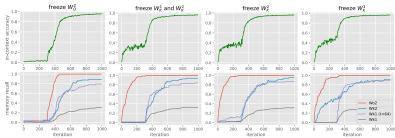
$$W_K^1 = \sum_{t=2}^T p_t p_{t-1}^\top, \quad W_K^2 = \sum_{k \in Q} w_E(k) w_1(k)^\top, \quad W_O^2 = \sum_{k=1}^N w_U(k) (W_V^2 w_E(k))^\top,$$

- Random embeddings $w_E(k)$, $w_U(k)$, random matrices W_V^1 , W_Q^1 , W_V^2 , fix $W_Q = I$
- **Remapped** previous tokens: $w_1(k) := W_O^1 W_V^1 w_E(k)$

Q: Does this match practice?

Empirically probing the dynamics

Train only W_K^1 , W_K^2 , W_O^2 , loss on deterministic output tokens only

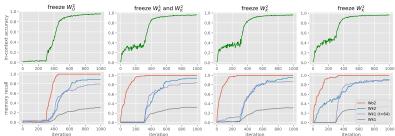


• "Memory recall **probes**": for target memory $W_* = \sum_{(i,j) \in \mathcal{M}} v_j u_i^{\top}$, compute

$$R(\hat{W}, W_*) = rac{1}{|\mathcal{M}|} \sum_{(i,j) \in \mathcal{M}} \mathbb{1}\{j = rg \max_{j'} v_{j'}^ op \hat{W} u_i\}$$

Empirically probing the dynamics

Train only W_K^1 , W_K^2 , W_O^2 , loss on deterministic output tokens only



• "Memory recall **probes**": for target memory $W_* = \sum_{(i,j) \in \mathcal{M}} v_j u_i^{\top}$, compute

$$R(\hat{W}, W_*) = rac{1}{|\mathcal{M}|} \sum_{(i,j) \in \mathcal{M}} \mathbb{1}\{j = rg \max_{j'} v_{j'}^ op \hat{W} u_i\}$$

- Natural learning "**order**": W_O^2 first, W_K^2 next, W_K^1 last
- Joint learning is faster

• Simple model to learn associative memories:

$$\mathbf{z} \in [N] \to \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to W \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to (\mathbf{v}_{\mathbf{k}}^\top W \mathbf{u}_{\mathbf{z}})_{\mathbf{k}} \in \mathbb{R}^M$$

• Simple model to learn associative memories:

$$\mathbf{z} \in [N] \to \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to W \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to (\mathbf{v}_{\mathbf{k}}^\top W \mathbf{u}_{\mathbf{z}})_{\mathbf{k}} \in \mathbb{R}^M$$

• u_z , v_y : nearly-orthogonal input/output embeddings, assume fixed

• Simple model to learn associative memories:

$$\mathbf{z} \in [N] \to \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to W \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to (\mathbf{v}_{\mathbf{k}}^\top W \mathbf{u}_{\mathbf{z}})_k \in \mathbb{R}^M$$

- u_z , v_v : nearly-orthogonal input/output embeddings, assume fixed
- Cross-entropy loss for logits $\xi \in \mathbb{R}^M$: $\ell(y,\xi) = -\xi_y + \log(\sum_k \exp \xi_k)$

• Simple model to learn associative memories:

$$\mathbf{z} \in [N] \to \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to W \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to (\mathbf{v}_{\mathbf{k}}^\top W \mathbf{u}_{\mathbf{z}})_{\mathbf{k}} \in \mathbb{R}^M$$

- u_z, v_y : nearly-orthogonal input/output embeddings, assume fixed
- Cross-entropy loss for logits $\xi \in \mathbb{R}^M$: $\ell(y,\xi) = -\xi_y + \log(\sum_k \exp \xi_k)$

Lemma (Gradients as memories)

Let p be a data distribution over $(z, y) \in [N] \times [M]$, and consider the loss

$$L(W) = \mathbb{E}_{(z,y) \sim p}[\ell(y,\xi_W(z))], \quad \xi_W(z)_k = v_k^\top W u_z,$$

with ℓ the cross-entropy loss and u_z , v_k input/output embeddings.

• Simple model to learn associative memories:

$$\mathbf{z} \in [N] \to \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to W \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to (\mathbf{v}_{\mathbf{k}}^\top W \mathbf{u}_{\mathbf{z}})_k \in \mathbb{R}^M$$

- u_z, v_y : nearly-orthogonal input/output embeddings, assume fixed
- Cross-entropy loss for logits $\xi \in \mathbb{R}^M$: $\ell(y,\xi) = -\xi_y + \log(\sum_k \exp \xi_k)$

Lemma (Gradients as memories)

Let p be a data distribution over $(z, y) \in [N] \times [M]$, and consider the loss

$$L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,\xi_W(z))], \quad \xi_W(z)_k = \mathbf{v_k}^\top W \mathbf{u_z},$$

with ℓ the cross-entropy loss and u_z , v_k input/output embeddings. Then,

$$\nabla L(W) = \sum_{k=1}^{M} \mathbb{E}_{z}[(\hat{p}_{W}(y=k|z) - p(y=k|z)) \mathbf{v}_{k} \mathbf{u}_{z}^{\top}],$$

with $\hat{p}_W(y = k|z) = \exp(\xi_W(z)_k) / \sum_j \exp(\xi_W(z)_j)$.

Data model: $z \sim \text{Unif}([N]), y = f_*(z) \in [N]$

Data model: $z \sim \text{Unif}([N]), y = f_*(z) \in [N]$

• After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))v_{k}u_{z}^{\top}]$$

$$= \eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))v_{k}u_{z}^{\top}$$

$$= \frac{\eta}{N} \sum_{z,k} (\mathbb{I}\{k = f^{*}(z)\} - \frac{1}{N})v_{k}u_{z}^{\top}$$

Data model: $z \sim \text{Unif}([N]), y = f_*(z) \in [N]$

• After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))v_{k}u_{z}^{\top}]$$

$$= \eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))v_{k}u_{z}^{\top}$$

$$= \frac{\eta}{N} \sum_{z,k} (\mathbb{1}\{k = f^{*}(z)\} - \frac{1}{N})v_{k}u_{z}^{\top}$$

• Then, for any (z, k) we have

$$\mathbf{v}_{k}^{\top} W_{1} \mathbf{u}_{z} \approx \frac{\eta}{N} \mathbb{1}\{f_{*}(z) = k\} + O\left(\frac{\eta}{N^{2}}\right)$$

Data model: $z \sim \text{Unif}([N]), y = f_*(z) \in [N]$

• After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))v_{k}u_{z}^{\top}]$$

$$= \eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))v_{k}u_{z}^{\top}$$

$$= \frac{\eta}{N} \sum_{z,k} (\mathbb{1}\{k = f^{*}(z)\} - \frac{1}{N})v_{k}u_{z}^{\top}$$

• Then, for any (z, k) we have

$$\mathbf{v}_{k}^{\top} W_{1} \mathbf{u}_{z} \approx \frac{\eta}{N} \mathbb{1}\{f_{*}(z) = k\} + O\left(\frac{\eta}{N^{2}}\right)$$

• Corollary: $\hat{f}(z) = \arg\max_k v_k^\top W_1 u_z$ has near-perfect accuracy

Data model: $z \sim \text{Unif}([N]), y = f_*(z) \in [N]$

• After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))v_{k}u_{z}^{\top}]$$

$$= \eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))v_{k}u_{z}^{\top}$$

$$= \frac{\eta}{N} \sum_{z,k} (\mathbb{1}\{k = f^{*}(z)\} - \frac{1}{N})v_{k}u_{z}^{\top}$$

• Then, for any (z, k) we have

$$\mathbf{v}_{k}^{\top} W_{1} \mathbf{u}_{z} \approx \frac{\eta}{N} \mathbb{1}\{f_{*}(z) = k\} + O\left(\frac{\eta}{N^{2}}\right)$$

• Corollary: $\hat{f}(z) = \arg\max_{k} \mathbf{v_k}^{\top} W_1 \mathbf{u_z}$ has near-perfect accuracy

Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \dots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{j=1}^s u_{z_s} \in \mathbb{R}^d$$

► e.g., bag of words, output of attention operation, residual connections

In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \ldots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{i=1}^s u_{z_s} \in \mathbb{R}^d$$

- ▶ e.g., bag of words, output of attention operation, residual connections
- Some elements may be irrelevant for prediction

In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \ldots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{j=1}^s u_{z_s} \in \mathbb{R}^d$$

- ► e.g., bag of words, output of attention operation, residual connections
- Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^d \times [N]$, and consider the loss

$$L(W) = \mathbb{E}_{(x,y) \sim p}[\ell(y, \xi_W(x))], \quad \xi_W(x)_k = \mathbf{v_k}^\top W \mathbf{x}.$$

In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \dots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{j=1}^s u_{z_s} \in \mathbb{R}^d$$

- ▶ e.g., bag of words, output of attention operation, residual connections
- Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^d \times [N]$, and consider the loss

$$L(W) = \mathbb{E}_{(x,y) \sim p}[\ell(y, \xi_W(x))], \quad \xi_W(x)_k = \mathbf{v_k}^\top W \mathbf{x}.$$

Denoting $\mu_k := \mathbb{E}[x|y=k]$ and $\hat{\mu}_k := \mathbb{E}_x[\frac{\hat{p}_W(k|x)}{p(y=k)}x]$, we have

$$\nabla_W L(W) = \sum_{k=1}^N p(y=k) v_k (\hat{\mu}_k - \mu_k)^\top.$$

- Data model: $y \sim \text{Unif}([N]), \quad t \sim \text{Unif}([T]), \quad x = u_y + n_t \in \mathbb{R}^d$
 - lacktriangle where $\{n_t\}_{t=1}^T$ are another collection of embeddings, e.g., positional embeddings

- Data model: $y \sim \text{Unif}([N]), t \sim \text{Unif}([T]), x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, e.g., positional embeddings
- After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_1 = W_0 - \eta \sum_{k=1}^{N} p(y=k) v_k (\hat{\mu}_k - \mu_k)^{\top}$$

$$= \frac{\eta}{N} \sum_{k=1}^{N} v_k (\mathbb{E}[u_y + n_t | y = k] - \mathbb{E}[u_y + n_t])^{\top}$$

$$= \frac{\eta}{N} \sum_{k=1}^{N} v_k u_k^{\top} - \frac{\eta}{N^2} \sum_{k,j} v_k u_j^{\top}$$

- Data model: $y \sim \text{Unif}([N]), \quad t \sim \text{Unif}([T]), \quad x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, e.g., positional embeddings
- After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_1 = W_0 - \eta \sum_{k=1}^{N} p(y=k) v_k (\hat{\mu}_k - \mu_k)^{\top}$$

$$= \frac{\eta}{N} \sum_{k=1}^{N} v_k (\mathbb{E}[u_y + n_t | y = k] - \mathbb{E}[u_y + n_t])^{\top}$$

$$= \frac{\eta}{N} \sum_{k=1}^{N} v_k u_k^{\top} - \frac{\eta}{N^2} \sum_{k,j} v_k u_j^{\top}$$

• Then, for any $k, y, t, x = u_y + n_t$, we have

$$\mathbf{v_k}^{\top} W_1 \mathbf{x} \approx \frac{\eta}{N} \mathbb{1}\{k = y\} + O\left(\frac{\eta}{N^2}\right)$$

- Data model: $y \sim \text{Unif}([N]), \quad t \sim \text{Unif}([T]), \quad x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, e.g., positional embeddings
- After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_1 = W_0 - \eta \sum_{k=1}^{N} p(y=k) v_k (\hat{\mu}_k - \mu_k)^{\top}$$

$$= \frac{\eta}{N} \sum_{k=1}^{N} \frac{v_k}{(\mathbb{E}[u_y + n_t | y = k] - \mathbb{E}[u_y + n_t])^{\top}}$$

$$= \frac{\eta}{N} \sum_{k=1}^{N} \frac{v_k}{u_k}^{\top} - \frac{\eta}{N^2} \sum_{k,j} v_k u_j^{\top}$$

• Then, for any $k, y, t, x = u_y + n_t$, we have

$$\mathbf{v}_{k}^{\top} W_{1} \times \approx \frac{\eta}{N} \mathbb{1}\{k = y\} + O\left(\frac{\eta}{N^{2}}\right)$$

• Corollary: $\hat{f}(x) = \arg\max_{k} \mathbf{v_k}^{\top} W_1 x$ has near-perfect accuracy

Gradient steps for the bigram task

Setting: transformer on the bigram task

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture

Gradient steps for the bigram task

Setting: transformer on the bigram task

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture

Theorem (informal)

In the setup above, we can recover the desired associative memories with $\bf 3$ gradient steps on the population loss, assuming near-orthonormal embeddings: first on W_O^2 , then W_K^2 , then W_K^1 .

Gradient steps for the bigram task

Setting: transformer on the bigram task

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture

Theorem (informal)

In the setup above, we can recover the desired associative memories with **3 gradient steps** on the population loss, assuming near-orthonormal embeddings: first on W_O^2 , then W_K^2 , then W_K^1 .

Key ideas

- ullet Attention is uniform at initialization \Longrightarrow inputs are sums of embeddings
- ullet W_O^2 : correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z_T
- $W_K^{1/2}$: correct associations lead to more focused attention

Discussion and next steps

Summary

- Bigram model: simple but rich toy model for discrete data
- Transformer weights as associative memories
- Learning mechanisms via few top-down gradient steps

Discussion and next steps

Summary

- Bigram model: simple but rich toy model for discrete data
- Transformer weights as associative memories
- Learning mechanisms via few top-down gradient steps
- Vivien's talk: precise analysis of one-layer associative memory

Discussion and next steps

Summary

- Bigram model: simple but rich toy model for discrete data
- Transformer weights as associative memories
- Learning mechanisms via few top-down gradient steps
- Vivien's talk: precise analysis of one-layer associative memory

Future directions

- More complex "reasoning" mechanisms, links with "emergence"
- Learning dynamics: multiple gradient steps? joint training? embeddings?

References I

- A. B., J. Bruna, C. Sanford, and M. J. Song. Learning single-index models with shallow neural networks. *Advances in Neural Information Processing Systems*, 2022.
- A. B., V. Cabannes, D. Bouchacourt, H. Jegou, and L. Bottou. Birth of a transformer: A memory viewpoint. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- J. Ba, M. A. Erdogdu, T. Suzuki, Z. Wang, D. Wu, and G. Yang. High-dimensional asymptotics of feature learning: How one gradient step improves the representation. *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- F. Bach. Breaking the curse of dimensionality with convex neural networks. *Journal of Machine Learning Research (JMLR)*, 18(19):1–53, 2017.
- T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2020.
- L. Chen, J. Bruna, and A. B. How truncating weights improves reasoning in language models. *arXiv* preprint arXiv:2406.03068, 2024.
- L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2018.

References II

- A. Damian, J. Lee, and M. Soltanolkotabi. Neural networks can learn representations with gradient descent. In *Conference on Learning Theory (COLT)*, 2022.
- Y. Dandi, F. Krzakala, B. Loureiro, L. Pesce, and L. Stephan. Learning two-layer neural networks, one (giant) step at a time. *arXiv preprint arXiv:2305.18270*, 2023.
- N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, N. DasSarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, A. Jones,
 - J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*, 2021.
- M. Geva, R. Schuster, J. Berant, and O. Levy. Transformer feed-forward layers are key-value memories. arXiv preprint arXiv:2012.14913, 2020.
- J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. *Proceedings of the national academy of sciences*, 79(8):2554–2558, 1982.
- M. Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.
- T. Kohonen. Correlation matrix memories. IEEE Transactions on Computers, 1972.
- S. Mei, T. Misiakiewicz, and A. Montanari. Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit. In *Conference on Learning Theory (COLT)*, 2019.

References III

- K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating and editing factual associations in GPT. *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- E. Nichani, A. Damian, and J. D. Lee. Provable guarantees for nonlinear feature learning in three-layer neural networks. *arXiv preprint arXiv:2305.06986*, 2023.
- C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, S. Johnston, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah. In-context learning and induction heads. *Transformer Circuits Thread*, 2022.
- C. Sanford, D. Hsu, and M. Telgarsky. Representational strengths and limitations of transformers. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- G. Wahba. Spline models for observational data, volume 59. Siam, 1990.
- K. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt. Interpretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint arXiv:2211.00593, 2022.
- D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic associative memory. *Nature*, 222(5197):960–962, 1969.
- G. Yang and E. J. Hu. Tensor programs iv: Feature learning in infinite-width neural networks. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2021.

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions
 - e.g., smooth functions, sparse polynomials

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions
 - ► e.g., smooth functions, sparse polynomials
- In practice, discrete structure and memorization are often crucial
 - ▶ language: words, syntactic rules, semantic concepts, facts
 - ▶ vision: "visual words", features, objects

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions
 - ▶ e.g., smooth functions, sparse polynomials
- In practice, discrete structure and memorization are often crucial
 - ▶ language: words, syntactic rules, semantic concepts, facts
 - ▶ vision: "visual words", features, objects

Statistical learning setup:

• Data distribution p(z, y) over pairs of **discrete tokens** $(z, y) \in [N] \times [M]$

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions
 - ► e.g., smooth functions, sparse polynomials
- In practice, discrete structure and memorization are often crucial
 - ► language: words, syntactic rules, semantic concepts, facts
 - ▶ vision: "visual words", features, objects

Statistical learning setup:

- Data distribution p(z, y) over pairs of **discrete tokens** $(z, y) \in [N] \times [M]$
- We want a predictor $\hat{f}: [N] \to [M]$ with small 0-1 loss:

$$L_{01}(\hat{f}) = \mathbb{P}(\mathbf{y} \neq \hat{f}(\mathbf{z}))$$

Motivation:

- DL theory often focuses on learning/approximation of continuous target functions
 - e.g., smooth functions, sparse polynomials
- In practice, discrete structure and memorization are often crucial
 - ▶ language: words, syntactic rules, semantic concepts, facts
 - ▶ vision: "visual words", features, objects

Statistical learning setup:

- Data distribution p(z, y) over pairs of **discrete tokens** $(z, y) \in [N] \times [M]$
- We want a predictor $\hat{f}: [N] \to [M]$ with **small 0-1 loss**:

$$L_{01}(\hat{f}) = \mathbb{P}(\underline{y} \neq \hat{f}(\underline{z}))$$

• Typically $\hat{f}(z) = \operatorname{arg\,max}_y f_y(z)$ with $f_y : [N] \to \mathbb{R}$ for each $y \in [M]$

• Consider sets of **nearly orthonormal embeddings** $\{u_i\}_{i\in\mathcal{I}}$ and $\{v_j\}_{j\in\mathcal{J}}$:

$$\|u_i\| \approx 1$$
 and $u_i^\top u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^\top v_j \approx 0$

• Consider sets of **nearly orthonormal embeddings** $\{u_i\}_{i\in\mathcal{I}}$ and $\{v_j\}_{j\in\mathcal{J}}$:

$$\|u_i\| \approx 1$$
 and $u_i^\top u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^\top v_j \approx 0$

• Consider pairwise associations $(i,j) \in \mathcal{M}$ with weights α_{ij} and define:

$$W = \sum_{(i,j)\in\mathcal{M}} \alpha_{ij} \mathbf{v}_j \mathbf{u}_i^{\top}$$

• We then have $\mathbf{v_j}^{\top} W \mathbf{u_i} \approx \alpha_{ij}$

• Consider sets of **nearly orthonormal embeddings** $\{u_i\}_{i\in\mathcal{I}}$ and $\{v_j\}_{j\in\mathcal{J}}$:

$$\|u_i\| \approx 1$$
 and $u_i^\top u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^\top v_j \approx 0$

• Consider pairwise associations $(i,j) \in \mathcal{M}$ with weights α_{ij} and define:

$$W = \sum_{(i,j)\in\mathcal{M}} \alpha_{ij} \mathbf{v}_j \mathbf{u}_i^{\top}$$

- We then have $\mathbf{v_j}^{\top} W \mathbf{u_i} \approx \alpha_{ij}$
- Computed in Transformers for logits in next-token prediction and self-attention

• Consider sets of **nearly orthonormal embeddings** $\{u_i\}_{i\in\mathcal{I}}$ and $\{v_j\}_{j\in\mathcal{J}}$:

$$\|u_i\| \approx 1$$
 and $u_i^\top u_j \approx 0$
 $\|v_i\| \approx 1$ and $v_i^\top v_j \approx 0$

• Consider pairwise associations $(i,j) \in \mathcal{M}$ with weights α_{ij} and define:

$$W = \sum_{(i,j)\in\mathcal{M}} \alpha_{ij} \mathbf{v}_j \mathbf{u}_i^{\top}$$

- We then have $\mathbf{v_i}^{\top} W \mathbf{u_i} \approx \alpha_{ii}$
- Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)

• Simple differentiable model to learn such associative memories:

$$\mathbf{z} \in [N] \to \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to W \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to (\mathbf{v}_{\mathbf{k}}^\top W \mathbf{u}_{\mathbf{z}})_k \in \mathbb{R}^M$$

• Simple differentiable model to learn such associative memories:

$$\mathbf{z} \in [N] \to \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to W \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to (\mathbf{v}_{\mathbf{k}}^\top W \mathbf{u}_{\mathbf{z}})_{\mathbf{k}} \in \mathbb{R}^M$$

• u_z , v_y : nearly-orthogonal input/output embeddings, assume fixed

• Simple differentiable model to learn such associative memories:

$$\mathbf{z} \in [N] \to \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to W \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to (\mathbf{v}_{\mathbf{k}}^\top W \mathbf{u}_{\mathbf{z}})_k \in \mathbb{R}^M$$

- u_z , v_v : nearly-orthogonal input/output embeddings, assume fixed
- Cross-entropy loss for logits $\xi \in \mathbb{R}^M$: $\ell(y,\xi) = -\xi_y + \log(\sum_k \exp \xi_k)$

• Simple differentiable model to learn such associative memories:

$$\mathbf{z} \in [N] \to \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to W \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to (\mathbf{v}_{\mathbf{k}}^\top W \mathbf{u}_{\mathbf{z}})_{\mathbf{k}} \in \mathbb{R}^M$$

- u_z, v_y : nearly-orthogonal input/output embeddings, assume fixed
- Cross-entropy loss for logits $\xi \in \mathbb{R}^M$: $\ell(y,\xi) = -\xi_y + \log(\sum_k \exp \xi_k)$

Lemma (Gradients as memories)

Let p be a data distribution over $(z, y) \in [N] \times [M]$, and consider the loss

$$L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,\xi_W(z))], \quad \xi_W(z)_k = \mathbf{v_k}^\top W \mathbf{u_z},$$

with ℓ the cross-entropy loss and u_z , v_k input/output embeddings.

• Simple differentiable model to learn such associative memories:

$$\mathbf{z} \in [N] \to \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to W \mathbf{u}_{\mathbf{z}} \in \mathbb{R}^d \to (\mathbf{v}_{\mathbf{k}}^\top W \mathbf{u}_{\mathbf{z}})_{\mathbf{k}} \in \mathbb{R}^M$$

- u_z, v_y : nearly-orthogonal input/output embeddings, assume fixed
- Cross-entropy loss for logits $\xi \in \mathbb{R}^M$: $\ell(y,\xi) = -\xi_y + \log(\sum_k \exp \xi_k)$

Lemma (Gradients as memories)

Let p be a data distribution over $(z, y) \in [N] \times [M]$, and consider the loss

$$L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,\xi_W(z))], \quad \xi_W(z)_k = \mathbf{v_k}^\top W \mathbf{u_z},$$

with ℓ the cross-entropy loss and u_z , v_k input/output embeddings. Then,

$$\nabla L(W) = \sum_{k=1}^{M} \mathbb{E}_{z}[(\hat{p}_{W}(y=k|z) - p(y=k|z)) \mathbf{v}_{k} \mathbf{u}_{z}^{\top}],$$

with $\hat{p}_W(y = k|z) = \exp(\xi_W(z)_k) / \sum_i \exp(\xi_W(z)_i)$.

Data model: $z \sim \text{Unif}([N]), y = f_*(z) \in [N]$

Data model: $z \sim \text{Unif}([N]), y = f_*(z) \in [N]$

• After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z} [(\hat{p}_{W}(y = k|z) - p(y = k|z)) v_{k} u_{z}^{\top}]$$

$$= \eta \sum_{z,k} p(z) (p(y = k|z) - \hat{p}_{W}(y = k|z)) v_{k} u_{z}^{\top}$$

$$= \frac{\eta}{N} \sum_{z,k} (\mathbb{I}\{k = f^{*}(z)\} - \frac{1}{N}) v_{k} u_{z}^{\top}$$

Data model: $z \sim \text{Unif}([N]), y = f_*(z) \in [N]$

• After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))v_{k}u_{z}^{\top}]$$

$$= \eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))v_{k}u_{z}^{\top}$$

$$= \frac{\eta}{N} \sum_{z,k} (\mathbb{I}\{k = f^{*}(z)\} - \frac{1}{N})v_{k}u_{z}^{\top}$$

• Then, for any (z, k) we have

$$\mathbf{v}_{k}^{\top} W_{1} \mathbf{u}_{z} \approx \frac{\eta}{N} \mathbb{1}\{f_{*}(z) = k\} + O\left(\frac{\eta}{N^{2}}\right)$$

Data model: $z \sim \text{Unif}([N]), y = f_*(z) \in [N]$

• After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))v_{k}u_{z}^{\top}]$$

$$= \eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))v_{k}u_{z}^{\top}$$

$$= \frac{\eta}{N} \sum_{z,k} (\mathbb{1}\{k = f^{*}(z)\} - \frac{1}{N})v_{k}u_{z}^{\top}$$

• Then, for any (z, k) we have

$$\mathbf{v}_{k}^{\top} W_{1} \mathbf{u}_{z} \approx \frac{\eta}{N} \mathbb{1}\{f_{*}(z) = k\} + O\left(\frac{\eta}{N^{2}}\right)$$

• Corollary: $\hat{f}(z) = \arg\max_k v_k^\top W_1 u_z$ has near-perfect accuracy

Data model: $z \sim \text{Unif}([N]), y = f_*(z) \in [N]$

• After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_{1} = W_{0} - \eta \sum_{k=1}^{N} \mathbb{E}_{z}[(\hat{p}_{W}(y = k|z) - p(y = k|z))v_{k}u_{z}^{\top}]$$

$$= \eta \sum_{z,k} p(z)(p(y = k|z) - \hat{p}_{W}(y = k|z))v_{k}u_{z}^{\top}$$

$$= \frac{\eta}{N} \sum_{z,k} (\mathbb{I}\{k = f^{*}(z)\} - \frac{1}{N})v_{k}u_{z}^{\top}$$

• Then, for any (z, k) we have

$$\mathbf{v_k}^{\top} W_1 \mathbf{u_z} \approx \frac{\eta}{N} \mathbb{1}\{f_*(z) = k\} + O\left(\frac{\eta}{N^2}\right)$$

• Corollary: $\hat{f}(z) = \arg\max_{k} \mathbf{v_k}^{\top} W_1 \mathbf{u_z}$ has near-perfect accuracy

Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)

In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \dots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{j=1}^s u_{z_s} \in \mathbb{R}^d$$

► e.g., bag of words, output of attention operation, residual connections

In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \ldots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{i=1}^s u_{z_s} \in \mathbb{R}^d$$

- e.g., bag of words, output of attention operation, residual connections
- Some elements may be irrelevant for prediction

In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \ldots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{j=1}^s u_{z_s} \in \mathbb{R}^d$$

- ▶ e.g., bag of words, output of attention operation, residual connections
- Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^d \times [N]$, and consider the loss

$$L(W) = \mathbb{E}_{(x,y) \sim p}[\ell(y, \xi_W(x))], \quad \xi_W(x)_k = \mathbf{v_k}^\top W \mathbf{x}.$$

In practice, inputs are often a collection of tokens / sum of embeddings

$$\mathbf{z} = \{z_1, \dots, z_s\} \subset [N], \quad \mathbf{x} = \sum_{j=1}^s u_{z_s} \in \mathbb{R}^d$$

- ▶ e.g., bag of words, output of attention operation, residual connections
- Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^d \times [N]$, and consider the loss

$$L(W) = \mathbb{E}_{(x,y) \sim p}[\ell(y, \xi_W(x))], \quad \xi_W(x)_k = \mathbf{v_k}^\top W \mathbf{x}.$$

Denoting $\mu_k := \mathbb{E}[x|y=k]$ and $\hat{\mu}_k := \mathbb{E}_x[\frac{\hat{p}_W(k|x)}{p(y=k)}x]$, we have

$$\nabla_W L(W) = \sum_{k=1}^N p(y=k) v_k (\hat{\mu}_k - \mu_k)^\top.$$

- Data model: $y \sim \text{Unif}([N]), \quad t \sim \text{Unif}([T]), \quad x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, e.g., positional embeddings

- Data model: $y \sim \text{Unif}([N]), t \sim \text{Unif}([T]), x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, e.g., positional embeddings
- After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_1 = W_0 - \eta \sum_{k=1}^{N} p(y=k) v_k (\hat{\mu}_k - \mu_k)^{\top}$$

$$= \frac{\eta}{N} \sum_{k=1}^{N} v_k (\mathbb{E}[u_y + n_t | y = k] - \mathbb{E}[u_y + n_t])^{\top}$$

$$= \frac{\eta}{N} \sum_{k=1}^{N} v_k u_k^{\top} - \frac{\eta}{N^2} \sum_{k,j} v_k u_j^{\top}$$

- Data model: $y \sim \text{Unif}([N]), \quad t \sim \text{Unif}([T]), \quad x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, e.g., positional embeddings
- After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_1 = W_0 - \eta \sum_{k=1}^{N} p(y=k) v_k (\hat{\mu}_k - \mu_k)^{\top}$$

$$= \frac{\eta}{N} \sum_{k=1}^{N} v_k (\mathbb{E}[u_y + n_t | y = k] - \mathbb{E}[u_y + n_t])^{\top}$$

$$= \frac{\eta}{N} \sum_{k=1}^{N} v_k u_k^{\top} - \frac{\eta}{N^2} \sum_{k,j} v_k u_j^{\top}$$

• Then, for any $k, y, t, x = u_y + n_t$, we have

$$\mathbf{v_k}^{\top} W_1 \mathbf{x} \approx \frac{\eta}{N} \mathbb{1}\{k = y\} + O\left(\frac{\eta}{N^2}\right)$$

- Data model: $y \sim \text{Unif}([N]), t \sim \text{Unif}([T]), x = u_y + n_t \in \mathbb{R}^d$
 - where $\{n_t\}_{t=1}^T$ are another collection of embeddings, e.g., positional embeddings
- After **one gradient step** on the population loss from $W_0 = 0$ with step η , we have

$$W_1 = W_0 - \eta \sum_{k=1}^{N} p(y=k) v_k (\hat{\mu}_k - \mu_k)^{\top}$$

$$= \frac{\eta}{N} \sum_{k=1}^{N} v_k (\mathbb{E}[u_y + n_t | y = k] - \mathbb{E}[u_y + n_t])^{\top}$$

$$= \frac{\eta}{N} \sum_{k=1}^{N} v_k u_k^{\top} - \frac{\eta}{N^2} \sum_{k,j} v_k u_j^{\top}$$

• Then, for any $k, y, t, x = u_v + n_t$, we have

$$\mathbf{v}_{k}^{\top} W_{1} \times \approx \frac{\eta}{N} \mathbb{1}\{k = y\} + O\left(\frac{\eta}{N^{2}}\right)$$

• Corollary: $\hat{f}(x) = \arg\max_{k} \mathbf{v}_{k}^{\top} W_{1} \times \text{has near-perfect accuracy}$

Maximal updates:

• First gradient update from standard initialization ($[W_0]_{ii} \sim \mathcal{N}(0, 1/d)$) take the form

$$W_1 = W_0 + \Delta W \in \mathbb{R}^{d \times d}, \quad \Delta W := \sum_j \alpha_j v_j u_j^\top, \quad \alpha_j = \Theta_d(1)$$

Maximal updates:

• First gradient update from standard initialization ($[W_0]_{ij} \sim \mathcal{N}(0, 1/d)$) take the form

$$W_1 = W_0 + \Delta W \in \mathbb{R}^{d \times d}, \quad \Delta W := \sum_j \alpha_j v_j u_j^{\top}, \quad \alpha_j = \Theta_d(1)$$

ullet For any input embedding u_j , we have, thanks to near-orthonormality

$$\|\mathit{W}_{0}\mathit{u}_{j}\| = \Theta_{\mathit{d}}(1)$$
 and $\|\Delta\mathit{W}\mathit{u}_{j}\| = \Theta_{\mathit{d}}(1)$

Maximal updates:

• First gradient update from standard initialization ($[W_0]_{ii} \sim \mathcal{N}(0, 1/d)$) take the form

$$W_1 = W_0 + \Delta W \in \mathbb{R}^{d \times d}, \quad \Delta W := \sum_j \alpha_j v_j u_j^\top, \quad \alpha_j = \Theta_d(1)$$

 \bullet For any input embedding u_j , we have, thanks to near-orthonormality

$$\|W_0u_j\| = \Theta_d(1)$$
 and $\|\Delta Wu_j\| = \Theta_d(1)$

- Contribution of updates is of similar order to initialization (not true for NTK!)
- ullet Related to $\mu P/mean$ -field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Maximal updates:

• First gradient update from standard initialization $([W_0]_{ij} \sim \mathcal{N}(0,1/d))$ take the form

$$W_1 = W_0 + \Delta W \in \mathbb{R}^{d \times d}, \quad \Delta W := \sum_j \alpha_j v_j u_j^\top, \quad \alpha_j = \Theta_d(1)$$

ullet For any input embedding u_j , we have, thanks to near-orthonormality

$$\|W_0u_j\|=\Theta_d(1)$$
 and $\|\Delta Wu_j\|=\Theta_d(1)$

- Contribution of updates is of similar order to initialization (not true for NTK!)
- \bullet Related to $\mu\text{P/mean-field}$ (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

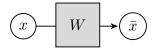
Large gradient steps on shallow networks:

• Useful for feature learning in **single-index** and **multi-index** models

$$y = f^*(x) + \text{noise}, \quad f^*(x) = g^*(Wx), \quad W \in \mathbb{R}^{r \times d}$$

- Sufficient to break the curse of dimensionality when $r \ll d$
- (Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)

Associative memories inside deep models



ullet Consider W that connects two nodes x, \bar{x} in a feedforward computational graph

Associative memories inside deep models



- Consider W that connects two nodes x, \bar{x} in a feedforward computational graph
- The loss gradient takes the form

$$\nabla_W L = \mathbb{E}[\nabla_{\bar{x}} \ell \cdot x^{\top}]$$

where $\nabla_{\bar{\mathbf{x}}}\ell$ is the **backward** vector (loss gradient w.r.t. $\bar{\mathbf{x}}$)

- Often, this expectation may lead to associative memories as before
- A similar form can arise in attention matrices (see later!)

• Finite capacity? how much can we "store" with finite d?

- **Finite capacity?** how much can we "store" with finite *d*?
- Finite samples? how well can we learn with finite data?

- **Finite capacity?** how much can we "store" with finite *d*?
- Finite samples? how well can we learn with finite data?
- Role of optimization algorithms? multiple gradient steps? Adam?

- **Finite capacity?** how much can we "store" with finite *d*?
- Finite samples? how well can we learn with finite data?
- Role of optimization algorithms? multiple gradient steps? Adam?

⇒ **study through scaling laws** (a.k.a. generalization bounds/statistical rates)

Setting

•
$$z_i \sim p(z)$$
, $y_i = f^*(z_i)$, n samples: $S_n = \{z_1, \dots, z_n\}$, $0/1$ loss:

$$L(\hat{f}_n) = \mathbb{P}(y \neq \hat{f}_n(z))$$

Setting

• $z_i \sim p(z)$, $y_i = f^*(z_i)$, n samples: $S_n = \{z_1, ..., z_n\}$, 0/1 loss:

$$L(\hat{f}_n) = \mathbb{P}(y \neq \hat{f}_n(z))$$

• Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

$$p(z) \propto z^{-\alpha}$$

Setting

• $z_i \sim p(z)$, $y_i = f^*(z_i)$, n samples: $S_n = \{z_1, \dots, z_n\}$, 0/1 loss:

$$L(\hat{f}_n) = \mathbb{P}(y \neq \hat{f}_n(z))$$

• Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

$$p(z) \propto z^{-\alpha}$$

• Hutter (2021): with infinite memory, we have

$$L(\hat{f}_n) \lesssim n^{-\frac{\alpha-1}{\alpha}}$$

Setting

• $z_i \sim p(z)$, $y_i = f^*(z_i)$, n samples: $S_n = \{z_1, \dots, z_n\}$, 0/1 loss:

$$L(\hat{f}_n) = \mathbb{P}(\mathbf{y} \neq \hat{f}_n(\mathbf{z}))$$

 \bullet Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

$$p(z) \propto z^{-\alpha}$$

• Hutter (2021): with infinite memory, we have

$$L(\hat{f}_n) \lesssim n^{-\frac{\alpha-1}{\alpha}}$$

• Q: What about finite capacity?

- Random embeddings $u_z, v_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg\max_{y} v_v^\top W_{n,d} u_z$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

- Random embeddings $u_z, v_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg\max_{y} v_y^\top W_{n,d} u_z$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

• Single population gradient step: $q(z) \approx p(z)$

- Random embeddings $u_z, v_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg\max_{y} v_{v}^{\top} W_{n,d} u_{z}$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

• Single population gradient step: $q(z) \approx p(z)$

① For
$$q(z) = \sum_{i} \mathbb{1}\{z = z_i\}$$
: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$

- Random embeddings $u_z, v_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg\max_{y} v_y^\top W_{n,d} u_z$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

• Single population gradient step: $q(z) \approx p(z)$

- ① For $q(z) = \sum_{i} \mathbb{1}\{z = z_{i}\}: L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$
- ② For $q(z) = \mathbb{1}\{z \in S_n\}$, and $d \gg N$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-k}$ for any k

- Random embeddings $u_z, v_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg\max_{y} v_y^\top W_{n,d} u_z$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

• Single population gradient step: $q(z) \approx p(z)$

- ① For $q(z) = \sum_{i} \mathbb{1}\{z = z_{i}\}: L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$
- 2 For $q(z) = \mathbb{1}\{z \in S_n\}$, and $d \gg N$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-k}$ for any k
- 3 For $q(z) = \mathbb{I}\{z \text{ seen at least s times in } S_n\}$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\alpha+1}$

- Random embeddings $u_z, v_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg\max_{y} v_{y}^{\top} W_{n,d} u_{z}$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

• Single population gradient step: $q(z) \approx p(z)$

- ① For $q(z) = \sum_{i} \mathbb{1}\{z = z_{i}\}: L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$
- ② For $q(z) = \mathbb{1}\{z \in S_n\}$, and $d \gg N$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-k}$ for any k
- 3 For $q(z) = 1\{z \text{ seen at least s times in } S_n\}$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\alpha+1}$
- $n^{-\frac{\alpha-1}{\alpha}}$ is the same as (Hutter, 2021)
- q = 1 is best if we have enough capacity
- Can store at most d memories (approximation error: $d^{-\alpha+1}$)

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

Different algorithms lead to different memory schemes q(z):

• One step of SGD with large batch: $q(z) \approx p(z)$

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

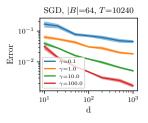
- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training

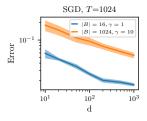
$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

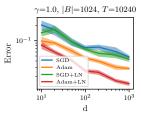
- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training
- Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

$$W_{n,d} = \sum_{z=1}^{N} q(z) v_{f^*(z)} u_z^{\top}$$

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training
- Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)







Main idea: there are exp(d) near-orthogonal directions on the sphere

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)

• Nearest-neighbor lookup: set $u_z = v_{f^*(z)}$ and take $\hat{f}(z) = \arg\max_y v_y^\top u_z$

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in *d*)

- Nearest-neighbor lookup: set $u_z = v_{f^*(z)}$ and take $\hat{f}(z) = \arg\max_y v_y^\top u_z$
- Attention: soft-max instead of hard-max to retrieve from context

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)

- Nearest-neighbor lookup: set $u_z = v_{f^*(z)}$ and take $\hat{f}(z) = \arg\max_y v_y^\top u_z$
- Attention: soft-max instead of hard-max to retrieve from context
- MLP: $\hat{f}(z) = \arg\max_{y} v_{y}^{\top} \sum_{z'=1}^{N} v_{f^{*}(z')} \sigma(u_{z'}^{\top} u_{z} b)$

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)

- Nearest-neighbor lookup: set $u_z = v_{f^*(z)}$ and take $\hat{f}(z) = \arg\max_y v_y^\top u_z$
- Attention: soft-max instead of hard-max to retrieve from context
- MLP: $\hat{f}(z) = \arg\max_{y} v_{y}^{\top} \sum_{z'=1}^{N} v_{f^{*}(z')} \sigma(u_{z'}^{\top} u_{z} b)$

But: higher computational cost, more sensitive to noise, harder to learn