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Success of deep learning

State-of-the-art models in various domains (images, language, speech, biology, ...)

Come posso aiutarti?

ENGLISH - DETECTED ENGLISH C v g FRENCH CHINESE (TRADITIONAL) v
where is the train station? X ou est lagare? © w
ED) 27/5000 <) |D
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Success of deep learning

State-of-the-art models in various domains (images, language, speech, biology, ...)

Come posso aiutarti?

ENGLISH - DETECTED ENGLISH C v g FRENCH CHINESE (TRADITIONAL) v
where is the train station? X ou est lagare? © w
ED) 27/5000 <) |D

F(x) = Wio(W,_q - o(Wyix)--+)
Recipe: huge models + lots of data + compute + simple algorithms
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Breaking the curse of dimensionality |: feature learning

Curse of dimensionality:
o Image/text/genomics/etc. data are high-dimensional: x € R?, d large

o Curse of dimensionality = need additional structure for learning
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Curse of dimensionality:
o Image/text/genomics/etc. data are high-dimensional: x € R?, d large

o Curse of dimensionality = need additional structure for learning

Feature learning:

o Single-index/multi-index models:
Ely|x] = f*(w x,...,w, x), r<d

o Example: CNNs learn Gabor-like filters
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Breaking the curse of dimensionality |: feature learning

Curse of dimensionality:
o Image/text/genomics/etc. data are high-dimensional: x € R?, d large

o Curse of dimensionality = need additional structure for learning

Feature learning:

o Single-index/multi-index models:
Ely|x] = f*(w x,...,w, x), r<d

o Example: CNNs learn Gabor-like filters
o Goal: O(n~1/") instead of O(n~1/9) rates (Bach, 2017)
o Gradient descent can achieve this (e.g., Ba et al., 2022; B. et al., 2022; Damian et al., 2022)
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Breaking the curse of dimensionality |I: locality + architecture

o Local structure: split input into small local patches / “tokens”: x = (xy,...,xT)

Language Learning Models (LLMs) have revolutionized the field of natural
language processing, enabling machines to understand and generate human-
like text. At the core of LLMs lies the concept of tokens, which serve as
the fundamental building blocks for processing and representing text
data. In this blog post, we'll demystify tokens in LLMs, unraveling
their significance and exploring how they contribute to the power and

flexibility of these remarkable models.
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o Local structure: split input into small local patches / “tokens”: x = (xy,...,xT)

Language Learning Models (LLMs) have revolutionized the field of natural
language processing, enabling machines to understand and generate human-
like text. At the core of LLMs lies the concept of tokens, which serve as
the fundamental building blocks for processing and representing text
data. In this blog post, we'll demystify tokens in LLMs, unraveling
their significance and exploring how they contribute to the power and
flexibility of these remarkable models.

o Target may involve interactions between tokens, e.g. (Wahba, 1990)

Ely[x] = Z f*(xi) Z (xi, ;)
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Breaking the curse of dimensionality |I: locality + architecture

o Local structure: split input into small local patches / “tokens”: x = (xy,...,xT)

Language Learning Models (LLMs) have revolutionized the field of natural
language processing, enabling machines to understand and generate human-
like text. At the core of LLMs lies the concept of tokens, which serve as
the fundamental building blocks for processing and representing text
data. In this blog post, we'll demystify tokens in LLMs, unraveling
their significance and exploring how they contribute to the power and
flexibility of these remarkable models.

o Target may involve interactions between tokens, e.g. (Wahba, 1990)
Ely|x] = Zf* (xi) +Z (%1, %)

Role of architectures:
o Convolution: local interactions at different scales
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Breaking the curse of dimensionality |I: locality + architecture

o Local structure: split input into small local patches / “tokens”: x = (xy,...,xT)

Language Learning Models (LLMs) have revolutionized the field of natural
language processing, enabling machines to understand and generate human-
like text. At the core of LLMs lies the concept of tokens, which serve as
the fundamental building blocks for processing and representing text
data. In this blog post, we'll demystify tokens in LLMs, unraveling
their significance and exploring how they contribute to the power and

.-. . flexibility of these remarkable models.

o Target may involve interactions between tokens, e.g. (Wahba, 1990)

E[yIX]—Zf* (xi) +Z (xi> %)

Role of architectures:
o Convolution: local interactions at different scales
o Attention: non-local interactions
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Transformers and language models

o Transformers: attention + MLPs + residual connections
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Transformers and language models

o Transformers: attention + MLPs + residual connections

o Large language models: train to predict next token on all the web (+ fine-tune)
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write a poem about probability near the
Colosseum

In Rome where ancient stones convene,
The Colosseum stands serene.
A relic of time, of fights once grand,

Now whispers secrets through the land.

Beneath its arches, shadows play,
As if to speak of yesterday.

Where gladiators fought their fate,
Each clash a turn, a random state.

Probability dances here,
In every arch, in every tear.
For who could know which soul would stand,

And who would fall by sword or hand?
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Transformers and language models

o Transformers: attention + MLPs + residual connections

o Large language models: train to predict next token on all the web (+ fine-tune)

o In-context "reasoning' vs memorization: transformers seem to use a mix of
"reasoning" from context and "knowledge" from training set
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Alberto Bietti

write a poem about probability near the

Colosseum

In Rome where ancient stones convene,
The Colosseum stands serene.
A relic of time, of fights once grand,

Now whispers secrets through the land.

Beneath its arches, shadows play,
As if to speak of yesterday.

Where gladiators fought their fate,
Each clash a turn, a random state.

Probability dances here,
In every arch, in every tear.
For who could know which soul would stand,

And who would fall by sword or hand?

Transformers and Associative Memories

Congress shall make no law respecting an establishment of
religion, or prohibiting the free exercise thereof; or
abridging the freedom of speech, or of the press; or the
right of the people peaceably to assemble, and to petition
the Government for a redress of grievances.

This is known as the First Amendment to the United States
Constitution and it is designed to protect the fundamental
rights of citizens of the United States. It guarantees
citizens the right to practice any religion of their choosing,
the freedom of speech and of the press, and the right to
peacefully assemble and to petition the government.
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How Transformer language models use context

o Few-shot learning, basic “reasoning”, math, linguistic capabilities

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

(Brown et al., 2020)
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How Transformer language models use context

o Few-shot learning, basic “reasoning”, math, linguistic capabilities

o Transformers may achieve this using “circuits” of attention heads
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(Wang et al., 2022)
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Understanding Transformers

o Interpretability: what mechanisms are used inside a transformer?
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o Memorization: how does memorization come into play?
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o Memorization: how does memorization come into play?

o Training dynamics: how is this learned with optimization?
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Understanding Transformers

o Interpretability: what mechanisms are used inside a transformer?
o Memorization: how does memorization come into play?
o Training dynamics: how is this learned with optimization?

o Role of depth: what are benefits of deep, compositional models?
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Understanding Transformers

o Interpretability: what mechanisms are used inside a transformer?
o Memorization: how does memorization come into play?
o Training dynamics: how is this learned with optimization?

o Role of depth: what are benefits of deep, compositional models?

©

Experimental /theory setup: what is a simple setting for studying this?
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Understanding Transformers

o Interpretability: what mechanisms are used inside a transformer?
o Memorization: how does memorization come into play?
o Training dynamics: how is this learned with optimization?

o Role of depth: what are benefits of deep, compositional models?

©

Experimental /theory setup: what is a simple setting for studying this?

This work: (B. et al., 2023, see also Vivien Cabannes’ talk)

o Empirical+theoretical study by viewing parameters as associative memories
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The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When [Vir Bacon went ... then ) .
- When Mr Bacon went to the mall, it started raining, then Mr Bacon
\ >< / decided to buy a raincoat and umbrella. He went to the store and
output bought a red raincoat and yellow polka dot umbrella)
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The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)
When Bacon went ... then Vir . .
When Mr Bacon went to the mall, it started raining, then Mr Bacon
\ >< / decided to buy a raincoat and umbrella. He went to the store and

output bought a red raincoat and yellow polka dot umbrella]

Fix trigger tokens: q1,...,qk
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\ >< / decided to buy a raincoat and umbrella. He went to the store and
output bought a red raincoat and yellow polka dot umbrella.|

Fix trigger tokens: q1,..., gk
Sample each sequence zi.7 € [N]7 as follows

o Output tokens: o, ~ mo(-|qx) (random)
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The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When [Vir Bacon went ... then ) .
- When Mr Bacon went to the mall, it started raining, then Mr Bacon
\ >< / decided to buy a raincoat and umbrella. He went to the store and
output bought a red raincoat and yellow polka dot umbrella)

Fix trigger tokens: q1,..., gk
Sample each sequence zi.7 € [N]7 as follows

o Output tokens: o, ~ mo(-|qx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(+|zt—1) with

ﬂ{j:Ok}, ifi:qk, k:].,...,K
ﬂ—b(j‘i)a O/W'

p(ili) =
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The bigram data model

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Bacon went ... then . L
When Mr Bacon went to the mall, it started raining, then Mr Bacon

— /,.
\ //5\\\ decided to buy a raincoat and umbrella. He went to the store and

output bought a red raincoat and yellow polka dot umbrella)

Fix S g1y,
Sample each sequence zi.7 € [N]7 as follows
o Output tokens: o, ~ mo(-|qx) (random)

o Sequence-specific Markov model: z; ~ 71, z¢|z;—1 ~ p(+|zt—1) with

=0, ifim=q, k=1,....K
7rb(j‘i)a O/W'

p(jli) =
7p: global bigrams model (estimated from Karpathy's character-level Shakespeare)
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

o Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

o Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]

o Intermediate layers: add outputs to the residual stream x;
» Repeat L times: Attention and feed-forward layers
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

©

Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]

©

Intermediate layers: add outputs to the residual stream x;
» Repeat L times: Attention and feed-forward layers

o Unembedding layer: logits for each k € [N],

(&)k = wu(k) ' xe
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Transformers |: embeddings and residual stream
o Input sequence: [zi,...,z7] € [N]T

©

Embedding layer:
x¢ = we(zt) + pr € R

» wg(z): token embedding of z € [N]
» p:: positional embedding at position t € [T]

©

Intermediate layers: add outputs to the residual stream x;
» Repeat L times: Attention and feed-forward layers

o Unembedding layer: logits for each k € [N],

(&)k = wu(k) ' xe

o Loss for next-token prediction (¢: cross-entropy)

s'

-1
Z(Zt+1aft)
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i
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Transformers |l: self-attention

out
The OV (“output-value”)
how

The QK (“query-key”)
circuit controls which
tokens the head prefers
to attend to.

WEWEWxWg

dst

Causal self-attention layer (single head):
exp(xs " Wy Woxt)
St exp(x T W Woxe)

t
X; = Z BsWoWy xs,  with s =

s=1
o Wk, Wg € R9*9: key and query matrices, W/, Wo € RY*?: value and output matrices
o fs: attention weights, S°f_; s =1
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Transformers |l: self-attention

out
Ta The OV (“output-value”)
circuit determines hov

Wy WoWy W,

The QK (“query-key”)
circuit controls which
tokens the head prefers

m to attend to.

WEWEWxWg

dst

Causal self-attention layer (single head):

t T T
_ exp(xs ' Wy Woxe)
xi =Y BsWoWyx., with 8s = K
¢ = 2 B WoWux. * T ST el Wy Ward)

o Wk, Wg € R9*9: key and query matrices, W/, Wo € RY*?: value and output matrices
o fs: attention weights, S°f_; s =1
o Each x{ is then added to the corresponding residual stream

/
Xt = Xt + X;
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Transformers lll: feed-forward

Feed-forward layer: apply simple transformation to each token representation

o MLP:
x; = Who(Wixy), Wy € R9*P W, ¢ RP*4

o Added to the residual stream: x; := x; + x;
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Transformers lll: feed-forward

Feed-forward layer: apply simple transformation to each token representation
o MLP:
x; = Who(Wixy), Wy € R9*P W, ¢ RP*4
o Added to the residual stream: x; := x; + x;

o Some evidence that feed-forward layers store “global knowledge”, e.g., for factual
recall (Geva et al., 2020; Meng et al., 2022; Chen et al., 2024)
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Transformers on the bigram task
When Bacon went ... then

=

output
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Transformers on the bigram task

When Bacon went ... then Vir
output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions
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Transformers on the bigram task

When Bacon went ... then Vir
output

o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions

o 2-layer transformer succeeds: ~ 99% accuracy
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Transformers on the bigram task

When Bacon went ... then Vir
output
o 1-layer transformer fails: ~ 55% accuracy on in-context output predictions

o 2-layer transformer succeeds: ~ 99% accuracy

See also representation lower bounds (Sanford, Hsu, and Telgarsky, 2023)
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, Bacon} ... {T, \Vir, Bacon}
{t+1, Mr, Bacon} ... (T, IV}
{t, Vir} {t+1, Bacon} o AT
D

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, Bacon} ... {T, \Vir, Bacon}
{t+1, Mr, Bacon} ... (T, IV}
{t, Vir} {t+1, Bacon} o AT
D

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
o 2nd layer: induction head
» attends to output of previous token head, copies attended token
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Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

{t+1, Mr, Bacon} ... {T, \Vir, Bacon}
{t+1, Mr, Bacon} ... (T, IV}
{t, Vir} {t+1, Bacon} o AT
D

o 1st layer: previous-token head
» attends to previous token and copies it to residual stream
o 2nd layer: induction head
» attends to output of previous token head, copies attended token

o Matches observed attention scores:
1
-9 ',
" -

" gt
| 5 5

m}
tstL t

sL,ab
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0

o Consider pairwise associations (i, ) € M with weights «;; and define:

T
W = Z a,-jvju,-
(ij)em

o We then have va Wu; = aj
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi][~1 and v;'v;=0
o Consider pairwise associations (i, ) € M with weights «;; and define:

W = Z a,-jvju,-T
(ij)emM

o We then have va Wu; = aj
o Computed in Transformers for logits in next-token prediction and self-attention
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0

o Consider pairwise associations (i, ) € M with weights «;; and define:

T
W = Z a,-jvju,-
(ij)em

o We then have va Wu; = aj

o Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N(0,1/d) entries and d large

|ui| 1 and o u; = O(1/Vd)
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N(0,1/d) entries and d large

|ui| 1 and o u; = O(1/Vd)

o Remapping: multiply by random matrix W with N'(0,1/d) entries:

[Wuil| =1 and o Wu; = O(1/Vd)
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Random embeddings in high dimension

o We consider random embeddings u; with i.i.d. N(0,1/d) entries and d large

|ui| 1 and o u; = O(1/Vd)

o Remapping: multiply by random matrix W with N'(0,1/d) entries:

[Wuil| =1 and o Wu; = O(1/Vd)

o Value/Output matrices help with token remapping: — Mr, Bacon — Bacon
{t+1, Mr, Bacon} ... (T, VIr, Bacon}
{t+1, Mr, Barjon) o AT,
R 7//,//
{t, 1} {t+1, Bacon} o AT}
./
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Induction head with associative memories

Layer 2 ‘ * ‘ * ‘ ‘ * ‘ * ‘ wg(a)

Attn2: 3, wi(k)wp (k)" _——"“/I;gﬂf"%: S wu(k)wp(k)T

Layer 1 ‘ * ‘ wg(a) ‘ ‘ wy(a) [ 1‘1:’5’(1)) ‘
>4
WV(BH:‘E”’AMHI' Sop T ““*“1”"‘5 Prediction
/,—\ D Ps—1Dd :
Layer 0 ‘ Pi-1 ‘ wg(a) ‘ ‘ Pt ‘ wg(b) ‘

Sequence a b [-] @ ’7177

T N
Wik = b1, WE=Y we(k)wa(k)", W3 = wy(k)(Wewe(k))",
t=2 keq@ k=1

o Random embeddings wg(k), wy(k), random matrices WY, W}, W2, fix Wg = 1
o Remapped previous tokens: wi (k) := WL WL we (k)
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Induction head with associative memories

Layer 2 ‘ * ‘ * ‘ ‘ * ‘ * ‘

Attn2: 3, wi(b)wp(k)" .- —"Wgﬂ"{%: S wu(k)wp(k)T

Layer 1 ‘ * ‘ wg(a) ‘ ‘ wy(a) [ 1‘1:’5’(1)) ‘
prs

WAW 7" X '
— <. __Attnl: S ps1py Residual | prediction

Laver 0 [Ps [ws@] [ 20 [

Sequence a b [++-] a ’7117

T N
Wik = b1, WE=Y we(k)wa(k)", W3 = wy(k)(Wewe(k))",
t=2 keq@ k=1

o Random embeddings wg(k), wy(k), random matrices WY, W}, W2, fix Wg = 1
o Remapped previous tokens: wi (k) := WL WL we (k)

Q: Does this match practice?
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Empirically probing the dynamics

Train only Wi, W2, W3, loss on deterministic output tokens only

2
freeze W3 freeze W} and W} freeze W3 freeze W}
10- 10- 10- 10-
9
8 os- 08- 08- 058-
gos 06- 06 06-
% 0a- 04- 0a- 04-
Soz 02- 02 02-
~ 0o0- : ! . —g ,, P e ] M e————— , , L S e —
0 200 400 600 800 1000 O 200 400 600 80 1000 0 200 400 600 800 1000 O 200 400 600 800 1000
10- 10- 10- 10-
—— R
= 08 0o el o 0s- —
8 o
Sos 06- 06- / 06- /
S 0a- 04- 04- 04- — Wo2
§ — w2
Eo02- 02- / 02- 02- WKL (t<64)
— wa
00 00- 00- 00-

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration iteration iteration

© “Memory recall probes”: for target memory Wi =3 ; e vju,-T, compute
~ 1 A
R(W,W,) = — Z 1{j = argmax vj—,r Wu;}
Ml e ’
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Empirically probing the dynamics

Train only Wi, W2, W3, loss on deterministic output tokens only
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© “Memory recall probes”: for target memory Wi =3 ; e vju,-T, compute

1

RIW,W,)=— Z 1{j = arg

’ ’ (ij)emM

o Natural learning “order": W(% first, W}% next, W,% last

o Joint learning is faster
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Gradients as associative memories

o Simple model to learn associative memories:

z€[N) = v, €RY - Wu, eRY — (v Wu,), € RM
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Gradients as associative memories

o Simple model to learn associative memories:
7€ [N] = u, e R = Wu, eRY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
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o Simple model to learn associative memories:
7€ [N] = u, e R = Wu, eRY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)
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Gradients as associative memories
o Simple model to learn associative memories:
7€ [N] = u, e R = Wu, eRY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)

Lemma (Gradients as memories)

Let p be a data distribution over (z,y) € [N] x [M], and consider the loss
L( W) = E(z,y)wp[é(ya £W(Z))]7 fW(Z)k = VkTWUZ>

with ¢ the cross-entropy loss and u,, vi input/output embeddings.
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Gradients as associative memories
o Simple model to learn associative memories:
7€ [N] = u, e R = Wu, eRY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)

Lemma (Gradients as memories)

Let p be a data distribution over (z,y) € [N] x [M], and consider the loss
L( W) = E(z,y)wp[é(ya £W(Z))]7 fW(Z)k = VkTWUZ>

with ¢ the cross-entropy loss and u,, vy input/output embeddings. Then,

M
VLW) =Y E:(bw(y = klz) — p(y = k|z))viu ],
k=1

with pw(y = k|z) = exp(§w(2)«)/ 22 exp(§w(2);)-
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=ny_p(2)(ply = klz) = w(y = k[z))viu "
z,k

" . 1
— N;(ﬂ{k = f*(2)} — N)Vkuf
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>

Alberto Bietti Transformers and Associative Memories Probability Rome 2024 20/24



Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>

o Corollary: f(z) = arg maxy v, ' Wi, has near-perfect accuracy
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>

o Corollary: ?(z) = arg maxy v ' Wi, has near-perfect accuracy
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections
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j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], X:Z”zs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € R x [N], and consider the loss

L(W) = E(x,y)fvp[e(y7§W(X))]7 SW(X)k = VkT Wx.
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], X:Z”zs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € R x [N], and consider the loss

L(W) = E(x,y)fvp[e(y7§W(X))]7 SW(X)k = VkT Wx.

. ~ k
Denoting ji;. := E[x|y = k] and /i, := E, [’;V(Vy( |:) x], we have
N
Vwl(W Z = k) vie( ik — i) T
k=1
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

N
> vi(Bluy + nely = K] = Efuy, + ne]) T

==
=
I
I

|
=3
M=

T M T
vl — WZ VicUj
kij

x
Il
—
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

N
> vi(Bluy + nely = K] = Efuy, + ne]) T
k=1

=[s

T M T
vl — WZ VicUj
kij

x
Il
—

1
=3
M=

o Then, for any k,y,t,x = u, + n;, we have

Vil Wyx = % {k=y}+0 <I\7/72)
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

N
> vi(Bluy + nely = K] = Efuy, + ne]) T
k=1

=[s

T M T
vl — WZ VicUj
kij

x
Il
—

1
=3
M=

o Then, for any k,y,t,x = u, + n;, we have

Vil Wyx = % {k=y}+0 <I\7/72)

o Corollary: f(x) = argmax vx ' Wix has near-perfect accuracy
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Gradient steps for the bigram task

Setting: transformer on the bigram task
o Focus on predicting second output token
o All distributions are uniform

o Some simplifications to architecture
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Gradient steps for the bigram task

Setting: transformer on the bigram task

o Focus on predicting second output token
o All distributions are uniform

o Some simplifications to architecture

Theorem (informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss, assuming near-orthonormal embeddings: first on W(%, then W}% then W;%.

Alberto Bietti Transformers and Associative Memories Probability Rome 2024 23 /24



Gradient steps for the bigram task

Setting: transformer on the bigram task
o Focus on predicting second output token
o All distributions are uniform

o Some simplifications to architecture

Theorem (informal)

In the setup above, we can recover the desired associative memories with 3 gradient steps on
the population loss, assuming near-orthonormal embeddings: first on W(%, then W}% then W;%.

Key ideas
o Attention is uniform at initialization = inputs are sums of embeddings
o W(%: correct output appears w.p. 1, while other tokens are noisy and cond. indep. of zt

1/2 . .
o WK/ : correct associations lead to more focused attention
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Discussion and next steps

Summary
o Bigram model: simple but rich toy model for discrete data
o Transformer weights as associative memories

o Learning mechanisms via few top-down gradient steps
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Discussion and next steps

Summary

Bigram model: simple but rich toy model for discrete data

()

©

Transformer weights as associative memories

©

Learning mechanisms via few top-down gradient steps
o Vivien’s talk: precise analysis of one-layer associative memory
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Discussion and next steps

Summary
o Bigram model: simple but rich toy model for discrete data
o Transformer weights as associative memories
o Learning mechanisms via few top-down gradient steps

o Vivien’s talk: precise analysis of one-layer associative memory

Future directions

o More complex “reasoning” mechanisms, links with “emergence”

o Learning dynamics: multiple gradient steps? joint training? embeddings?
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Learning associations

Motivation:
o DL theory often focuses on learning/approximation of continuous target functions
» e.g., smooth functions, sparse polynomials
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o DL theory often focuses on learning/approximation of continuous target functions
» e.g., smooth functions, sparse polynomials
o In practice, discrete structure and memorization are often crucial

» language: words, syntactic rules, semantic concepts, facts
» vision: “visual words”, features, objects

Statistical learning setup:

o Data distribution p(z, y) over pairs of discrete tokens (z,y) € [N] x [M]

Alberto Bietti Transformers and Associative Memories Probability Rome 2024

28 /24



Learning associations

Motivation:
o DL theory often focuses on learning/approximation of continuous target functions
» e.g., smooth functions, sparse polynomials
o In practice, discrete structure and memorization are often crucial

» language: words, syntactic rules, semantic concepts, facts
» vision: “visual words”, features, objects

Statistical learning setup:
o Data distribution p(z, y) over pairs of discrete tokens (z,y) € [N] x [M]
o We want a predictor 7 : [N] — [M] with small 0-1 loss:

Lor(F) = P(y # f(2))
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Learning associations

Motivation:
o DL theory often focuses on learning/approximation of continuous target functions
» e.g., smooth functions, sparse polynomials
o In practice, discrete structure and memorization are often crucial

» language: words, syntactic rules, semantic concepts, facts
» vision: “visual words”, features, objects

Statistical learning setup:
o Data distribution p(z, y) over pairs of discrete tokens (z,y) € [N] x [M]
o We want a predictor 7 : [N] — [M] with small 0-1 loss:

Lor(F) = P(y # f(2))

o Typically f(z) = arg max, f,(z) with f, : [N] — R for each y € [M]
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0

o Consider pairwise associations (i, ) € M with weights «;; and define:

T
W = Z a,-jvju,-
(ij)em

o We then have va Wu; = aj
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi][~1 and v;'v;=0
o Consider pairwise associations (i, ) € M with weights «;; and define:

W = Z a,-jvju,-T
(ij)emM

o We then have va Wu; = aj
o Computed in Transformers for logits in next-token prediction and self-attention
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Matrices as associative memories

o Consider sets of nearly orthonormal embeddings {v;};icz and {v;};c7:

ui| 1 and ;T ~0

|vi =1 and v;"v;~0

o Consider pairwise associations (i, ) € M with weights «;; and define:

T
W = Z a,-jvju,-
(ij)em

o We then have va Wu; = aj

o Computed in Transformers for logits in next-token prediction and self-attention

note: closely related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969)
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Learning associative memories with gradients

o Simple differentiable model to learn such associative memories:

z€[N] =, €RY - Wu, eRY — (v, Wu,), € RM
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Learning associative memories with gradients

o Simple differentiable model to learn such associative memories:
7€ [N] = u, e R = Wu, e RY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
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o Simple differentiable model to learn such associative memories:
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o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)
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Learning associative memories with gradients
o Simple differentiable model to learn such associative memories:
7€ [N] = u, e R = Wu, e RY = (v Wu,), € RM

o u.,vy,: nearly-orthogonal input/output embeddings, assume fixed
o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)

Lemma (Gradients as memories)
Let p be a data distribution over (z,y) € [N] x [M], and consider the loss
L( W) = E(z,y)wp[é(y7£W(z))]7 fW(Z)k = VkTWUZ>

with ¢ the cross-entropy loss and u,, vi input/output embeddings.
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o Cross-entropy loss for logits £ € RM: £(y, &) = —&, + log(>" 4 exp &)

Lemma (Gradients as memories)

Let p be a data distribution over (z,y) € [N] x [M], and consider the loss
L( W) = E(z,y)wp[é(ya £W(Z))]7 fW(Z)k = VkTWUZ>

with ¢ the cross-entropy loss and u,, vy input/output embeddings. Then,

M
VLW) =Y E:(bw(y = klz) — p(y = k|z))viu ],
k=1

with pw(y = k|z) = exp(§w(2)«)/ 22 exp(§w(2);)-
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]
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o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
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o After one gradient step on the population loss from Wy = 0 with step 7, we have
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o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>

o Corollary: f(z) = arg maxy v, ' Wi, has near-perfect accuracy
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Example: one gradient step

Data model:  z ~ Unif([N]), y = fi(z) € [N]

o After one gradient step on the population loss from Wy = 0 with step 7, we have
N

Wi =Wo —n ) E:(w(y = klz) — p(y = k|z))viu ]
k=1

=n>_p(2)(ply = k|z) = pw(y = k|z))viu.
z,k

_n g 1

= N;(ﬂ{k =f*(2)} - N)VkUzT

o Then, for any (z, k) we have

v Whu, ~ %]l{f*(z) —Kkl+0 (,32>

o Corollary: ?(z) = arg maxy v ' Wi, has near-perfect accuracy
Note: related to (Ba et al., 2022; Damian et al., 2022; Yang and Hu, 2021)
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], x:Zuzs €R
j=1
» e.g., bag of words, output of attention operation, residual connections
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], X:Z”zs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € R x [N], and consider the loss

L(W) = E(x,y)fvp[e(y7§W(X))]7 SW(X)k = VkT Wx.
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Gradient associative memories with noisy inputs

o In practice, inputs are often a collection of tokens / sum of embeddings

S
d
z={z,...,zs} C[N], X:Z”zs €R
j=1
» e.g., bag of words, output of attention operation, residual connections

o Some elements may be irrelevant for prediction

Lemma (Gradients with noisy inputs)

Let p be a data distribution over (x,y) € R x [N], and consider the loss

L(W) = E(x,y)fvp[e(y7§W(X))]7 SW(X)k = VkT Wx.

. ~ k
Denoting ji;. := E[x|y = k] and /i, := E, [’;V(Vy( |:) x], we have
N
Vwl(W Z = k) vie( ik — i) T
k=1
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

N
> vi(Bluy + nely = K] = Efuy, + ne]) T

==
=
I
I

|
=3
M=

T M T
vl — WZ VicUj
kij

x
Il
—
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o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

N
> vi(Bluy + nely = K] = Efuy, + ne]) T
k=1

=[s

T M T
vl — WZ VicUj
kij

x
Il
—

1
=3
M=

o Then, for any k,y,t,x = u, + n;, we have

Vil Wyx = % {k=y}+0 <I\7/72)
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Example: filter out exogenous noise

o Data model: y ~ Unif([N]), t~ Unif([T]), x=u,+n €R?

» where {n;}/[_; are another collection of embeddings, e.g., positional embeddings

o After one gradient step on the population loss from Wy = 0 with step 7, we have

N
Wa=Wo—nY" ply = kvielfix — )"
k=1

N
> vi(Bluy + nely = K] = Efuy, + ne]) T
k=1

=[s

T M T
vl — WZ VicUj
kij

x
Il
—

1
=3
M=

o Then, for any k,y,t,x = u, + n;, we have

Vil Wyx = % {k=y}+0 <I\7/72)

o Corollary: f(x) = argmax vx ' Wix has near-perfect accuracy
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Link with feature learning
Maximal updates:
o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi=W+AW € RdXd, AW = ZO&jVjUJT, aj = @d(l)
J
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Wi = Wo—i—AWERdXd, AW = ZO&jVjUJT, Oéj:@d(l)
J
o For any input embedding u;, we have, thanks to near-orthonormality

[Wouil| = ©4(1) and  [[AW;|| = ©4(1)
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o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi = Wo—i—AWERdXd, AW = ZO&jVjUJT, Oéj:@d(l)
J
o For any input embedding u;, we have, thanks to near-orthonormality

[Wouil| = ©4(1) and  [[AW;|| = ©4(1)

o Contribution of updates is of similar order to initialization (not true for NTK!)
o Related to uP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)
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Link with feature learning
Maximal updates:
o First gradient update from standard initialization ([W]; ~ N(0,1/d)) take the form

Wi = Wo—i—AWERdXd, AW = ZO&jVjUJT, Oéj:@d(l)
J
o For any input embedding u;, we have, thanks to near-orthonormality

[Wouil| = ©4(1) and  [[AW;|| = ©4(1)

o Contribution of updates is of similar order to initialization (not true for NTK!)
o Related to uP/mean-field (Chizat and Bach, 2018; Mei et al., 2019; Yang and Hu, 2021)

Large gradient steps on shallow networks:

o Useful for feature learning in single-index and multi-index models
y = f*(x) + noise, f*(x) =g"(Wx), W eR™?

o Sufficient to break the curse of dimensionality when r < d
o (Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023; Nichani et al., 2023)
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Associative memories inside deep models

oHv}e

o Consider W that connects two nodes x, x in a feedforward computational graph
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Associative memories inside deep models

oHv}e

©

Consider W that connects two nodes x, x in a feedforward computational graph

©

The loss gradient takes the form
Vwl =E[Vzl x']

where Vx/ is the backward vector (loss gradient w.r.t. X)
o Often, this expectation may lead to associative memories as before

o A similar form can arise in attention matrices (see later!)
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Questions

o Finite capacity? how much can we “store” with finite d?
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o Finite samples? how well can we learn with finite data?

o Role of optimization algorithms? multiple gradient steps? Adam?
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Questions

o Finite capacity? how much can we “store” with finite d?
o Finite samples? how well can we learn with finite data?

o Role of optimization algorithms? multiple gradient steps? Adam?

— study through scaling laws (a.k.a. generalization bounds/statistical rates)
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:

L(%n) = P(y 7& ?n(z))
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:

L(?n) = P(y 7& ?n(z))
o Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

«

p(z) x z~
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:
L(?n) = P(y 7& ?n(z))
o Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)
«

p(z) x z~

o Hutter (2021): with infinite memory, we have

a—1

L(F) <n s
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Setup with heavy-tailed data

Setting
o zj ~p(z), yi = f*(z), nsamples: S, ={z1,...,2,}, 0/1 loss:

L(%n) = P(y 7& ?n(z))
o Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)
«

p(z) x z~

o Hutter (2021): with infinite memory, we have

a—1

L(F) <n "5

o Q: What about finite capacity?
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1
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o Estimator: ?,,,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1

o Single population gradient step: q(z) = p(z)
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;
z=1
o Single population gradient step: q(z) = p(z)
Theorem (Cabannes, Dohmatob, B., 2023, informal)

@ Forq(z) =Y, 1{z=2z} L(fg) Sn % +d %=
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1

o Single population gradient step: q(z) = p(z)
Theorem (Cabannes, Dohmatob, B., 2023, informal)
@ Forq(z) =Y, 1{z=2z} L(fg) Sn % +d %=

—1

@ Forq(z) =1{z € Sy}, and d > N: L(,4) S n"& 4 d =k for any k
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with

N
|/Vn,d = Z q(Z)Vf*(Z)U;

z=1

o Single population gradient step: q(z) = p(z)

Theorem (Cabannes, Dohmatob, B., 2023, informal)
® Forq(2) =Xz =2): L) So°& +d~ %
@ Forq(z) =1{z€ Sy}, and d > N: L(fq) S n & = _i_dfk foranyk
(2) =

@ For q(z) = 1{z seen at least s times in Sp}: L(fpq) < n~ a4 dott
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Scaling laws with finite capacity

o Random embeddings u;, v, € R? with N/(0,1/d) entries
o Estimator: ?,,,d(x) = arg max, v; W, quz, with
N

|/Vn,d = Z q(Z)Vf*(Z)U;

z=1

o Single population gradient step: q(z) = p(z)

Theorem (Cabannes, Dohmatob, B., 2023, informal)
@ Forq(z) =Y, 1{z=2z} L(fg) Sn % +d %=
@ Forq(z) =1{z€ Sy}, and d > N: L(fq) S n & = —i—d*k foranyk
(z) =

@ For q(z) = 1{z seen at least s times in Sp}: L(fpq) < n~ a4 dott

o n~“& is the same as (Hutter, 2021)
o g =1 is best if we have enough capacity

o Can store at most d memories (approximation error: d~2*1)

Alberto Bietti Transformers and Associative Memories Probability Rome 2024

38/24



Scaling laws with optimization algorithms

Different algorithms lead to different memory schemes ¢(z):
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Alberto Bietti Transformers and Associative Memories Probability Rome 2024 39/24



Scaling laws with optimization algorithms

Different algorithms lead to different memory schemes ¢(z):
o One step of SGD with large batch: g(z) ~ p(z)
o SGD with batch size one + large step-size, d > N: q(z) = 1

Alberto Bietti Transformers and Associative Memories Probability Rome 2024 39/24
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Different algorithms lead to different memory schemes ¢(z):
o One step of SGD with large batch: g(z) ~ p(z)
o SGD with batch size one + large step-size, d > N: q(z) = 1

o For d < N, smaller step-sizes can help later in training
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Scaling laws with optimization algorithms

Different algorithms lead to different memory schemes ¢(z):
o One step of SGD with large batch: g(z) ~ p(z)
SGD with batch size one + large step-size, d > N: q(z) =~ 1

©

For d < N, smaller step-sizes can help later in training

©

Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

©
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Scaling laws with optimization algorithms

Different algorithms lead to different memory schemes ¢(z):
o One step of SGD with large batch: g(z) ~ p(z)
o SGD with batch size one + large step-size, d > N: g(z) = 1

o For d < N, smaller step-sizes can help later in training

o Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

SGD, |B|=64, T=10240 SGD, T'=1024 ~v=1.0, | B|=1024, T=10240

i~ S]]

— SGD

—— Adam \
— 4=10.0 —— SGD+LN
— 7=100.0 — Adam+LN

Error

H
o
3
.
22
i
Ly
g
Error

Error

T T T T T T T T
10! 102 10% 10 102 103 10t 102 10%
d d d
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Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere
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Increasing capacity

Main idea: there are exp(d) near-orthogonal directions on the sphere

Strategies to increase memory capacity (from linear to exponential in d)
o Nearest-neighbor lookup: set u, = v¢.(,) and take ?(z) = arg max, vyTuZ
o Attention: soft-max instead of hard-max to retrieve from context
o MLP: f(z) = arg max, v;— SN, vf*(z/)a(u;r,uz —b)

But: higher computational cost, more sensitive to noise, harder to learn
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