Associative Memories as a Building Block in Transformers

Alberto Bietti

Flatiron Institute, Simons Foundation

Inria Sierra, January 2025

Associative Memories as a Building Block in Transformers

Alberto Bietti

Flatiron Institute, Simons Foundation

Inria Sierra, January 2025

w/ V. Cabannes, E. Dohmatob, D. Bouchacourt, H. Jégou, L. Bottou (Meta AI),
E. Nichani, J. Lee (Princeton), B. Simsek, L. Chen, J. Bruna (NYU)

What are Transformer LLMs doing?

Reasoning over context

- Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
- Many results on expressivity (e.g., circuits, formal languages, graph connectivity)
 - ▶ e.g., (Merrill et al., 2022; Liu et al., 2023; Sanford et al., 2023)

What are Transformer LLMs doing?

Reasoning over context

- Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
- Many results on expressivity (e.g., circuits, formal languages, graph connectivity)
 - ▶ e.g., (Merrill et al., 2022; Liu et al., 2023; Sanford et al., 2023)

Knowledge storage

- Memorization, factual recall, parameter scaling
 - ▶ e.g., (Geva et al., 2020; Allen-Zhu and Li, 2024)
- Allows higher-level reasoning

Dan Hendrycks 🤣 @DanHendrycks · Mar 14, 2023

It knows many esoteric facts (e.g., the meaning of obscure songs, knows what area a researcher works in, can contrast ML optimizers like Adam vs AdamW like in a PhD oral exam, and so on).

My rule-of-thumb is that "if it's on the internet 5 or more times, GPT-4 remembers it."				
Q 1	1] 28	♡ 184	ılı 25K	

口土

What are Transformer LLMs doing?

Reasoning over context

- Circuits of attention heads (Elhage et al., 2021; Olsson et al., 2022; Wang et al., 2022)
- Many results on expressivity (e.g., circuits, formal languages, graph connectivity)
 - ▶ e.g., (Merrill et al., 2022; Liu et al., 2023; Sanford et al., 2023)

Knowledge storage

- Memorization, factual recall, parameter scaling
 - ▶ e.g., (Geva et al., 2020; Allen-Zhu and Li, 2024)
- Allows higher-level reasoning

Goal: tractable model for both + training dynamics?

Input: sequence of discrete tokens $(z_1, \ldots, z_T) \in [N]^T$

Input: sequence of discrete tokens $(z_1, \ldots, z_T) \in [N]^T$ **Embeddings**

- input e_z , positional p_t , output u_y , in \mathbb{R}^d
- this talk: fixed to random init $\mathcal{N}(0,1/d)$

Input: sequence of discrete tokens $(z_1, \ldots, z_T) \in [N]^T$ **Embeddings**

- input e_z , positional p_t , output u_y , in \mathbb{R}^d
- \bullet this talk: fixed to random init $\mathcal{N}(0,1/d)$

Residual streams (Elhage et al., 2021)

• embed each token $z_t \in [N]$ as $x_t := e_{z_t} + p_t$

Input: sequence of discrete tokens $(z_1, \ldots, z_T) \in [N]^T$ **Embeddings**

- input e_z , positional p_t , output u_y , in \mathbb{R}^d
- \bullet this talk: fixed to random init $\mathcal{N}(0,1/d)$

Residual streams (Elhage et al., 2021)

- embed each token $z_t \in [N]$ as $x_t := e_{z_t} + p_t$
- (causal) self-attention $x_t := x_t + MHSA(x_t, x_{1:t})$

$$\mathsf{MHSA}(\mathbf{x}_{t}, \mathbf{x}_{1:t}) = \sum_{h=1}^{H} \sum_{s=1}^{t} \beta_{s}^{h} W_{O}^{h\top} W_{V}^{h} \mathbf{x}_{s}, \quad \text{with } \beta_{s}^{h} = \frac{\exp(\mathbf{x}_{s}^{\top} W_{K}^{h\top} W_{Q}^{h} \mathbf{x}_{t})}{\sum_{s=1}^{t} \exp(\mathbf{x}_{s}^{\top} W_{K}^{h\top} W_{Q}^{h} \mathbf{x}_{t})}$$

where $W_{\mathcal{K}}, W_{\mathcal{Q}}, W_{\mathcal{V}}, W_{\mathcal{O}} \in \mathbb{R}^{d_h \times d}$ (key/query/value/output matrices)

Input: sequence of discrete tokens $(z_1, \ldots, z_T) \in [N]^T$ **Embeddings**

- input e_z , positional p_t , output u_y , in \mathbb{R}^d
- this talk: fixed to random init $\mathcal{N}(0,1/d)$

Residual streams (Elhage et al., 2021)

- embed each token $z_t \in [N]$ as $x_t := e_{z_t} + p_t$
- (causal) self-attention $x_t := x_t + MHSA(x_t, x_{1:t})$
- feed-forward $x_t := x_t + MLP(x_t)$

•
residual stream

$$\mathsf{MLP}(\mathbf{x}_t) = V^{\top} \sigma(U\mathbf{x}_t)$$

where $U, V \in \mathbb{R}^{m \times d}$, often m = 4d

Input: sequence of discrete tokens $(z_1, \ldots, z_T) \in [N]^T$ **Embeddings**

- input e_z , positional p_t , output u_y , in \mathbb{R}^d
- \bullet this talk: fixed to random init $\mathcal{N}(0,1/d)$

Residual streams (Elhage et al., 2021)

- embed each token $z_t \in [N]$ as $x_t := e_{z_t} + p_t$
- (causal) self-attention $x_t := x_t + MHSA(x_t, x_{1:t})$
- feed-forward $x_t := x_t + MLP(x_t)$
- residual stream x_t is a sum of embeddings/"features"

residual stream

Input: sequence of discrete tokens $(z_1, \ldots, z_T) \in [N]^T$ **Embeddings**

- input e_z , positional p_t , output u_y , in \mathbb{R}^d
- this talk: fixed to random init $\mathcal{N}(0,1/d)$

Residual streams (Elhage et al., 2021)

- embed each token $z_t \in [N]$ as $x_t := e_{z_t} + p_t$
- (causal) self-attention $x_t := x_t + MHSA(x_t, x_{1:t})$
- feed-forward $x_t := x_t + MLP(x_t)$
- residual stream x_t is a sum of embeddings/"features"

Next-token prediction

cross-entropy loss

$$\sum_{t < T} \ell(z_{t+1}; (\underline{u_j}^{\top} x_t)_j)$$

residual stream

Outline

(1

Associative memories

2 Application to Transformers I: reasoning (B. et al., 2023)

3 Application to Transformers II: factual recall (Nichani et al., 2024)

4 Scaling laws and optimization (Cabannes et al., 2024a,b)

• Consider sets of nearly orthonormal embeddings $\{e_z\}_{z \in \mathcal{Z}}$ and $\{u_y\}_{y \in \mathcal{Y}}$:

$$\begin{split} \|e_z\| &\approx 1 \quad \text{and} \quad e_z^\top e_{z'} \approx 0 \\ \|u_y\| &\approx 1 \quad \text{and} \quad u_y^\top u_{y'} \approx 0 \end{split}$$

• Consider sets of nearly orthonormal embeddings $\{e_z\}_{z \in \mathcal{Z}}$ and $\{u_y\}_{y \in \mathcal{Y}}$:

$$\|e_z\| \approx 1$$
 and $e_z^{\top} e_{z'} \approx 0$
 $\|u_y\| \approx 1$ and $u_y^{\top} u_{y'} \approx 0$

$$W = \sum_{(z,y)\in\mathcal{M}} \alpha_{zy} \boldsymbol{u}_{y} \boldsymbol{e}_{z}^{\top}$$

• Consider sets of nearly orthonormal embeddings $\{e_z\}_{z \in \mathcal{Z}}$ and $\{u_y\}_{y \in \mathcal{Y}}$:

$$\|e_z\| \approx 1$$
 and $e_z^{\top} e_{z'} \approx 0$
 $\|u_y\| \approx 1$ and $u_y^{\top} u_{y'} \approx 0$

$$W = \sum_{(z,y)\in\mathcal{M}} \alpha_{zy} u_y e_z^{\top} \implies u_y^{\top} W e_z \approx \alpha_{zy}$$

• Consider sets of nearly orthonormal embeddings $\{e_z\}_{z \in \mathcal{Z}}$ and $\{u_y\}_{y \in \mathcal{Y}}$:

$$\|e_z\| \approx 1$$
 and $e_z^{\top} e_{z'} \approx 0$
 $\|u_y\| \approx 1$ and $u_y^{\top} u_{y'} \approx 0$

$$W = \sum_{(z,y)\in\mathcal{M}} \alpha_{zy} u_y e_z^{\top} \implies u_y^{\top} W e_z \approx \alpha_{zy}$$

- Examples in Transformers:
 - Logits in attention heads: $x_k^\top W_{KQ} x_q$
 - Logits in next-token prediction: $u_y^{\top} U \sigma(Vx_t)$ or $u_y^{\top} W_{OV} x_k$

• Consider sets of nearly orthonormal embeddings $\{e_z\}_{z \in \mathcal{Z}}$ and $\{u_y\}_{y \in \mathcal{Y}}$:

$$\begin{aligned} \|e_z\| &\approx 1 \quad \text{and} \quad e_z^\top e_{z'} &\approx 0 \\ \|u_y\| &\approx 1 \quad \text{and} \quad u_y^\top u_{y'} &\approx 0 \end{aligned}$$

• Consider pairwise associations $(z, y) \in \mathcal{M}$ with weights α_{zy} and define:

$$W = \sum_{(z,y)\in\mathcal{M}} \alpha_{zy} u_y e_z^\top \implies u_y^\top W e_z \approx \alpha_{zy}$$

- Examples in Transformers:
 - Logits in attention heads: $x_k^{\top} W_{KQ} x_q$
 - Logits in next-token prediction: $u_y^{\top} U \sigma(Vx_t)$ or $u_y^{\top} W_{OV} x_k$

• Related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969); Iscen et al. (2017)

• Consider sets of nearly orthonormal embeddings $\{e_z\}_{z \in \mathcal{Z}}$ and $\{u_y\}_{y \in \mathcal{Y}}$:

$$\|e_z\| \approx 1$$
 and $e_z^{\top} e_{z'} \approx 0$
 $\|u_y\| \approx 1$ and $u_y^{\top} u_{y'} \approx 0$

$$W = \sum_{(z,y)\in\mathcal{M}} \alpha_{zy} \boldsymbol{u}_{y} \boldsymbol{e}_{z}^{\top} \implies \boldsymbol{u}_{y}^{\top} W \boldsymbol{e}_{z} \approx \alpha_{zy}$$

- Examples in Transformers:
 - Logits in attention heads: $x_k^\top W_{KQ} x_q$
 - Logits in next-token prediction: $u_y^{\top} U \sigma(Vx_t)$ or $u_y^{\top} W_{OV} x_k$
- Related to Hopfield (1982); Kohonen (1972); Willshaw et al. (1969); Iscen et al. (2017)
- Note: attention itself is also related to AM (Ramsauer et al., 2020; Schlag et al., 2021)

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over $(z, y) \in [N]^2$, and consider the loss

 $L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y,F_W(z))], \quad F_W(z)_k = \frac{u_k}{|v|} W e_z,$

with ℓ the **cross-entropy loss** and e_z , u_k input/output embeddings.

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over $(z, y) \in [N]^2$, and consider the loss

 $L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y, F_W(z))], \quad F_W(z)_k = \frac{u_k}{V} W \frac{e_z}{e_z},$

with ℓ the **cross-entropy loss** and e_z , u_k input/output embeddings. Then, $\nabla L(W) = \sum_{k=1}^{K} \mathbb{E}_z[(\hat{p}_W(y=k|z) - p(y=k|z))u_k e_z^{\top}]$

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over $(z, y) \in [N]^2$, and consider the loss

 $L(W) = \mathbb{E}_{(z,y)\sim\rho}[\ell(y,F_W(z))], \quad F_W(z)_k = \frac{u_k}{V} W e_z,$

with ℓ the **cross-entropy loss** and e_z , u_k input/output embeddings. Then, $\nabla L(W) = \sum_{k=1}^{K} \mathbb{E}_z[(\hat{p}_W(y=k|z) - p(y=k|z))u_k e_z^{\top}]$

• **Example**: $z \sim \text{Unif}([N])$, $y = f_*(z)$

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over $(z, y) \in [N]^2$, and consider the loss

 $L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y, F_W(z))], \quad F_W(z)_k = \frac{u_k}{V} W \frac{e_z}{e_z},$

with ℓ the **cross-entropy loss** and e_z , u_k input/output embeddings. Then, $\nabla L(W) = \sum_{k=1}^{K} \mathbb{E}_z[(\hat{p}_W(y=k|z) - p(y=k|z))u_k e_z^{\top}]$

• **Example**: $z \sim \text{Unif}([N])$, $y = f_*(z)$

► After one gradient step on the population loss, assuming near-orthonormal embeddings

$$W_1 = \frac{\eta}{N} \sum_{z,k} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right) u_k e_z^\top \implies u_k^\top W_1 e_z \approx \frac{\eta}{N} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right)$$

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over $(z, y) \in [N]^2$, and consider the loss

 $L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y, F_W(z))], \quad F_W(z)_k = \frac{u_k}{V} W \frac{e_z}{e_z},$

with ℓ the **cross-entropy loss** and e_z , u_k input/output embeddings. Then, $\nabla L(W) = \sum_{k=1}^{K} \mathbb{E}_z[(\hat{p}_W(y=k|z) - p(y=k|z))u_k e_z^{\top}]$

- **Example**: $z \sim \text{Unif}([N])$, $y = f_*(z)$
 - ► After one gradient step on the population loss, assuming near-orthonormal embeddings

$$W_1 = \frac{\eta}{N} \sum_{z,k} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right) u_k e_z^\top \implies u_k^\top W_1 e_z \approx \frac{\eta}{N} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right)$$

• **Corollary**: $\hat{f}(z) = \arg \max_k \frac{u_k}{W_1 e_z}$ has near-perfect accuracy

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over $(z, y) \in [N]^2$, and consider the loss

 $L(W) = \mathbb{E}_{(z,y)\sim\rho}[\ell(y, F_W(z))], \quad F_W(z)_k = \frac{u_k}{V} W e_z,$

with ℓ the **cross-entropy loss** and e_z , u_k input/output embeddings. Then, $\nabla L(W) = \sum_{k=1}^{K} \mathbb{E}_z[(\hat{p}_W(y=k|z) - p(y=k|z))u_k e_z^{\top}]$

- **Example**: $z \sim \text{Unif}([N])$, $y = f_*(z)$
 - ► After one gradient step on the population loss, assuming near-orthonormal embeddings

$$W_1 = \frac{\eta}{N} \sum_{z,k} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right) u_k e_z^\top \implies u_k^\top W_1 e_z \approx \frac{\eta}{N} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right)$$

• **Corollary**: $\hat{f}(z) = \arg \max_k u_k^{\top} W_1 e_z$ has near-perfect accuracy

• More generally, replace u_k by "backward" vector

Lemma (Gradients as memories, B. et al., 2023)

Let p be a data distribution over $(z, y) \in [N]^2$, and consider the loss

 $L(W) = \mathbb{E}_{(z,y)\sim p}[\ell(y, F_W(z))], \quad F_W(z)_k = \frac{u_k}{V} W e_z,$

with ℓ the **cross-entropy loss** and e_z , u_k input/output embeddings. Then, $\nabla L(W) = \sum_{k=1}^{K} \mathbb{E}_z[(\hat{p}_W(y=k|z) - p(y=k|z))u_k e_z^{\top}]$

• **Example**: $z \sim \text{Unif}([N])$, $y = f_*(z)$

► After one gradient step on the population loss, assuming near-orthonormal embeddings

$$W_1 = \frac{\eta}{N} \sum_{z,k} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right) u_k e_z^\top \implies u_k^\top W_1 e_z \approx \frac{\eta}{N} \left(\mathbb{1}\{f_*(z) = k\} - \frac{1}{N} \right)$$

• **Corollary**: $\hat{f}(z) = \arg \max_k \frac{u_k}{w_1} W_1 e_z$ has near-perfect accuracy

• More generally, replace u_k by "backward" vector

Note: related to (Ba et al., 2022; Damian et al., 2022; Oymak et al., 2023; Yang and Hu, 2021)

• Random embeddings $e_z, u_y \sim \mathcal{N}(0, \frac{1}{d}I)$

- Random embeddings e_z , $u_y \sim \mathcal{N}(0, \frac{1}{d}I)$
- For some $f^* : [N] \rightarrow [M]$

$$W = \sum_{z=1}^{N} u_{f^*(z)} e_z^{\top} \in \mathbb{R}^{d \times d}$$

- Random embeddings e_z , $u_y \sim \mathcal{N}(0, \frac{1}{d}I)$
- For some $f^* : [N] \rightarrow [M]$

$$W = \sum_{z=1}^{N} \frac{u_{f^*(z)}}{e_z} \in \mathbb{R}^{d \times d}$$

• When can we recover $\arg \max_y \gamma_{z,y} = f^*(z)$ for all z?

$$\gamma_{z,y} := u_y^\top W e_z = \sum_{z'} u_y^\top u_{f^*(z')} e_z^\top e_{z'}$$

- Random embeddings e_z , $u_y \sim \mathcal{N}(0, \frac{1}{d}I)$
- For some $f^* : [N] \rightarrow [M]$

$$W = \sum_{z=1}^{N} u_{f^*(z)} e_z^{\top} \in \mathbb{R}^{d \times d}$$

• When can we recover $\arg \max_y \gamma_{z,y} = f^*(z)$ for all z?

$$\gamma_{z,y} := u_y^\top W e_z = \sum_{z'} u_y^\top u_{f^*(z')} e_z^\top e_{z'}$$

$$\mathbb{E}[\gamma_{z,y}] = \begin{cases} 1, & \text{if } y = f^*(z) \\ 0, & \text{otherwise.} \end{cases} \quad \quad \mathsf{Var}[\gamma_{z,y}] \lesssim \frac{|\{f^*(z') = y\}|}{d} + \frac{|\{f^*(z') \neq y\}|}{d^2} \lesssim 1 \end{cases}$$

- Random embeddings e_z , $u_y \sim \mathcal{N}(0, \frac{1}{d}I)$
- For some $f^* : [N] \rightarrow [M]$

$$W = \sum_{z=1}^{N} u_{f^*(z)} e_z^{\top} \in \mathbb{R}^{d \times d}$$

• When can we recover $\arg \max_{y} \gamma_{z,y} = f^*(z)$ for all z?

$$\gamma_{z,y} := u_y^{\top} W e_z = \sum_{z'} u_y^{\top} u_{f^*(z')} e_z^{\top} e_{z'}$$

$$\mathbb{E}[\gamma_{z,y}] = \begin{cases} 1, & \text{if } y = f^*(z) \\ 0, & \text{otherwise.} \end{cases} \quad \quad \mathsf{Var}[\gamma_{z,y}] \lesssim \frac{|\{f^*(z') = y\}|}{d} + \frac{|\{f^*(z') \neq y\}|}{d^2} \stackrel{?}{\lesssim} 1$$

• Examples: (Cabannes, Dohmatob, and B., 2024a; Nichani, Lee, and B., 2024)

• f^* injective: can store up to $N \approx d^2$ associations (much better than one hot!)

- Random embeddings e_z , $u_y \sim \mathcal{N}(0, \frac{1}{d}I)$
- For some $f^* : [N] \rightarrow [M]$

$$W = \sum_{z=1}^{N} u_{f^*(z)} e_z^{\top} \in \mathbb{R}^{d \times d}$$

• When can we recover $\arg \max_{y} \gamma_{z,y} = f^*(z)$ for all z?

$$\gamma_{z,y} := u_y^{\top} W e_z = \sum_{z'} u_y^{\top} u_{f^*(z')} e_z^{\top} e_{z'}$$

$$\mathbb{E}[\gamma_{z,y}] = \begin{cases} 1, & \text{if } y = f^*(z) \\ 0, & \text{otherwise.} \end{cases} \quad \mathsf{Var}[\gamma_{z,y}] \lesssim \frac{|\{f^*(z') = y\}|}{d} + \frac{|\{f^*(z') \neq y\}|}{d^2} \stackrel{?}{\lesssim} 1$$

• Examples: (Cabannes, Dohmatob, and B., 2024a; Nichani, Lee, and B., 2024)

- f^* injective: can store up to $N \approx d^2$ associations (much better than one hot!)
- $f^*(z) = z \mod 2$: can store up to $N \approx d$ associations

- Random embeddings $e_z, u_y \sim \mathcal{N}(0, \frac{1}{d}I)$
- For some $f^* : [N] \rightarrow [M]$

$$W = \sum_{z=1}^{N} u_{f^*(z)} e_z^{\top} \in \mathbb{R}^{d \times d}$$

• When can we recover $\arg \max_y \gamma_{z,y} = f^*(z)$ for all z?

$$\gamma_{z,y} := u_y^{\top} W e_z = \sum_{z'} u_y^{\top} u_{f^*(z')} e_z^{\top} e_{z'}$$

$$\mathbb{E}[\gamma_{z,y}] = \begin{cases} 1, & \text{if } y = f^*(z) \\ 0, & \text{otherwise.} \end{cases} \quad \mathsf{Var}[\gamma_{z,y}] \lesssim \frac{|\{f^*(z') = y\}|}{d} + \frac{|\{f^*(z') \neq y\}|}{d^2} \stackrel{?}{\lesssim} 1$$

• Examples: (Cabannes, Dohmatob, and B., 2024a; Nichani, Lee, and B., 2024)

- f^* injective: can store up to $N \approx d^2$ associations (much better than one hot!)
- $f^*(z) = z \mod 2$: can store up to $N \approx d$ associations
- ► Scaling laws: store the most frequent tokens with under-parameterized model

$\mathsf{Capacity}\approx\mathsf{number}\;\mathsf{of}\;\mathsf{parameters}$

Low-rank

• $W = W_1^\top W_2$, with $W_1, W_2 \in \mathbb{R}^{m imes d}$ (e.g., key-query or output-value matrices)

- can store $N \approx md$ associations when $m \leq d$
- construction: random W_1 , one step on W_2

(Nichani, Lee, and B., 2024), related to Krotov and Hopfield (2016); Demircigil et al. (2017)

$\mathsf{Capacity} \approx \mathsf{number} \text{ of parameters}$

Low-rank

• $W = W_1^\top W_2$, with $W_1, W_2 \in \mathbb{R}^{m \times d}$ (e.g., key-query or output-value matrices)

- can store $N \approx md$ associations when $m \leq d$
- construction: random W_1 , one step on W_2

Non-linear MLP

• $\hat{f}(z) = \arg \max_{y} u_{y}^{\top} W_{1} \sigma(W_{2}^{\top} e_{z}), W_{1}, W_{2} \in \mathbb{R}^{d \times m}$

• can store $N \approx md$ associations for any width m

• construction: using Hermite polynomials of degree $pprox \log N / \log d$ in kernel regime

(Nichani, Lee, and B., 2024), related to Krotov and Hopfield (2016); Demircigil et al. (2017)

$\mathsf{Capacity} \approx \mathsf{number} \text{ of parameters}$

Low-rank

• $W = W_1^\top W_2$, with $W_1, W_2 \in \mathbb{R}^{m \times d}$ (e.g., key-query or output-value matrices)

- can store $N \approx md$ associations when $m \leq d$
- construction: random W_1 , one step on W_2

Non-linear MLP

•
$$\hat{f}(z) = \arg \max_{y} u_{y}^{\top} W_{1} \sigma(W_{2}^{\top} e_{z}), W_{1}, W_{2} \in \mathbb{R}^{d \times m}$$

- can store $N \approx md$ associations for any width m
- construction: using Hermite polynomials of degree $pprox \log N / \log d$ in kernel regime

Multi-input

•
$$\hat{f}(z_1, z_2) = \arg \max_y u_y^\top W_1 \sigma(W_2^\top(e_{z_1} + \tilde{e}_{z_2}))$$

• also $N \approx md$ capacity

(Nichani, Lee, and B., 2024), related to Krotov and Hopfield (2016); Demircigil et al. (2017)
$\mathsf{Capacity}\approx\mathsf{number}\;\mathsf{of}\;\mathsf{parameters}$

Low-rank

• $W = W_1^\top W_2$, with $W_1, W_2 \in \mathbb{R}^{m \times d}$ (e.g., key-query or output-value matrices)

- can store $N \approx md$ associations when $m \leq d$
- construction: random W_1 , one step on W_2

Non-linear MLP

•
$$\hat{f}(z) = \arg \max_{y} u_{y}^{\top} W_{1} \sigma(W_{2}^{\top} e_{z}), W_{1}, W_{2} \in \mathbb{R}^{d \times m}$$

- can store $N \approx md$ associations for any width m
- construction: using Hermite polynomials of degree $pprox \log N / \log d$ in kernel regime

Multi-input

•
$$\hat{f}(z_1, z_2) = \operatorname{arg\,max}_y u_y^{\top} W_1 \sigma(W_2^{\top}(e_{z_1} + \tilde{e}_{z_2}))$$

• also $N \approx md$ capacity

Note: matches information-theoretic lower bounds

(Nichani, Lee, and B., 2024), related to Krotov and Hopfield (2016); Demircigil et al. (2017)

Outline

1 Associative memories

2 Application to Transformers I: reasoning (B. et al., 2023)

3 Application to Transformers II: factual recall (Nichani et al., 2024)

4 Scaling laws and optimization (Cabannes et al., 2024a,b)

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr White went to the mall, it started raining, then Mr White witnessed an odd occurrence. While walking around the mall with his family, Mr White heard the sound of a helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr White went to the mall, it started raining, then Mr White witnessed an odd occurrence. While walking around the mall with his family, Mr White heard the sound of a helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix trigger tokens: q_1, \ldots, q_K

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr White went to the mall, it started raining, then Mr White witnessed an odd occurrence. While walking around the mall with his family, Mr White heard the sound of a helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix trigger tokens: q_1, \ldots, q_K Sample each sequence $z_{1:T} \in [N]^T$ as follows

• **Output tokens**: $o_k \sim \pi_o(\cdot | q_k)$ (random)

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr White went to the mall, it started raining, then Mr White witnessed an odd occurrence. While walking around the mall with his family, Mr White heard the sound of a helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix trigger tokens: q_1, \ldots, q_K Sample each sequence $z_{1:T} \in [N]^T$ as follows

- **Output tokens**: $o_k \sim \pi_o(\cdot | q_k)$ (random)
- Sequence-specific Markov model: $z_1 \sim \pi_1$, $z_t | z_{t-1} \sim p(\cdot | z_{t-1})$ with

$$p(j|i) = \begin{cases} \mathbb{1}\{j = o_k\}, & \text{if } i = q_k, \quad k = 1, \dots, K\\ \pi_b(j|i), & \text{o/w.} \end{cases}$$

Goal: capture both in-context and global knowledge (e.g., nouns vs syntax)

When Mr White went to the mall, it started raining, then Mr White witnessed an odd occurrence. While walking around the mall with his family, Mr White heard the sound of a helicopter landing in the parking lot. Curious, he made his way over to see what was going on.

Fix trigger tokens: q_1, \ldots, q_K Sample each sequence $z_{1:T} \in [N]^T$ as follows

- **Output tokens**: $o_k \sim \pi_o(\cdot | q_k)$ (random)
- Sequence-specific Markov model: $z_1 \sim \pi_1$, $z_t | z_{t-1} \sim p(\cdot | z_{t-1})$ with

$$p(j|i) = \begin{cases} \mathbb{1}\{j = o_k\}, & \text{if } i = q_k, \quad k = 1, \dots, K\\ \pi_b(j|i), & \text{o/w.} \end{cases}$$

 π_b : global bigrams model (estimated from Karpathy's character-level Shakespeare)

 $\bullet~$ 1-layer transformer fails: $\sim 55\%$ accuracy on in-context output predictions

- 1-layer transformer fails: $\sim 55\%$ accuracy on in-context output predictions
- 2-layer transformer succeeds: \sim 99% accuracy

- 1-layer transformer fails: $\sim 55\%$ accuracy on in-context output predictions
- 2-layer transformer succeeds: \sim 99% accuracy

See (Sanford, Hsu, and Telgarsky, 2023, 2024) for representational lower bounds

Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

- 1st layer: previous-token head
 - ► attends to previous token and copies it to residual stream

Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

- 1st layer: previous-token head
 - ► attends to previous token and copies it to residual stream
- 2nd layer: induction head
 - ► attends to output of previous token head, copies attended token

Induction head mechanism (Elhage et al., 2021; Olsson et al., 2022)

- 1st layer: previous-token head
 - attends to previous token and copies it to residual stream
- 2nd layer: induction head
 - ▶ attends to output of previous token head, copies attended token
- Matches observed attention scores:

Random embeddings in high dimension

• We consider random embeddings u_i with i.i.d. $\mathcal{N}(0, 1/d)$ entries and d large

$$\|u_i\| pprox 1$$
 and $u_i^ op u_j = O(1/\sqrt{d})$

Random embeddings in high dimension

• We consider **random** embeddings u_i with i.i.d. $\mathcal{N}(0, 1/d)$ entries and d large

$$\|u_i\| pprox 1$$
 and $u_i^ op u_j = O(1/\sqrt{d})$

• **Remapping**: multiply by random matrix W with $\mathcal{N}(0, 1/d)$ entries:

 $\|Wu_i\| pprox 1$ and $u_i^\top Wu_i = O(1/\sqrt{d})$

Random embeddings in high dimension

• We consider **random** embeddings u_i with i.i.d. $\mathcal{N}(0, 1/d)$ entries and d large

$$\|u_i\| pprox 1$$
 and $u_i^ op u_j = O(1/\sqrt{d})$

• **Remapping**: multiply by random matrix W with $\mathcal{N}(0, 1/d)$ entries:

$$\| W u_i \| pprox 1$$
 and $u_i^ op W u_i = O(1/\sqrt{d})$

• Value/Output matrices help with token **remapping**: $Mr \mapsto Mr$, White \mapsto White

Induction head with associative memories

• Random embeddings e_k , u_k , random matrix W_{OV}^1 (frozen at init)

• **Remapped** previous tokens: $\tilde{e}_k := W_{OV}^1 e_k$

Induction head with associative memories

• Random embeddings e_k , u_k , random matrix W_{OV}^1 (frozen at init)

• **Remapped** previous tokens: $\tilde{e}_k := W_{OV}^1 e_k$

Q: Does this match practice?

Empirically probing the dynamics

• "Memory recall **probes**": for target memory $W_* = \sum_{i=1}^{M} u_i e_i^{\top}$, compute

$$R(\hat{W}, W_*) = \frac{1}{M} \sum_{i=1}^{M} \mathbb{1}\{i = \arg \max_{j} u_j^\top \hat{W} e_i\}$$

Empirically probing the dynamics

• "Memory recall **probes**": for target memory $W_* = \sum_{i=1}^{M} u_i e_i^{\top}$, compute

$$R(\hat{W}, W_*) = \frac{1}{M} \sum_{i=1}^{M} \mathbb{1}\{i = \arg \max_{j} u_j^\top \hat{W} e_i\}$$

- Natural learning "order": W_{OV}^2 first, W_{KQ}^2 next, W_{KQ}^1 last
- Joint learning is faster

Alberto Bietti

- Setting: transformer on the bigram task
 - Focus on predicting second output token
 - All distributions are uniform
 - Some simplifications to architecture
 - Infinite width, infinite data, $N \gg T$

Setting: transformer on the bigram task

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture
- Infinite width, infinite data, $N \gg T$

Theorem (B. et al., 2023, informal)

In the setup above, we can recover the desired associative memories with **3 gradient steps** on the population loss: first on W_{OV}^2 , then W_{KQ}^2 , then W_{KQ}^1 .

- **Setting**: transformer on the bigram task
 - Focus on predicting second output token
 - All distributions are uniform
 - Some simplifications to architecture
 - Infinite width, infinite data, $N \gg T$

Theorem (B. et al., 2023, informal)

In the setup above, we can recover the desired associative memories with **3 gradient steps** on the population loss: first on W_{OV}^2 , then W_{KQ}^2 , then W_{KQ}^1 .

Key ideas

- ${\scriptstyle \bullet}$ Attention is uniform at initialization \implies inputs are sums of embeddings
- W_{OV}^2 : correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z_T
- $W_{KQ}^{1/2}$: correct associations lead to more focused attention

Setting: transformer on the bigram task

- Focus on predicting second output token
- All distributions are uniform
- Some simplifications to architecture
- Infinite width, infinite data, $N \gg T$

Theorem (B. et al., 2023, informal)

In the setup above, we can recover the desired associative memories with **3 gradient steps** on the population loss: first on W_{OV}^2 , then W_{KQ}^2 , then W_{KQ}^1 .

Key ideas

- ${\scriptstyle \bullet}$ Attention is uniform at initialization \implies inputs are sums of embeddings
- W_{OV}^2 : correct output appears w.p. 1, while other tokens are noisy and cond. indep. of z_T
- $W_{KQ}^{1/2}$: correct associations lead to more focused attention

see also (Snell et al., 2021; Oymak et al., 2023)

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^d \times [N]$, and consider the loss

 $L(W) = \mathbb{E}_{(x,y)\sim p}[\ell(y,F_W(x))], \quad F_W(z)_k = \underline{u}_k^\top W x.$

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^d \times [N]$, and consider the loss

 $L(W) = \mathbb{E}_{(x,y)\sim p}[\ell(y, F_W(x))], \quad F_W(z)_k = u_k^\top W x.$

Denoting $\mu_k := \mathbb{E}[x|y=k]$ and $\hat{\mu}_k := \mathbb{E}_x[\frac{\hat{p}_W(k|x)}{p(y=k)}x]$, we have

$$\nabla_W L(W) = \sum_{k=1}^N p(y=k) \boldsymbol{u}_k (\hat{\mu}_k - \mu_k)^\top.$$

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^d \times [N]$, and consider the loss

 $L(W) = \mathbb{E}_{(x,y)\sim p}[\ell(y, F_W(x))], \quad F_W(z)_k = u_k^\top W x.$

Denoting $\mu_k := \mathbb{E}[x|y=k]$ and $\hat{\mu}_k := \mathbb{E}_x[\frac{\hat{p}_W(k|x)}{p(y=k)}x]$, we have

$$\nabla_W L(W) = \sum_{k=1}^N p(y=k) \boldsymbol{u}_k (\hat{\mu}_k - \mu_k)^\top.$$

• **Example**: $y \sim \text{Unif}([N])$, $t \sim \text{Unif}([T])$, $x = e_y + p_t$.

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^d \times [N]$, and consider the loss

 $L(W) = \mathbb{E}_{(x,y)\sim p}[\ell(y, F_W(x))], \quad F_W(z)_k = u_k^\top W x.$

Denoting $\mu_k := \mathbb{E}[x|y=k]$ and $\hat{\mu}_k := \mathbb{E}_x[\frac{\hat{p}_W(k|x)}{p(y=k)}x]$, we have

$$\nabla_W L(W) = \sum_{k=1}^N p(y=k) \boldsymbol{u}_k (\hat{\mu}_k - \mu_k)^\top.$$

• **Example**: $y \sim \text{Unif}([N])$, $t \sim \text{Unif}([T])$, $x = e_y + p_t$. One gradient step:

$$u_k^{\top} W_1(e_y + p_t) \approx \frac{\eta}{N} \mathbb{1}\{y = k\} + O\left(\frac{1}{N^2}\right)$$

Lemma (Gradients with noisy inputs)

Let p be a data distribution over $(x, y) \in \mathbb{R}^d \times [N]$, and consider the loss

 $L(W) = \mathbb{E}_{(x,y)\sim\rho}[\ell(y,F_W(x))], \quad F_W(z)_k = u_k^{\top}Wx.$

Denoting $\mu_k := \mathbb{E}[x|y=k]$ and $\hat{\mu}_k := \mathbb{E}_x[\frac{\hat{p}_W(k|x)}{p(y=k)}x]$, we have

$$\nabla_W L(W) = \sum_{k=1}^N p(y=k) \boldsymbol{u}_k (\hat{\mu}_k - \mu_k)^\top.$$

• **Example**: $y \sim \text{Unif}([N])$, $t \sim \text{Unif}([T])$, $x = e_y + p_t$. One gradient step:

$$u_k^{\top} W_1(e_y + p_t) \approx \frac{\eta}{N} \mathbb{1}\{y = k\} + O\left(\frac{1}{N^2}\right)$$

Similar arguments for attention matrices

Global vs in-context associations

• Global bigrams are learned much faster than induction head, tend to be stored in MLPs

Global vs in-context associations

• Global bigrams are learned much faster than induction head, tend to be stored in MLPs

Trade-offs between global and in-context predictions (Chen, Bruna, and B., 2024)

- Trade-offs also appear in LLMs
 - \blacktriangleright "Madrid is located in" \rightarrow {the, Spain} on Pythia-1B
 - ► Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context

Global vs in-context associations

• Global bigrams are learned much faster than induction head, tend to be stored in MLPs

Trade-offs between global and in-context predictions (Chen, Bruna, and B., 2024)

- Trade-offs also appear in LLMs
 - \blacktriangleright "Madrid is located in" \rightarrow {the, Spain} on Pythia-1B
 - ► Ablating late-layer MLPs (Sharma et al., 2023) changes prediction from global to in-context

Theorem (Chen et al., 2024, informal)

In toy setting, feed-forward layer learns global bigram after O(1) samples, attention after O(N) samples due to noise.

Outline

1 Associative memories

2 Application to Transformers I: reasoning (B. et al., 2023)

3 Application to Transformers II: factual recall (Nichani et al., 2024)

4 Scaling laws and optimization (Cabannes et al., 2024a,b)

Toy model of factual recall

The capital of France is Paris

- $\textbf{s} \in \mathcal{S}:$ subject token
- $r \in \mathcal{R}$: relation token
- $a^*(s,r) \in \mathcal{A}_r$: attribute/fact to be stored
- $z_i \in \mathcal{N}$: noise tokens

Toy model of factual recall

The capital of France is Paris

- $\mathbf{s} \in \mathcal{S}$: subject token
- $r \in \mathcal{R}$: relation token
- $a^*(s,r) \in \mathcal{A}_r$: attribute/fact to be stored
- $z_i \in \mathcal{N}$: noise tokens

Q: How many parameters do Transformers need to solve this?
How many parameters do we need?

- One-layer Transformer, with or without MLP, random embeddings
- Embedding dimension d, head dimension d_h , MLP width m, H heads

- Attention + MLP: $Hd_h \gtrsim S + R$ and $md \gtrsim SR$ succeeds
- Attention-only: $d \gtrsim R + A_{\max}$ and $Hd_h \gtrsim S$ succeeds $(A_{\max} := \max_r |A_r|)$

How many parameters do we need?

- One-layer Transformer, with or without MLP, random embeddings
- Embedding dimension d, head dimension d_h , MLP width m, H heads

- Attention + MLP: $Hd_h \gtrsim S + R$ and $md \gtrsim SR$ succeeds
- Attention-only: $d \gtrsim R + A_{\max}$ and $Hd_h \gtrsim S$ succeeds $(A_{\max} := \max_r |\mathcal{A}_r|)$

- Total parameters scale with number of facts SR (up to A_{max})
- Constructions are based on associative memories
- Attention-only needs large enough d
- Noise is negligible (log factors)

How many parameters do we need?

- One-layer Transformer, with or without MLP, random embeddings
- Embedding dimension d, head dimension d_h , MLP width m, H heads

- Attention + MLP: $Hd_h \gtrsim S + R$ and $md \gtrsim SR$ succeeds
- Attention-only: $d \gtrsim R + A_{\max}$ and $Hd_h \gtrsim S$ succeeds $(A_{\max} := \max_r |A_r|)$

Training dynamics

- One-layer Transformer with linear attention and one-hot embeddings
- Gradient flow with initialization $W_{OV}(a, z), w_{KQ}(z) \approx \alpha > 0$

- We have global convergence to zero loss
- There is an intermediate phase where the model predicts with p(a|r) instead of p(a|s,r)

Training dynamics

- One-layer Transformer with linear attention and one-hot embeddings
- Gradient flow with initialization $W_{OV}(a, z), w_{KQ}(z) \approx \alpha > 0$

- We have global convergence to zero loss
- There is an intermediate phase where the model predicts with p(a|r) instead of p(a|s,r)
- Intermediate phase corresponds to hallucination (over A_r , ignoring s)

Outline

1 Associative memories

2 Application to Transformers I: reasoning (B. et al., 2023)

3 Application to Transformers II: factual recall (Nichani et al., 2024)

Scaling laws and optimization (Cabannes et al., 2024a,b)

Setting

•
$$z_i \sim p(z), y_i = f^*(z_i), n \text{ samples: } S_n = \{z_1, \dots, z_n\}, 0/1 \text{ loss:}$$

$$L(\hat{f}_n) = \mathbb{P}(y \neq \hat{f}_n(z))$$

Setting

•
$$z_i \sim p(z)$$
, $y_i = f^*(z_i)$, n samples: $S_n = \{z_1, \dots, z_n\}$, $0/1$ loss:
 $L(\hat{f}_n) = \mathbb{P}(y \neq \hat{f}_n(z))$

• Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

 $p(z) \propto z^{-\alpha}$

Setting

•
$$z_i \sim p(z), y_i = f^*(z_i), n \text{ samples: } S_n = \{z_1, \dots, z_n\}, 0/1 \text{ loss:}$$

$$L(\hat{f}_n) = \mathbb{P}(y \neq \hat{f}_n(z))$$

• Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

 $p(z) \propto z^{-\alpha}$

• Hutter (2021): with infinite memory, we have

$$L(\hat{f}_n) \lesssim n^{-\frac{\alpha-1}{\alpha}}$$

Setting

•
$$z_i \sim p(z), y_i = f^*(z_i), n \text{ samples: } S_n = \{z_1, \dots, z_n\}, 0/1 \text{ loss:}$$

$$L(\hat{f}_n) = \mathbb{P}(y \neq \hat{f}_n(z))$$

• Heavy-tailed token frequencies: Zipf law (typical for language where N is very large)

 $p(z) \propto z^{-\alpha}$

• Hutter (2021): with infinite memory, we have

$$L(\hat{f}_n) \lesssim n^{-\frac{\alpha-1}{\alpha}}$$

• Q: What about finite capacity?

- Random embeddings $e_z, u_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_y u_y^\top W_{n,d} e_z$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) u_{f^*(z)} e_z^{\top}$$

- Random embeddings $e_z, u_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_y u_y^\top W_{n,d} e_z$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) u_{f^*(z)} \mathbf{e}_z^{\top}$$

• Single population gradient step on cross-entropy loss: $q(z) \approx p(z)$

- Random embeddings $e_z, u_y \in \mathbb{R}^d$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_{y} u_{y}^{\top} W_{n,d} e_{z}$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) u_{f^*(z)} e_z^{\top}$$

• Single population gradient step on cross-entropy loss: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, and B., 2024a, informal)

1 For
$$q(z) = \sum_{i} \mathbb{1}\{z = z_i\}$$
: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$

- $\bullet\,$ Random embeddings $e_{z}, \textit{u}_{y} \in \mathbb{R}^{d}$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_y u_y^\top W_{n,d} e_z$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) u_{f^*(z)} e_z^{\top}$$

• Single population gradient step on cross-entropy loss: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, and B., 2024a, informal) **1** For $q(z) = \sum_{i} \mathbb{1}\{z = z_i\}$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$ **2** For $q(z) = \mathbb{1}\{z \in S_n\}$, and $d \gg N$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-k}$ for any k

- $\bullet\,$ Random embeddings $e_{z}, \textit{u}_{y} \in \mathbb{R}^{d}$ with $\mathcal{N}(0, 1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_y u_y^\top W_{n,d} e_z$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) u_{f^*(z)} e_z^{\top}$$

• Single population gradient step on cross-entropy loss: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, and B., 2024a, informal) (1) For $q(z) = \sum_{i} \mathbb{1}\{z = z_i\}$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$ (2) For $q(z) = \mathbb{1}\{z \in S_n\}$, and $d \gg N$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-k}$ for any k(3) For $q(z) = \mathbb{1}\{z \text{ seen at least s times in } S_n\}$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\alpha+1}$

- $\bullet\,$ Random embeddings $\,e_{\!z},\,\!u_{\!y}\in\mathbb{R}^d$ with $\mathcal{N}(0,1/d)$ entries
- Estimator: $\hat{f}_{n,d}(x) = \arg \max_{y} u_{y}^{\top} W_{n,d} e_{z}$, with

$$W_{n,d} = \sum_{z=1}^{N} q(z) u_{f^*(z)} e_z^{\top}$$

• Single population gradient step on cross-entropy loss: $q(z) \approx p(z)$

Theorem (Cabannes, Dohmatob, and B., 2024a, informal) 1 For $q(z) = \sum_{i} \mathbb{1}\{z = z_i\}$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\frac{\alpha-1}{2\alpha}}$ 2 For $q(z) = \mathbb{1}\{z \in S_n\}$, and $d \gg N$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-k}$ for any k3 For $q(z) = \mathbb{1}\{z \text{ seen at least s times in } S_n\}$: $L(\hat{f}_{n,d}) \lesssim n^{-\frac{\alpha-1}{\alpha}} + d^{-\alpha+1}$

- $n^{-\frac{\alpha-1}{\alpha}}$ is the same as (Hutter, 2021)
- q = 1 is best if we have enough capacity
- Can store at most d memories (approximation error: $d^{-\alpha+1}$)

$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)] \qquad \rightarrow \qquad W_{n,d} \approx \sum_{z=1}^N q(z) u_{f^*(z)} e_z^\top$$

$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)] \qquad \rightarrow \qquad W_{n,d} \approx \sum_{z=1}^N q(z) u_{f^*(z)} e_z^\top$$

Different algorithms lead to different memory schemes q(z):

• One step of SGD with large batch: $q(z) \approx p(z)$

$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), \bigcup We_z)] \qquad \rightarrow \qquad W_{n,d} \approx \sum_{z=1}^N q(z) u_{f^*(z)} e_z^\top$$

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$

$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)] \qquad \rightarrow \qquad W_{n,d} \approx \sum_{z=1}^N q(z) u_{f^*(z)} e_z^\top$$

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training

$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)] \qquad \rightarrow \qquad W_{n,d} \approx \sum_{z=1}^N q(z) u_{f^*(z)} e_z^\top$$

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training
- Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

$$L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)] \qquad \rightarrow \qquad W_{n,d} \approx \sum_{z=1}^N q(z) u_{f^*(z)} e_z^\top$$

- One step of SGD with large batch: $q(z) \approx p(z)$
- SGD with batch size one + large step-size, $d \gg N$: $q(z) \approx 1$
- For $d \leq N$, smaller step-sizes can help later in training
- Adam and layer-norm help with practical settings (large batch sizes + smaller step-size)

 $L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)], \qquad \ell: \text{ cross-entropy loss}$

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)
 Orthogonal embeddings ⇒ logarithmic growth of margins for any step-size

 $L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), \bigcup W e_z)], \qquad \ell: \text{ cross-entropy loss}$

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)
Orthogonal embeddings ⇒ logarithmic growth of margins for any step-size
Correlated embeddings + imbalance ⇒ oscillatory regimes

 $L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)], \qquad \ell: \text{ cross-entropy loss}$

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)

- $\, \bullet \,$ Orthogonal embeddings $\, \Longrightarrow \,$ logarithmic growth of margins for any step-size
- Correlated embeddings + imbalance \implies oscillatory regimes
- Large step-sizes help reach perfect accuracy faster despite oscillations (empirically)

 $L(W) = \mathbb{E}_{z \sim p}[\ell(f^*(z), UWe_z)], \qquad \ell: \text{ cross-entropy loss}$

Benefits of large step-sizes + oscillations: (Cabannes, Simsek, and B., 2024b)

- $\, \bullet \,$ Orthogonal embeddings $\, \Longrightarrow \,$ logarithmic growth of margins for any step-size
- Correlated embeddings + imbalance \implies oscillatory regimes
- Large step-sizes help reach perfect accuracy faster despite oscillations (empirically)
- Over-optimization can hurt in under-parameterized settings (empirically)

Concluding remarks

Transformer weights as associative memories

- Storage capacity and gradient-based learning
- Toy models of reasoning and factual recall
- More optimization can help in under-parameterized, imbalanced settings

Concluding remarks

Transformer weights as associative memories

- Storage capacity and gradient-based learning
- Toy models of reasoning and factual recall
- More optimization can help in under-parameterized, imbalanced settings

Future directions

- Finite sample results
- More complex reasoning problems
- Fine-grained optimization
- Learning embeddings

Concluding remarks

Transformer weights as associative memories

- Storage capacity and gradient-based learning
- Toy models of reasoning and factual recall
- More optimization can help in under-parameterized, imbalanced settings

Future directions

- Finite sample results
- More complex reasoning problems
- Fine-grained optimization
- Learning embeddings

Thank you!

References I

- Z. Allen-Zhu and Y. Li. Physics of language models: Part 3.3, knowledge capacity scaling laws. *arXiv* preprint arXiv:2404.05405, 2024.
- A. B., V. Cabannes, D. Bouchacourt, H. Jegou, and L. Bottou. Birth of a transformer: A memory viewpoint. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.
- J. Ba, M. A. Erdogdu, T. Suzuki, Z. Wang, D. Wu, and G. Yang. High-dimensional asymptotics of feature learning: How one gradient step improves the representation. *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.
- V. Cabannes, E. Dohmatob, and A. B. Scaling laws for associative memories. In *International Conference on Learning Representations (ICLR)*, 2024a.
- V. Cabannes, B. Simsek, and A. B. Learning associative memories with gradient descent. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2024b.
- L. Chen, J. Bruna, and A. B. How truncating weights improves reasoning in language models. arXiv preprint arXiv:2406.03068, 2024.
- A. Damian, J. Lee, and M. Soltanolkotabi. Neural networks can learn representations with gradient descent. In *Conference on Learning Theory (COLT)*, 2022.
- M. Demircigil, J. Heusel, M. Löwe, S. Upgang, and F. Vermet. On a model of associative memory with huge storage capacity. *Journal of Statistical Physics*, 168:288–299, 2017.

References II

- N. Elhage, N. Nanda, C. Olsson, T. Henighan, N. Joseph, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, N. DasSarma, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*, 2021.
- M. Geva, R. Schuster, J. Berant, and O. Levy. Transformer feed-forward layers are key-value memories. arXiv preprint arXiv:2012.14913, 2020.
- J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. *Proceedings of the national academy of sciences*, 79(8):2554–2558, 1982.
- M. Hutter. Learning curve theory. arXiv preprint arXiv:2102.04074, 2021.
- A. Iscen, T. Furon, V. Gripon, M. Rabbat, and H. Jégou. Memory vectors for similarity search in high-dimensional spaces. *IEEE transactions on big data*, 4(1):65–77, 2017.
- T. Kohonen. Correlation matrix memories. *IEEE Transactions on Computers*, 1972.
- D. Krotov and J. J. Hopfield. Dense associative memory for pattern recognition. *Advances in neural information processing systems*, 29, 2016.
- B. Liu, J. T. Ash, S. Goel, A. Krishnamurthy, and C. Zhang. Transformers learn shortcuts to automata. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2023.

References III

- W. Merrill, A. Sabharwal, and N. A. Smith. Saturated transformers are constant-depth threshold circuits. *Transactions of the Association for Computational Linguistics*, 10:843–856, 2022.
- E. Nichani, J. D. Lee, and A. B. Understanding factual recall in transformers via associative memories. arXiv preprint arXiv:2412.06538, 2024.
- C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell, Y. Bai, A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, S. Johnston, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan, S. McCandlish, and C. Olah. In-context learning and induction heads. *Transformer Circuits Thread*, 2022.
- S. Oymak, A. S. Rawat, M. Soltanolkotabi, and C. Thrampoulidis. On the role of attention in prompt-tuning. In *International Conference on Machine Learning*, 2023.
- H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, T. Adler, L. Gruber, M. Holzleitner, M. Pavlović, G. K. Sandve, et al. Hopfield networks is all you need. *arXiv preprint arXiv:2008.02217*, 2020.
- C. Sanford, D. Hsu, and M. Telgarsky. Representational strengths and limitations of transformers. In Advances in Neural Information Processing Systems (NeurIPS), 2023.
- C. Sanford, D. Hsu, and M. Telgarsky. One-layer transformers fail to solve the induction heads task. *arXiv preprint arXiv:2408.14332*, 2024.

References IV

- I. Schlag, K. Irie, and J. Schmidhuber. Linear transformers are secretly fast weight programmers. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2021.
- P. Sharma, J. T. Ash, and D. Misra. The truth is in there: Improving reasoning in language models with layer-selective rank reduction. *arXiv preprint arXiv:2312.13558*, 2023.
- C. Snell, R. Zhong, D. Klein, and J. Steinhardt. Approximating how single head attention learns. arXiv preprint arXiv:2103.07601, 2021.
- K. Wang, A. Variengien, A. Conmy, B. Shlegeris, and J. Steinhardt. Interpretability in the wild: a circuit for indirect object identification in gpt-2 small. *arXiv preprint arXiv:2211.00593*, 2022.
- D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic associative memory. *Nature*, 222(5197):960–962, 1969.
- G. Yang and E. J. Hu. Tensor programs iv: Feature learning in infinite-width neural networks. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2021.