Foundations of Deep Convolutional Models through Kernel Methods

Alberto Bietti

Inria

TTI Chicago. February 17, 2020.

Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

ENGLISH - DETECTED	ENGLISH CH	\sim	←	FRENCH	CHINESE (TRADITIONAL)	\sim
where is the train station? \qquad >				où est la gare? ⊘		☆
(ب ا	27/500	00 🧪		•		:

Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

$$f(x) = W_n \sigma(W_{n-1} \cdots \sigma(W_1 x) \cdots)$$

Recipe: huge models + lots of data + compute + simple algorithms

Convolutional networks

Exploiting structure of natural images (LeCun et al., 1989)

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Convolutional networks

(LeCun et al., 1998)

Convolutional networks

- Model local neighborhoods at different scales
- Provide some invariance through pooling
- Useful inductive bias for learning efficiently on natural images

Convolutional networks

Convolutional networks

- Model local neighborhoods at different scales
- Provide some invariance through pooling
- Useful inductive bias for learning efficiently on natural images

Understanding deep learning

The challenge of deep learning theory

- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize with (stochastic) gradient descent!

Understanding deep learning

The challenge of deep learning theory

- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint

- View deep networks as functions in some functional space
- Non-parametric models, natural measures of complexity (e.g., norms)

Understanding deep learning

The challenge of deep learning theory

- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint

- View deep networks as functions in some functional space
- Non-parametric models, natural measures of complexity (e.g., norms)

What is an appropriate functional space?

Kernels to the rescue

Kernels?

- Map data x to high-dimensional space, $\Phi(x) \in \mathcal{H}$ (\mathcal{H} : "RKHS")
- Functions $f \in \mathcal{H}$ are linear in features: $f(x) = \langle f, \Phi(x) \rangle$ (f can be non-linear in x!)
- Learning with a positive definite kernel $K(x,x') = \langle \Phi(x), \Phi(x') \rangle$
 - ► *H* can be infinite-dimensional! (*kernel trick*)
 - Need to compute kernel matrix $K = [K(x_i, x_j)]_{ij} \in \mathbb{R}^{N \times N}$

Kernels to the rescue

Clean and well-developed theory

- Tractable methods (convex optimization)
- Statistical and approximation properties well understood for many kernels
- Costly (kernel matrix of size N^2) but approximations are possible

Kernels for deep models: deep kernel machines

Hierarchical kernels (Cho and Saul, 2009)

• Kernels can be constructed hierarchically

$$K(x,x') = \langle \Phi(x), \Phi(x') \rangle$$
 with $\Phi(x) = \varphi_2(\varphi_1(x))$

• e.g., dot-product kernels on the sphere

$$\mathcal{K}(x,x') = \kappa_2(\langle \varphi_1(x), \varphi_1(x') \rangle) = \kappa_2(\kappa_1(x^\top x'))$$

Kernels for deep models: deep kernel machines

Convolutional kernels networks (CKNs) for images (Mairal et al., 2014; Mairal, 2016)

• Good empirical performance with tractable approximations (Nyström)

$$f_{\theta}(x) = rac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \sigma(w_i^{\top} x), \qquad m o \infty$$

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007) • $\theta = (v_i)_i$, fixed random weights $w_i \sim N(0, I)$

$$\mathcal{K}_{RF}(x,x') = \mathbb{E}_{w \sim N(0,l)}[\sigma(w^{\top}x)\sigma(w^{\top}x')]$$

$$f_{\theta}(x) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \sigma(w_i^{\top} x), \qquad m \to \infty$$

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007) • $\theta = (v_i)_i$, fixed random weights $w_i \sim N(0, I)$

$$K_{RF}(x,x') = \mathbb{E}_{w \sim N(0,l)}[\sigma(w^{\top}x)\sigma(w^{\top}x')]$$

Neural tangent kernels (NTK, Jacot et al., 2018)

• $\theta = (v_i, w_i)_i$, initialization $\theta_0 \sim N(0, I)$

• Lazy training (Chizat et al., 2019): θ stays close to θ_0 when training with large m

$$f_{\theta}(x) pprox f_{ heta_0}(x) + \langle heta - heta_0,
abla_{ heta} f_{ heta}(x) |_{ heta = heta_0}
angle.$$

$$f_{\theta}(x) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \sigma(w_i^{\top} x), \qquad m \to \infty$$

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007) • $\theta = (v_i)_i$, fixed random weights $w_i \sim N(0, I)$

$$\mathcal{K}_{RF}(x,x') = \mathbb{E}_{w \sim N(0,l)}[\sigma(w^{\top}x)\sigma(w^{\top}x')]$$

Neural tangent kernels (NTK, Jacot et al., 2018)

• $\theta = (v_i, w_i)_i$, initialization $\theta_0 \sim N(0, I)$

• Lazy training (Chizat et al., 2019): θ stays close to θ_0 when training with large m

$$f_{\theta}(x) pprox f_{\theta_0}(x) + \langle \theta - \theta_0, \nabla_{\theta} f_{\theta}(x) |_{\theta = \theta_0} \rangle.$$

• Gradient descent for $m \to \infty \approx$ kernel ridge regression with **neural tangent kernel**

$$\mathcal{K}_{NTK}(x,x') = \lim_{m \to \infty} \langle \nabla_{\theta} f_{\theta_0}(x), \nabla_{\theta} f_{\theta_0}(x') \rangle$$

$$f_{\theta}(x) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \sigma(w_i^{\top} x), \qquad m \to \infty$$

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007) • $\theta = (v_i)_i$, fixed random weights $w_i \sim N(0, I)$

$$\mathcal{K}_{RF}(x,x') = \mathbb{E}_{w \sim \mathcal{N}(0,I)}[\sigma(w^{\top}x)\sigma(w^{\top}x')]$$

Neural tangent kernels (NTK, Jacot et al., 2018)

• $\theta = (v_i, w_i)_i$, initialization $\theta_0 \sim N(0, I)$

• Lazy training (Chizat et al., 2019): θ stays close to θ_0 when training with large m

$$f_{\theta}(x) \approx f_{\theta_0}(x) + \langle \theta - \theta_0, \nabla_{\theta} f_{\theta}(x) |_{\theta = \theta_0} \rangle.$$

• Gradient descent for $m \to \infty \approx$ kernel ridge regression with **neural tangent kernel**

$$K_{NTK}(x,x') = \lim_{m \to \infty} \langle \nabla_{\theta} f_{\theta_0}(x), \nabla_{\theta} f_{\theta_0}(x') \rangle$$

RF and NTK extend to deep architectures

Outline

1 Convolutional kernels and their stability

- 2 Approximation and complexity
- 3 Applications to regularization and robustness
- 4 Conclusions and perspectives

Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives

Properties of convolutional models

Convolutional architectures:

- Capture multi-scale and compositional structure in natural signals
- Model local stationarity
- Provide some translation invariance

Properties of convolutional models

Convolutional architectures:

- Capture multi-scale and compositional structure in natural signals
- Model local stationarity
- Provide some translation invariance

Beyond translation invariance?

Stability to deformations

Deformations

- $\tau : \Omega \to \Omega$: C^1 -diffeomorphism
- $L_{\tau}x(u) = x(u \tau(u))$: action operator
- Much richer group of transformations than translations

• Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)

Stability to deformations

Deformations

- $\tau: \Omega \to \Omega$: C^1 -diffeomorphism
- $L_{\tau}x(u) = x(u \tau(u))$: action operator
- Much richer group of transformations than translations

Definition of stability

• Representation $\Phi(\cdot)$ is **stable** (Mallat, 2012) if:

$$\|\Phi(L_{\tau}x) - \Phi(x)\| \le (C_1 \|\nabla \tau\|_{\infty} + C_2 \|\tau\|_{\infty}) \|x\|$$

- $\|\nabla \tau\|_{\infty} = \sup_{u} \|\nabla \tau(u)\|$ controls deformation
- $\|\tau\|_{\infty} = \sup_{u} |\tau(u)|$ controls translation
- $C_2 \rightarrow 0$: translation invariance

Smoothness and stability with kernels

Geometry of the kernel mapping: $f(x) = \langle f, \Phi(x) \rangle$

$$|f(x) - f(x')| \leq \|f\|_{\mathcal{H}} \cdot \|\Phi(x) - \Phi(x')\|_{\mathcal{H}}$$

- $\|f\|_{\mathcal{H}}$ controls **complexity** of the model
- Φ(x) encodes CNN architecture independently of the model (smoothness, invariance, stability to deformations)

Smoothness and stability with kernels

Geometry of the kernel mapping: $f(x) = \langle f, \Phi(x) \rangle$

$$|f(x) - f(x')| \le \|f\|_{\mathcal{H}} \cdot \|\Phi(x) - \Phi(x')\|_{\mathcal{H}}$$

- $\|f\|_{\mathcal{H}}$ controls **complexity** of the model
- Φ(x) encodes CNN architecture independently of the model (smoothness, invariance, stability to deformations)

Useful kernels in practice:

- Convolutional kernel networks (CKNs, Mairal, 2016) with efficient approximations
- Extends to neural tangent kernels (**NTKs**, Jacot et al., 2018) of infinitely wide CNNs (Bietti and Mairal, 2019b)

Construct a sequence of feature maps x_1, \ldots, x_n

- $x_0 : \Omega \to \mathcal{H}_0$: initial (continuous) signal
 - $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images)
 - $x_0(u) \in \mathcal{H}_0$: value ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images)

Construct a sequence of feature maps x_1, \ldots, x_n

- $x_0 : \Omega \to \mathcal{H}_0$: initial (continuous) signal
 - $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images)
 - $x_0(u) \in \mathcal{H}_0$: value $(\mathcal{H}_0 = \mathbb{R}^3 \text{ for RGB images})$

• $x_k : \Omega \to \mathcal{H}_k$: feature map at layer k

 $P_k x_{k-1}$

• P_k : patch extraction operator, extract small patch of feature map x_{k-1} around each point u

Construct a sequence of feature maps x_1, \ldots, x_n

- $x_0 : \Omega \to \mathcal{H}_0$: initial (continuous) signal
 - $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images)
 - $x_0(u) \in \mathcal{H}_0$: value $(\mathcal{H}_0 = \mathbb{R}^3 \text{ for RGB images})$
- $x_k : \Omega \to \mathcal{H}_k$: feature map at layer k

$$M_k P_k x_{k-1}$$

- P_k : patch extraction operator, extract small patch of feature map x_{k-1} around each point u
- M_k : non-linear mapping operator, maps each patch to a new point with a **pointwise** non-linear function $\varphi_k(\cdot)$ (kernel mapping)

Construct a sequence of feature maps x_1, \ldots, x_n

- $x_0 : \Omega \to \mathcal{H}_0$: initial (continuous) signal
 - $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images)
 - $x_0(u) \in \mathcal{H}_0$: value ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images)

• $x_k : \Omega \to \mathcal{H}_k$: feature map at layer k

$$x_k = A_k M_k P_k x_{k-1}$$

- P_k : patch extraction operator, extract small patch of feature map x_{k-1} around each point u
- M_k : non-linear mapping operator, maps each patch to a new point with a **pointwise** non-linear function $\varphi_k(\cdot)$ (kernel mapping)
- A_k : (linear, Gaussian) **pooling** operator at scale σ_k

Construct a sequence of feature maps x_1, \ldots, x_n

- $x_0 : \Omega \to \mathcal{H}_0$: initial (continuous) signal
 - $u \in \Omega = \mathbb{R}^d$: location (d = 2 for images)
 - $x_0(u) \in \mathcal{H}_0$: value ($\mathcal{H}_0 = \mathbb{R}^3$ for RGB images)

• $x_k : \Omega \to \mathcal{H}_k$: feature map at layer k

$$x_k = A_k M_k P_k x_{k-1}$$

- P_k : patch extraction operator, extract small patch of feature map x_{k-1} around each point u
- M_k : **non-linear mapping** operator, maps each patch to a new point with a **pointwise** non-linear function $\varphi_k(\cdot)$ (kernel mapping)
- A_k : (linear, Gaussian) **pooling** operator at scale σ_k

Goal: control stability of these operators through their norms

CKN construction

Patch extraction operator P_k

Patch extraction operator P_k

$$P_k x_{k-1}(u) := (x_{k-1}(u+v))_{v \in S_k} \in \mathcal{P}_k = \mathcal{H}_{k-1}^{S_k}$$

- S_k : patch shape, e.g. box
- P_k is linear, and preserves the L^2 norm: $||P_k x_{k-1}|| = ||x_{k-1}||$

Non-linear mapping operator M_k

Non-linear mapping operator M_k

$$M_k P_k x_{k-1}(u) := \varphi_k (P_k x_{k-1}(u)) \in \mathcal{H}_k$$

φ_k : P_k → H_k pointwise non-linearity on patches (kernel map)
We assume non-expansivity: for z, z' ∈ P_k

$$\|arphi_k(z)\| \leq \|z\|$$
 and $\|arphi_k(z) - arphi_k(z')\| \leq \|z - z'\|$

• M_k then satisfies, for $x, x' \in L^2(\Omega, \mathcal{P}_k)$

$$||M_k x|| \le ||x||$$
 and $||M_k x - M_k x'|| \le ||x - x'||$

φ_k from kernels

Kernel mapping of homogeneous dot-product kernels:

$$\mathcal{K}_k(z,z') = \|z\| \|z'\| \kappa_kigg(rac{\langle z,z'
angle}{\|z\|\|z'\|}igg) = \langle arphi_k(z),arphi_k(z')
angle.$$

 $\kappa_k(u) = \sum_{j=0}^\infty b_j u^j$ with $b_j \ge 0$, $\kappa_k(1) = 1$

- Commonly used for hierarchical kernels
- $\|\varphi_k(z)\| = K_k(z,z)^{1/2} = \|z\|$
- $\| \varphi_k(z) \varphi_k(z') \| \le \| z z' \|$ if $\kappa'_k(1) \le 1$
- \implies non-expansive
φ_k from kernels

Kernel mapping of homogeneous dot-product kernels:

$$\mathcal{K}_k(z,z') = \|z\| \|z'\| \kappa_k igg(rac{\langle z,z'
angle}{\|z\| \|z'\|} igg) = \langle arphi_k(z),arphi_k(z')
angle.$$

 $\kappa_k(u) = \sum_{j=0}^\infty b_j u^j$ with $b_j \ge 0$, $\kappa_k(1) = 1$

Examples

• arc-cosine kernels for the ReLU $\sigma(u) = \max(0, u)$

Pooling operator A_k

Pooling operator A_k

$$x_k(u) = A_k M_k P_k x_{k-1}(u) = \int_{\mathbb{R}^d} h_{\sigma_k}(u-v) M_k P_k x_{k-1}(v) dv \in \mathcal{H}_k$$

• linear, non-expansive operator: $\|A_k\| \le 1$

Pooling operator A_k

$$x_k(u) = A_k M_k P_k x_{k-1}(u) = \int_{\mathbb{R}^d} h_{\sigma_k}(u-v) M_k P_k x_{k-1}(v) dv \in \mathcal{H}_k$$

- h_{σ_k} : pooling filter at scale σ_k
- $h_{\sigma_k}(u) := \sigma_k^{-d} h(u/\sigma_k)$ with h(u) Gaussian
- linear, non-expansive operator: $||A_k|| \le 1$
- In practice: **discretization**, sampling at resolution σ_k after pooling
- "Preserves information" when subsampling \leq patch size

Recap: P_k , M_k , A_k

Multilayer construction

Assumption on x₀

- x_0 is typically a **discrete** signal aquired with physical device.
- Natural assumption: $x_0 = A_0 x$, with x the original continuous signal, A_0 local integrator with scale σ_0 (anti-aliasing).

Multilayer construction

Assumption on x₀

- x_0 is typically a **discrete** signal aquired with physical device.
- Natural assumption: $x_0 = A_0 x$, with x the original continuous signal, A_0 local integrator with scale σ_0 (anti-aliasing).

Multilayer representation

$$\Phi(x_0) = A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x_0 \in L^2(\Omega, \mathcal{H}_n).$$

• S_k , σ_k grow exponentially in practice (i.e., fixed with subsampling).

Multilayer construction

Assumption on x₀

- x_0 is typically a **discrete** signal aquired with physical device.
- Natural assumption: $x_0 = A_0 x$, with x the original continuous signal, A_0 local integrator with scale σ_0 (anti-aliasing).

Multilayer representation

$$\Phi(x_0) = A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x_0 \in L^2(\Omega, \mathcal{H}_n).$$

• S_k , σ_k grow exponentially in practice (i.e., fixed with subsampling).

Final kernel

$$\mathcal{K}_{CKN}(x,x') = \langle \Phi(x), \Phi(x') \rangle_{L^{2}(\Omega)} = \int_{\Omega} \langle x_{n}(u), x_{n}'(u) \rangle du$$

Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a)) Let $\Phi_n(x) = \Phi(A_0x)$ and assume $\|\nabla \tau\|_{\infty} \le 1/2$,

$$\|\Phi_n(L_{\tau}x) - \Phi_n(x)\| \le \left(C_{\beta}(n+1) \|\nabla \tau\|_{\infty} + \frac{C}{\sigma_n} \|\tau\|_{\infty}\right) \|x\|$$

- Translation invariance: large σ_n
- Stability: small patch sizes ($\beta \approx$ patch size, $C_{\beta} = O(\beta^3)$ for images)
- $\, \bullet \,$ Signal preservation: subsampling factor \approx patch size
 - \implies need several layers with small patches $n = O(\log(\sigma_n/\sigma_0)/\log\beta)$

Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a)) Let $\Phi_n(x) = \Phi(A_0x)$ and assume $\|\nabla \tau\|_{\infty} \le 1/2$,

$$\|\Phi_n(L_{\tau}x) - \Phi_n(x)\| \le \left(C_{\beta}(n+1) \|\nabla \tau\|_{\infty} + \frac{C}{\sigma_n} \|\tau\|_{\infty}\right) \|x\|$$

- Translation invariance: large σ_n
- Stability: small patch sizes ($\beta \approx$ patch size, $C_{\beta} = O(\beta^3)$ for images)
- $\, \bullet \,$ Signal preservation: subsampling factor \approx patch size

 \implies need several layers with small patches $n = O(\log(\sigma_n/\sigma_0)/\log\beta)$

- Achieved by controlling norm of **commutator** $[L_{\tau}, P_k A_{k-1}]$
 - Extend result by Mallat (2012) for controlling $\|[L_{\tau}, A]\|$
 - ▶ Need patches S_k adapted to resolution σ_{k-1} : diam $S_k \leq \beta \sigma_{k-1}$

Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a)) Let $\Phi_n(x) = \Phi(A_0x)$ and assume $\|\nabla \tau\|_{\infty} \le 1/2$,

$$\|\Phi_n(L_{\tau}x) - \Phi_n(x)\| \le \left(C_{\beta}(n+1) \|\nabla \tau\|_{\infty} + \frac{C}{\sigma_n} \|\tau\|_{\infty}\right) \|x\|$$

- Translation invariance: large σ_n
- Stability: small patch sizes ($\beta \approx$ patch size, $C_{\beta} = O(\beta^3)$ for images)
- $\, \bullet \,$ Signal preservation: subsampling factor \approx patch size

 \implies need several layers with small patches $n = O(\log(\sigma_n/\sigma_0)/\log\beta)$

- Achieved by controlling norm of **commutator** $[L_{\tau}, P_k A_{k-1}]$
 - Extend result by Mallat (2012) for controlling $||[L_{\tau}, A]||$
 - ▶ Need patches S_k adapted to resolution σ_{k-1} : diam $S_k \leq \beta \sigma_{k-1}$
- Extensions to other transformation groups, e.g. roto-translations

Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019b))
Let
$$\Phi_n(x) = \Phi^{NTK}(A_0x)$$
, and assume $\|\nabla \tau\|_{\infty} \le 1/2$
 $\|\Phi_n(L_{\tau}x) - \Phi_n(x)\|$
 $\le \left(C_{\beta}n^{7/4}\|\nabla \tau\|_{\infty}^{1/2} + C'_{\beta}n^2\|\nabla \tau\|_{\infty} + \sqrt{n+1}\frac{C}{\sigma_n}\|\tau\|_{\infty}\right)\|x\|,$

Comparison with random feature CKN on deformed MNIST digits:

Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019b))
Let
$$\Phi_n(x) = \Phi^{NTK}(A_0x)$$
, and assume $\|\nabla \tau\|_{\infty} \le 1/2$
 $\|\Phi_n(L_{\tau}x) - \Phi_n(x)\|$
 $\le \left(C_{\beta}n^{7/4}\|\nabla \tau\|_{\infty}^{1/2} + C_{\beta}'n^2\|\nabla \tau\|_{\infty} + \sqrt{n+1}\frac{C}{\sigma_n}\|\tau\|_{\infty}\right)\|x\|,$

Comparison with random feature CKN on deformed MNIST digits:

Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives

RKHS of patch kernels K_k

$$K_k(z,z') = \|z\| \|z'\| \kappa \left(\frac{\langle z,z'\rangle}{\|z\|\|z'\|}\right), \qquad \kappa(u) = \sum_{j=0}^{\infty} b_j^2 u^j$$

• RKHS contains homogeneous "neuron" functions:

 $f: z \mapsto \|z\|\sigma(\langle g, z \rangle / \|z\|)$

(Bietti and Mairal, 2019a). Homogeneous version of (Zhang et al., 2016, 2017)

Alberto Bietti

RKHS of patch kernels K_k

$$K_k(z,z') = \|z\| \|z'\| \kappa \left(\frac{\langle z,z'\rangle}{\|z\|\|z'\|}\right), \qquad \kappa(u) = \sum_{j=0}^{\infty} b_j^2 u^j$$

• RKHS contains homogeneous "neuron" functions:

$$f: z \mapsto \|z\|\sigma(\langle g, z \rangle / \|z\|)$$

- Smooth activations: $\sigma(u) = \sum_{j=0}^{\infty} a_j u^j$
- Norm: $\|f\|_{\mathcal{H}_k}^2 \leq C_\sigma^2(\|g\|^2) = \sum_{j=0}^\infty \frac{a_j^2}{b_j^2} \|g\|^{2j} < \infty$

(Bietti and Mairal, 2019a). Homogeneous version of (Zhang et al., 2016, 2017)

Alberto Bietti

RKHS of patch kernels K_k

Examples:

Constructing a CNN in the RKHS $\mathcal{H}_{\textit{CKN}}$

- Consider a CNN with filters $W_k^{ij}(u), u \in S_k$
- \bullet "Smooth homogeneous" activations σ
- \bullet The CNN can be constructed hierarchically in $\mathcal{H}_{\textit{CKN}}$
- Norm upper bound:

$$\|f_{\sigma}\|_{\mathcal{H}}^{2} \leq \|W_{n+1}\|_{2}^{2} C_{\sigma}^{2}(\|W_{n}\|_{2}^{2} C_{\sigma}^{2}(\|W_{n-1}\|_{2}^{2} C_{\sigma}^{2}(\dots)))$$

(Bietti and Mairal, 2019a)

Constructing a CNN in the RKHS $\mathcal{H}_{\textit{CKN}}$

- Consider a CNN with filters $W_k^{ij}(u), u \in S_k$
- \bullet "Smooth homogeneous" activations σ
- \bullet The CNN can be constructed hierarchically in $\mathcal{H}_{\textit{CKN}}$
- Norm upper bound (linear layers):

$$\|f_{\sigma}\|_{\mathcal{H}}^{2} \leq \|W_{n+1}\|_{2}^{2} \cdot \|W_{n}\|_{2}^{2} \cdot \|W_{n-1}\|_{2}^{2} \dots \|W_{1}\|_{2}^{2}$$

• Linear layers: product of spectral norms

(Bietti and Mairal, 2019a)

Link with generalization

• Simple bound on Rademacher complexity for linear/kernel methods:

$$\mathcal{F}_B = \{f \in \mathcal{H}, \|f\|_{\mathcal{H}} \le B\} \implies \operatorname{Rad}_N(\mathcal{F}_B) \le O\left(\frac{BR}{\sqrt{N}}\right)$$

Link with generalization

• Simple bound on Rademacher complexity for linear/kernel methods:

$$\mathcal{F}_B = \{f \in \mathcal{H}, \|f\|_{\mathcal{H}} \leq B\} \implies \operatorname{Rad}_N(\mathcal{F}_B) \leq O\left(\frac{BR}{\sqrt{N}}\right)$$

• Margin bound for a learned model \hat{f}_N with margin (confidence) $\gamma > 0$

$$P(y\hat{f}_N(x) < 0) \le O\left(\frac{\|\hat{f}_N\|_{\mathcal{H}}R}{\gamma\sqrt{N}}\right)$$

• If \hat{f}_N is a CNN: related to recent generalization bounds for neural networks based on **product of spectral norms** (*e.g.*, Bartlett et al., 2017; Neyshabur et al., 2018)

Fully-connected models \implies dot-product kernels

$$\mathcal{K}(x,y) = \kappa(x^ op y) ext{ for } x,y \in \mathbb{S}^{p-1}$$

• Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)

• NTK for infinitely wide networks (Jacot et al., 2018)

Fully-connected models \implies dot-product kernels

$$K(x,y) = \kappa(x^{\top}y)$$
 for $x, y \in \mathbb{S}^{p-1}$

- Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
- NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)

- Rotation-invariant kernel on the sphere
- \Longrightarrow RKHS description in the $L^2(\mathbb{S}^{p-1})$ basis of spherical harmonics $Y_{k,j}$

Fully-connected models \implies dot-product kernels

$$K(x,y) = \kappa(x^{ op}y)$$
 for $x, y \in \mathbb{S}^{p-1}$

- Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
- NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)

- Rotation-invariant kernel on the sphere
- \implies RKHS description in the $L^2(\mathbb{S}^{p-1})$ basis of spherical harmonics $Y_{k,j}$

$$\kappa(x^{\top}y) = \sum_{k=0}^{\infty} \mu_k \sum_{j=1}^{N(p,k)} Y_{k,j}(x) Y_{k,j}(y), \quad \text{ for } x, y \in \mathbb{S}^{p-1}$$

Fully-connected models \implies dot-product kernels

$$K(x,y) = \kappa(x^{ op}y)$$
 for $x, y \in \mathbb{S}^{p-1}$

- Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
- NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)

- Rotation-invariant kernel on the sphere
- \implies RKHS description in the $L^2(\mathbb{S}^{p-1})$ basis of spherical harmonics $Y_{k,j}$

$$\mathcal{H} = \left\{ f = \sum_{k=0}^{\infty} \sum_{j=1}^{N(p,k)} a_{k,j} Y_{k,j}(\cdot) \text{ s.t. } \|f\|_{\mathcal{H}}^2 := \sum_{k,j} \frac{a_{k,j}^2}{\mu_k} < \infty \right\}$$

Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)

- Decay of $\mu_k \leftrightarrow$ regularity of functions in the RKHS
- Leads to sufficient conditions for RKHS membership
- Rates of approximation for Lipschitz functions

Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)

- Decay of $\mu_k \leftrightarrow$ regularity of functions in the RKHS
- Leads to sufficient conditions for RKHS membership
- Rates of approximation for Lipschitz functions

NTK vs random features (Bietti and Mairal, 2019b)

- f has p/2 η -bounded derivatives $\implies f \in \mathcal{H}_{NTK}$, $\|f\|_{\mathcal{H}_{NTK}} \leq O(\eta)$
- p/2 + 1 needed for RF (Bach, 2017)
- $\bullet \implies \mathcal{H}_{\textit{NTK}} \text{ is "larger" than } \mathcal{H}_{\textit{RF}}$
- Similar improvement for approximation of Lipschitz functions
- See also (Ghorbani et al., 2019)

Some experiments on Cifar10

Convolutional kernels with 3x3 patches + kernel ridge regression (very costly!)

Conv. layers	subsampling	kernel	test acc.
2	2-5	ReLU RF	86.63%
2	2-5	ReLU NTK	87.19%

Some experiments on Cifar10

Convolutional kernels with 3x3 patches + kernel ridge regression (very costly!)

Conv. layers	subsampling	kernel	test acc.
2	2-5	ReLU RF	86.63%
2	2-5	ReLU NTK	87.19%
2	2-5	exp, $\sigma=$ 0.6	87.93%
3	2-2-2	exp, $\sigma=$ 0.6	88.2%

Some experiments on Cifar10

Convolutional kernels with 3x3 patches + kernel ridge regression (very costly!)

	Conv. layers	subsampling	kernel	test acc.
-	2	2-5	ReLU RF	86.63%
	2	2-5	ReLU NTK	87.19%
	2	2-5	exp, $\sigma=$ 0.6	87.93%
	3	2-2-2	exp, $\sigma = 0.6$	88.2%
	16 (Li et al., 2019)	last layer only	ReLU RF	87.28%
	16 (Li et al., 2019)	last layer only	ReLU NTK	86.77%

Li et al. (2019): no pooling before last layer, more complicated pre-processing

Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives

Two issues with today's deep learning models:

- Poor performance on small datasets
- Lack of robustness to adversarial perturbations

Two issues with today's deep learning models:

- Poor performance on small datasets
- Lack of robustness to adversarial perturbations

Two issues with today's deep learning models:

- Poor performance on small datasets
- Lack of robustness to adversarial perturbations

(a real ostrich)

Two issues with today's deep learning models:

- Poor performance on small datasets
- Lack of robustness to adversarial perturbations

New approach to regularization (Bietti et al., 2019):

- View generic CNN $f_{ heta}$ as an element of a RKHS ${\mathcal H}$
 - CNNs f_{θ} with ReLUs are (approximately) in the RKHS for CKNs
- Regularize using $\|f_{\theta}\|_{\mathcal{H}}$

Better models through regularization

• Controlling upper bounds: spectral norm penalties/constraints

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti
• Controlling upper bounds: spectral norm penalties/constraints

• Controlling lower bounds using $\|f\|_{\mathcal{H}} = \sup_{\|u\|_{\mathcal{H}} \leq 1} \langle f, u \rangle$

- Controlling upper bounds: spectral norm penalties/constraints
- Controlling lower bounds using $\|f\|_{\mathcal{H}} = \sup_{\|u\|_{\mathcal{H}} \leq 1} \langle f, u \rangle$
- \implies consider tractable subsets of the unit ball using properties of Φ

- Controlling upper bounds: spectral norm penalties/constraints
- Controlling lower bounds using $\|f\|_{\mathcal{H}} = \sup_{\|u\|_{\mathcal{H}} \leq 1} \langle f, u \rangle$
- \implies consider tractable subsets of the unit ball using properties of Φ

$$\|f\|_{\mathcal{H}} \ge \sup_{x, \|\delta\| \le 1} \langle f, \Phi(x + \delta) - \Phi(x) \rangle_{\mathcal{H}}$$
 (adversarial perturbations)

- Controlling upper bounds: spectral norm penalties/constraints
- Controlling lower bounds using $\|f\|_{\mathcal{H}} = \sup_{\|u\|_{\mathcal{H}} \leq 1} \langle f, u \rangle$
- \implies consider tractable subsets of the unit ball using properties of Φ

$$\|f\|_{\mathcal{H}} \ge \sup_{x, \|\delta\| \le 1} f(x + \delta) - f(x)$$
 (adversarial perturbations)

- Controlling upper bounds: spectral norm penalties/constraints
- Controlling lower bounds using $\|f\|_{\mathcal{H}} = \sup_{\|u\|_{\mathcal{H}} \leq 1} \langle f, u \rangle$
- \implies consider tractable subsets of the unit ball using properties of Φ

$$\begin{split} \|f\|_{\mathcal{H}} &\geq \sup_{x, \|\delta\| \leq 1} f(x+\delta) - f(x) \quad \text{(adversarial perturbations)} \\ \|f\|_{\mathcal{H}} &\geq \sup_{x, \|\tau\| \leq C} f(\mathcal{L}_{\tau}x) - f(x) \quad \text{(adversarial deformations)} \end{split}$$

- Controlling upper bounds: spectral norm penalties/constraints
- Controlling lower bounds using $\|f\|_{\mathcal{H}} = \sup_{\|u\|_{\mathcal{H}} \leq 1} \langle f, u \rangle$
- \implies consider tractable subsets of the unit ball using properties of Φ

$$\begin{split} \|f\|_{\mathcal{H}} &\geq \sup_{x, \|\delta\| \leq 1} f(x+\delta) - f(x) \quad (\text{adversarial perturbations}) \\ \|f\|_{\mathcal{H}} &\geq \sup_{x, \|\tau\| \leq C} f(L_{\tau}x) - f(x) \quad (\text{adversarial deformations}) \\ \|f\|_{\mathcal{H}} &\geq \sup_{x} \|\nabla f(x)\|_2 \quad (\text{gradient penalty}) \end{split}$$

- Controlling upper bounds: spectral norm penalties/constraints
- Controlling lower bounds using $||f||_{\mathcal{H}} = \sup_{||u||_{\mathcal{H}} \leq 1} \langle f, u \rangle$
- \implies consider tractable subsets of the unit ball using properties of Φ

$$\begin{split} \|f\|_{\mathcal{H}} &\geq \sup_{x, \|\delta\| \leq 1} f(x+\delta) - f(x) \quad (\text{adversarial perturbations}) \\ \|f\|_{\mathcal{H}} &\geq \sup_{x, \|\tau\| \leq C} f(L_{\tau}x) - f(x) \quad (\text{adversarial deformations}) \\ \|f\|_{\mathcal{H}} &\geq \sup_{x} \|\nabla f(x)\|_2 \quad (\text{gradient penalty}) \end{split}$$

• Best performance by combining upper + lower bound approaches

Regularization on small datasets: image classification

Table 2. Regularization on 300 or 1 000 examples from MNIST, using deformations from Infinite MNIST. (*) indicates that random deformations were included as training examples, while $||f||_{\tau}^2$ and $||D_{\tau}f||^2$ use them as part of the regularization penalty.

Method	300 VGG	1k VGG
Weight decay	89.32	94.08
SN projection	90.69	95.01
grad- ℓ_2	93.63	96.67
$ f _{\delta}^2$ penalty	94.17	96.99
$\ \nabla f\ ^2$ penalty	94.08	96.82
Weight decay (*)	92.41	95.64
grad- ℓ_2 (*)	95.05	97.48
$ D_{\tau}f ^2$ penalty	94.18	96.98
$ f _{\tau}^2$ penalty	94.42	97.13
$\ f\ _{\tau}^2 + \ \nabla f\ ^2$	94.75	97.40
$ f _{\tau}^2 + f _{\delta}^2$	95.23	97.66
$ f _{\tau}^2 + f _{\delta}^2 (*)$	95.53	97.56
$ f _{\tau}^2 + f _{\delta}^2 + SN \text{ proj}$	95.20	97.60
$ f _{\tau}^2 + f _{\delta}^2 + \text{SN proj}(*)$	95.40	97.77

Regularization on small datasets: protein homology detection

Table 3. Regularization on protein homology detection tasks, with or without data augmentation (DA). Fixed hyperparameters are selected using the first half of the datasets, and we report the average auROC50 score on the second half.

Method	No DA	DA
No weight decay	0.446	0.500
Weight decay	0.501	0.546
SN proj	0.591	0.632
$PGD-\ell_2$	0.575	0.595
grad- ℓ_2	0.540	0.552
$\ f\ _{\delta}^2$	0.600	0.608
$\ \nabla f\ ^2$	0.585	0.611
PGD- ℓ_2 + SN proj	0.596	0.627
grad- ℓ_2 + SN proj	0.592	0.624
$ f _{\delta}^2$ + SN proj	0.630	0.644
$\ \nabla f\ ^2$ + SN proj	0.603	0.625

Regularization for robustness

Links with robust optimization/adversarial training

• Robust optimization yields another lower bound (hinge/logistic loss)

$$\frac{1}{N}\sum_{i=1}^{N}\sup_{\|\delta\|_{2}\leq\epsilon}\ell(y_{i},f(x_{i}+\delta))\leq\frac{1}{N}\sum_{i=1}^{N}\ell(y_{i},f(x_{i}))+\epsilon\|f\|_{\mathcal{H}}$$

• But: may only encourage local robustness around training data

Regularization for robustness

Links with robust optimization/adversarial training

• Robust optimization yields another lower bound (hinge/logistic loss)

$$\frac{1}{N}\sum_{i=1}^{N}\sup_{\|\delta\|_{2}\leq\epsilon}\ell(y_{i},f(x_{i}+\delta))\leq\frac{1}{N}\sum_{i=1}^{N}\ell(y_{i},f(x_{i}))+\epsilon\|f\|_{\mathcal{H}}$$

• But: may only encourage local robustness around training data

Global vs local robustness

- ${\ \bullet \ }$ Controlling $\|f\|_{\mathcal H}$ allows a more ${\ {\rm global}}$ form of robustness
- \bullet Guarantees on adversarial generalization with ℓ_2 perturbations
 - Extension of margin-based bound, by using $\|f\|_{\mathcal{H}} \ge \|f\|_{\mathsf{Lip}}$ near the decision boundary
- But: may cause a loss in accuracy in practice

Robustness trade-offs on Cifar10

Robustness trade-offs on Cifar10

State-of-the-art robust accuracy for large ϵ_{test}

Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives

Conclusions

Benefits of convolutional kernels

- Translation invariance + deformation stability with small patches and pooling
- Extensions to other groups (roto-translations)
- RKHS contains CNNs with smooth activations

Conclusions

Benefits of convolutional kernels

- Translation invariance + deformation stability with small patches and pooling
- Extensions to other groups (roto-translations)
- RKHS contains CNNs with smooth activations

New practical regularization strategies

- Regularization of generic CNNs using RKHS norm
- $\bullet\,$ Useful for small datasets, state-of-the-art for $\ell_2\text{-}adversarial$ robustness

Conclusions

Benefits of convolutional kernels

- Translation invariance + deformation stability with small patches and pooling
- Extensions to other groups (roto-translations)
- RKHS contains CNNs with smooth activations

New practical regularization strategies

- Regularization of generic CNNs using RKHS norm
- \bullet Useful for small datasets, state-of-the-art for $\ell_2\text{-}adversarial$ robustness

Links with over-parameterized optimization: neural tangent kernels

- NTK for CNNs takes a similar form to CKNs
- Weaker stability guarantees than RF, but better approximation properties

Perspectives

Further study of convolutional kernels

- More precise approximation guarantees?
- More empirical evaluation; better kernel approximations?

Perspectives

Further study of convolutional kernels

- More precise approximation guarantees?
- More empirical evaluation; better kernel approximations?

Beyond kernels for deep learning

- Kernels do not fully explain success of deep learning
- Simple, tractable, interpretable models that improve on kernels?
- Inductive bias of optimization beyond "lazy training"? lazy only for some layers?

Thanks!

References I

- F. Bach. Breaking the curse of dimensionality with convex neural networks. *Journal of Machine Learning Research (JMLR)*, 18(19):1–53, 2017.
- P. L. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin bounds for neural networks. In *Advances in Neural Information Processing Systems (NIPS)*, 2017.
- A. Bietti and J. Mairal. Group invariance, stability to deformations, and complexity of deep convolutional representations. *Journal of Machine Learning Research (JMLR)*, 20(25):1–49, 2019a.
- A. Bietti and J. Mairal. On the inductive bias of neural tangent kernels. In Advances in Neural Information Processing Systems (NeurIPS), 2019b.
- A. Bietti, G. Mialon, D. Chen, and J. Mairal. A kernel perspective for regularizing deep neural networks. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2019.
- J. Bruna and S. Mallat. Invariant scattering convolution networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, 35(8):1872–1886, 2013.
- L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. In Advances in Neural Information Processing Systems (NeurIPS), 2019.
- Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in Neural Information Processing Systems (NIPS), 2009.

References II

- T. Cohen and M. Welling. Group equivariant convolutional networks. In *International Conference on Machine Learning (ICML)*, 2016.
- B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari. Linearized two-layers neural networks in high dimension. arXiv preprint arXiv:1904.12191, 2019.
- A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2018.
- R. Kondor and S. Trivedi. On the generalization of equivariance and convolution in neural networks to the action of compact groups. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2018.
- Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. *Neural computation*, 1(4):541–551, 1989.
- Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
- J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein. Deep neural networks as gaussian processes. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2018.

References III

- J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks. In Advances in Neural Information Processing Systems (NIPS), 2016.
- J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. Convolutional kernel networks. In Advances in Neural Information Processing Systems (NIPS), 2014.
- S. Mallat. Group invariant scattering. *Communications on Pure and Applied Mathematics*, 65(10): 1331–1398, 2012.
- R. M. Neal. Bayesian learning for neural networks. Springer, 1996.
- B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. A PAC-Bayesian approach to spectrally-normalized margin bounds for neural networks. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2018.
- A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural Information Processing Systems (NIPS), 2007.
- K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2014.
- Y. Zhang, J. D. Lee, and M. I. Jordan. ℓ_1 -regularized neural networks are improperly learnable in polynomial time. In *International Conference on Machine Learning (ICML)*, 2016.
- Y. Zhang, P. Liang, and M. J. Wainwright. Convexified convolutional neural networks. In International Conference on Machine Learning (ICML), 2017.

Convolutional NTK kernel mapping

Define

$$M(x,y)(u) = \begin{pmatrix} \varphi_0(x(u)) \otimes y(u) \\ \varphi_1(x(u)) \end{pmatrix}$$

Theorem (NTK feature map for CNN) $K_{NTK}(x, x') = \langle \Phi(x), \Phi(x') \rangle_{L^{2}(\Omega)},$ with $\Phi(x)(u) = A_{n}M(x_{n}, y_{n})(u)$, where $y_{1}(u) = x_{1}(u) = P_{1}x(u)$ and $x_{k}(u) = P_{k}A_{k-1}\varphi_{1}(x_{k-1})(u)$ $y_{k}(u) = P_{k}A_{k-1}M(x_{k-1}, y_{k-1})(u).$

• \bar{x}_k : subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:

 $\bar{x}_k[n] = A_k M_k P_k \bar{x}_{k-1}[ns_k]$

• \bar{x}_k : subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:

$$\bar{x}_k[n] = A_k M_k P_k \bar{x}_{k-1}[ns_k]$$

• Claim: We can recover \bar{x}_{k-1} from \bar{x}_k if subsampling $s_k \leq$ patch size

• \bar{x}_k : subsampling factor s_k after pooling with scale $\sigma_k \approx s_k$:

$$\bar{x}_k[n] = A_k M_k P_k \bar{x}_{k-1}[ns_k]$$

■ Claim: We can recover x
_{k-1} from x
_k if subsampling s_k ≤ patch size
■ How? Kernels! Recover patches with linear functions (contained in RKHS)

$$\langle f_w, M_k P_k x(u) \rangle = f_w(P_k x(u)) = \langle w, P_k x(u) \rangle$$

Signal recovery: example in 1D

Global invariance to other groups?

- Rotations, reflections, roto-translations, ...
- Group action $L_g x(u) = x(g^{-1}u)$
- Equivariance in inner layers + (global) pooling in last layer
- Similar construction to Cohen and Welling (2016); Kondor and Trivedi (2018)

G-equivariant layer construction

- Feature maps x(u) defined on $u \in G$ (G: locally compact group)
 - ▶ Input needs special definition when $G \neq \Omega$
- Patch extraction:

$$Px(u) = (x(uv))_{v \in S}$$

- Non-linear mapping: equivariant because pointwise!
- **Pooling** (μ : left-invariant Haar measure):

$$Ax(u) = \int_{\mathcal{G}} x(uv)h(v)d\mu(v) = \int_{\mathcal{G}} x(v)h(u^{-1}v)d\mu(v)$$

Group invariance and stability

Roto-translation group $G = \mathbb{R}^2 \rtimes SO(2)$ (translations + rotations)

- **Stability** w.r.t. translation group
- Global invariance to rotations (only global pooling at final layer)
 - Inner layers: patches and pooling only on translation group
 - ► Last layer: global pooling on rotations
 - Cohen and Welling (2016): pooling on rotations in inner layers hurts performance on Rotated MNIST