
Foundations of Deep Convolutional Models
through Kernel Methods

Alberto Bietti

Inria

TTI Chicago. February 17, 2020.

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 1 / 40

Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 2 / 40

Success of deep learning

State-of-the-art models in various domains (images, speech, text, ...)

f (x) = Wnσ(Wn–1 · · ·σ(W1x) · · ·)

Recipe: huge models + lots of data + compute + simple algorithms

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 2 / 40

Convolutional networks
Exploiting structure of natural images (LeCun et al., 1989)

Convolutional Neural Networks in Front of the Scene

The keywords: multi-scale, compositional, invariant, local features.
Picture from Y. LeCun’s tutorial:

Julien Mairal Data Science in the Alps 5/21

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 3 / 40

Convolutional networks
Paradigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

(LeCun et al., 1998)
Convolutional networks

Model local neighborhoods at different scales
Provide some invariance through pooling
Useful inductive bias for learning efficiently on natural images

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 3 / 40

Convolutional networks

(Simonyan and Zisserman, 2014)

Convolutional networks
Model local neighborhoods at different scales
Provide some invariance through pooling
Useful inductive bias for learning efficiently on natural images

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 3 / 40

Understanding deep learning

The challenge of deep learning theory
Over-parameterized (millions of parameters)
Expressive (can approximate any function)
Complex architectures for exploiting problem structure
Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint
View deep networks as functions in some functional space
Non-parametric models, natural measures of complexity (e.g., norms)

What is an appropriate functional space?

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 4 / 40

Understanding deep learning

The challenge of deep learning theory
Over-parameterized (millions of parameters)
Expressive (can approximate any function)
Complex architectures for exploiting problem structure
Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint
View deep networks as functions in some functional space
Non-parametric models, natural measures of complexity (e.g., norms)

What is an appropriate functional space?

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 4 / 40

Understanding deep learning

The challenge of deep learning theory
Over-parameterized (millions of parameters)
Expressive (can approximate any function)
Complex architectures for exploiting problem structure
Yet, easy to optimize with (stochastic) gradient descent!

A functional space viewpoint
View deep networks as functions in some functional space
Non-parametric models, natural measures of complexity (e.g., norms)

What is an appropriate functional space?

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 4 / 40

Kernels to the rescue

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Kernels?
Map data x to high-dimensional space, Φ(x) ∈ H (H: “RKHS”)
Functions f ∈ H are linear in features: f (x) = 〈f ,Φ(x)〉 (f can be non-linear in x !)
Learning with a positive definite kernel K (x , x ′) = 〈Φ(x),Φ(x ′)〉

I H can be infinite-dimensional! (kernel trick)
I Need to compute kernel matrix K = [K (xi , xj)]ij ∈ RN×N

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 5 / 40

Kernels to the rescue

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Clean and well-developed theory
Tractable methods (convex optimization)
Statistical and approximation properties well understood for many kernels
Costly (kernel matrix of size N2) but approximations are possible

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 5 / 40

Kernels for deep models: deep kernel machines

Hierarchical kernels (Cho and Saul, 2009)
Kernels can be constructed hierarchically

K (x , x ′) = 〈Φ(x),Φ(x ′)〉 with Φ(x) = ϕ2(ϕ1(x))

e.g., dot-product kernels on the sphere

K (x , x ′) = κ2(〈ϕ1(x), ϕ1(x ′)〉) = κ2(κ1(x>x ′))

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 6 / 40

Kernels for deep models: deep kernel machines

Convolutional kernels networks (CKNs) for images (Mairal et al., 2014; Mairal, 2016)

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Good empirical performance with tractable approximations (Nyström)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 6 / 40

Kernels for deep models: infinite-width networks

fθ(x) = 1√
m

m∑
i=1

viσ(w>i x), m→∞

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
θ = (vi)i , fixed random weights wi ∼ N(0, I)

KRF (x , x ′) = Ew∼N(0,I)[σ(w>x)σ(w>x ′)]

Neural tangent kernels (NTK, Jacot et al., 2018)
θ = (vi ,wi)i , initialization θ0 ∼ N(0, I)
Lazy training (Chizat et al., 2019): θ stays close to θ0 when training with large m

fθ(x) ≈ fθ0(x) + 〈θ − θ0,∇θfθ(x)|θ=θ0〉.

Gradient descent for m→∞ ≈ kernel ridge regression with neural tangent kernel

KNTK (x , x ′) = lim
m→∞

〈∇θfθ0(x),∇θfθ0(x ′)〉

RF and NTK extend to deep architectures

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 7 / 40

Kernels for deep models: infinite-width networks

fθ(x) = 1√
m

m∑
i=1

viσ(w>i x), m→∞

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
θ = (vi)i , fixed random weights wi ∼ N(0, I)

KRF (x , x ′) = Ew∼N(0,I)[σ(w>x)σ(w>x ′)]

Neural tangent kernels (NTK, Jacot et al., 2018)
θ = (vi ,wi)i , initialization θ0 ∼ N(0, I)
Lazy training (Chizat et al., 2019): θ stays close to θ0 when training with large m

fθ(x) ≈ fθ0(x) + 〈θ − θ0,∇θfθ(x)|θ=θ0〉.

Gradient descent for m→∞ ≈ kernel ridge regression with neural tangent kernel

KNTK (x , x ′) = lim
m→∞

〈∇θfθ0(x),∇θfθ0(x ′)〉

RF and NTK extend to deep architectures

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 7 / 40

Kernels for deep models: infinite-width networks

fθ(x) = 1√
m

m∑
i=1

viσ(w>i x), m→∞

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
θ = (vi)i , fixed random weights wi ∼ N(0, I)

KRF (x , x ′) = Ew∼N(0,I)[σ(w>x)σ(w>x ′)]

Neural tangent kernels (NTK, Jacot et al., 2018)
θ = (vi ,wi)i , initialization θ0 ∼ N(0, I)
Lazy training (Chizat et al., 2019): θ stays close to θ0 when training with large m

fθ(x) ≈ fθ0(x) + 〈θ − θ0,∇θfθ(x)|θ=θ0〉.

Gradient descent for m→∞ ≈ kernel ridge regression with neural tangent kernel

KNTK (x , x ′) = lim
m→∞

〈∇θfθ0(x),∇θfθ0(x ′)〉

RF and NTK extend to deep architectures

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 7 / 40

Kernels for deep models: infinite-width networks

fθ(x) = 1√
m

m∑
i=1

viσ(w>i x), m→∞

Random feature kernels (RF, Neal, 1996; Rahimi and Recht, 2007)
θ = (vi)i , fixed random weights wi ∼ N(0, I)

KRF (x , x ′) = Ew∼N(0,I)[σ(w>x)σ(w>x ′)]

Neural tangent kernels (NTK, Jacot et al., 2018)
θ = (vi ,wi)i , initialization θ0 ∼ N(0, I)
Lazy training (Chizat et al., 2019): θ stays close to θ0 when training with large m

fθ(x) ≈ fθ0(x) + 〈θ − θ0,∇θfθ(x)|θ=θ0〉.

Gradient descent for m→∞ ≈ kernel ridge regression with neural tangent kernel

KNTK (x , x ′) = lim
m→∞

〈∇θfθ0(x),∇θfθ0(x ′)〉

RF and NTK extend to deep architectures
Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 7 / 40

Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 8 / 40

Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 9 / 40

Properties of convolutional modelsParadigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

Convolutional architectures:
Capture multi-scale and compositional structure in natural signals
Model local stationarity
Provide some translation invariance

Beyond translation invariance?

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 10 / 40

Properties of convolutional modelsParadigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

Convolutional architectures:
Capture multi-scale and compositional structure in natural signals
Model local stationarity
Provide some translation invariance

Beyond translation invariance?

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 10 / 40

Stability to deformations

Deformations
τ : Ω→ Ω: C1-diffeomorphism
Lτx(u) = x(u − τ(u)): action operator
Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

 Translations and Deformations

• Patterns are translated and deformed

Studied for wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 11 / 40

Stability to deformations

Deformations
τ : Ω→ Ω: C1-diffeomorphism
Lτx(u) = x(u − τ(u)): action operator
Much richer group of transformations than translations

Definition of stability
Representation Φ(·) is stable (Mallat, 2012) if:

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation
‖τ‖∞ = supu |τ(u)| controls translation
C2 → 0: translation invariance

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 11 / 40

Smoothness and stability with kernels

Geometry of the kernel mapping: f (x) = 〈f ,Φ(x)〉

|f (x)− f (x ′)| ≤ ‖f ‖H · ‖Φ(x)− Φ(x ′)‖H

‖f ‖H controls complexity of the model
Φ(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)

Useful kernels in practice:
Convolutional kernel networks (CKNs, Mairal, 2016) with efficient approximations
Extends to neural tangent kernels (NTKs, Jacot et al., 2018) of infinitely wide
CNNs (Bietti and Mairal, 2019b)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 12 / 40

Smoothness and stability with kernels

Geometry of the kernel mapping: f (x) = 〈f ,Φ(x)〉

|f (x)− f (x ′)| ≤ ‖f ‖H · ‖Φ(x)− Φ(x ′)‖H

‖f ‖H controls complexity of the model
Φ(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)

Useful kernels in practice:
Convolutional kernel networks (CKNs, Mairal, 2016) with efficient approximations
Extends to neural tangent kernels (NTKs, Jacot et al., 2018) of infinitely wide
CNNs (Bietti and Mairal, 2019b)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 12 / 40

Construction of convolutional kernels

Construct a sequence of feature maps x1, . . . , xn
x0 : Ω→ H0: initial (continuous) signal

I u ∈ Ω = Rd : location (d = 2 for images)
I x0(u) ∈ H0: value (H0 = R3 for RGB images)

xk : Ω→ Hk : feature map at layer k

xk = AkMkPkxk−1

I Pk : patch extraction operator, extract small patch of feature map xk−1 around each point u
I Mk : non-linear mapping operator, maps each patch to a new point with a pointwise

non-linear function ϕk(·) (kernel mapping)
I Ak : (linear, Gaussian) pooling operator at scale σk

Goal: control stability of these operators through their norms

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 13 / 40

Construction of convolutional kernels

Construct a sequence of feature maps x1, . . . , xn
x0 : Ω→ H0: initial (continuous) signal

I u ∈ Ω = Rd : location (d = 2 for images)
I x0(u) ∈ H0: value (H0 = R3 for RGB images)

xk : Ω→ Hk : feature map at layer k

xk = AkMk

Pkxk−1

I Pk : patch extraction operator, extract small patch of feature map xk−1 around each point u

I Mk : non-linear mapping operator, maps each patch to a new point with a pointwise
non-linear function ϕk(·) (kernel mapping)

I Ak : (linear, Gaussian) pooling operator at scale σk

Goal: control stability of these operators through their norms

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 13 / 40

Construction of convolutional kernels

Construct a sequence of feature maps x1, . . . , xn
x0 : Ω→ H0: initial (continuous) signal

I u ∈ Ω = Rd : location (d = 2 for images)
I x0(u) ∈ H0: value (H0 = R3 for RGB images)

xk : Ω→ Hk : feature map at layer k

xk = Ak

MkPkxk−1

I Pk : patch extraction operator, extract small patch of feature map xk−1 around each point u
I Mk : non-linear mapping operator, maps each patch to a new point with a pointwise

non-linear function ϕk(·) (kernel mapping)

I Ak : (linear, Gaussian) pooling operator at scale σk

Goal: control stability of these operators through their norms

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 13 / 40

Construction of convolutional kernels

Construct a sequence of feature maps x1, . . . , xn
x0 : Ω→ H0: initial (continuous) signal

I u ∈ Ω = Rd : location (d = 2 for images)
I x0(u) ∈ H0: value (H0 = R3 for RGB images)

xk : Ω→ Hk : feature map at layer k

xk = AkMkPkxk−1

I Pk : patch extraction operator, extract small patch of feature map xk−1 around each point u
I Mk : non-linear mapping operator, maps each patch to a new point with a pointwise

non-linear function ϕk(·) (kernel mapping)
I Ak : (linear, Gaussian) pooling operator at scale σk

Goal: control stability of these operators through their norms

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 13 / 40

Construction of convolutional kernels

Construct a sequence of feature maps x1, . . . , xn
x0 : Ω→ H0: initial (continuous) signal

I u ∈ Ω = Rd : location (d = 2 for images)
I x0(u) ∈ H0: value (H0 = R3 for RGB images)

xk : Ω→ Hk : feature map at layer k

xk = AkMkPkxk−1

I Pk : patch extraction operator, extract small patch of feature map xk−1 around each point u
I Mk : non-linear mapping operator, maps each patch to a new point with a pointwise

non-linear function ϕk(·) (kernel mapping)
I Ak : (linear, Gaussian) pooling operator at scale σk

Goal: control stability of these operators through their norms

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 13 / 40

CKN construction

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 14 / 40

Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u + v))v∈Sk ∈ Pk = HSk
k–1

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 15 / 40

Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u + v))v∈Sk ∈ Pk = HSk
k–1

Sk : patch shape, e.g. box
Pk is linear, and preserves the L2 norm: ‖Pkxk–1‖ = ‖xk–1‖

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 15 / 40

Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

xk–1 : Ω → Hk–1

Pkxk–1(v) ∈ Pk

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 16 / 40

Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

ϕk : Pk → Hk pointwise non-linearity on patches (kernel map)
We assume non-expansivity: for z , z ′ ∈ Pk

‖ϕk(z)‖ ≤ ‖z‖ and ‖ϕk(z)− ϕk(z ′)‖ ≤ ‖z − z ′‖

Mk then satisfies, for x , x ′ ∈ L2(Ω,Pk)

‖Mkx‖ ≤ ‖x‖ and ‖Mkx −Mkx ′‖ ≤ ‖x − x ′‖

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 16 / 40

ϕk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z , z ′) = ‖z‖‖z ′‖κk
(〈z , z ′〉
‖z‖‖z ′‖

)
= 〈ϕk(z), ϕk(z ′)〉.

κk(u) =
∑∞

j=0 bjuj with bj ≥ 0, κk(1) = 1

Commonly used for hierarchical kernels
‖ϕk(z)‖ = Kk(z , z)1/2 = ‖z‖
‖ϕk(z)− ϕk(z ′)‖ ≤ ‖z − z ′‖ if κ′k(1) ≤ 1
=⇒ non-expansive

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 17 / 40

ϕk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z , z ′) = ‖z‖‖z ′‖κk
(〈z , z ′〉
‖z‖‖z ′‖

)
= 〈ϕk(z), ϕk(z ′)〉.

κk(u) =
∑∞

j=0 bjuj with bj ≥ 0, κk(1) = 1

Examples
κexp(〈z , z ′〉) = e〈z,z ′〉−1 (Gaussian kernel on the sphere)
κinv-poly(〈z , z ′〉) = 1

2−〈z,z ′〉

κσ(〈z , z ′〉) = Ew [σ(w>z)σ(w>z ′)] (Random features)
I arc-cosine kernels for the ReLU σ(u) = max(0, u)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 17 / 40

Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

xk–1 : Ω → Hk–1

MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 18 / 40

Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

hσk : pooling filter at scale σk
hσk (u) := σ−dk h(u/σk) with h(u) Gaussian
linear, non-expansive operator: ‖Ak‖ ≤ 1

In practice: discretization, sampling at resolution σk after pooling
“Preserves information” when subsampling ≤ patch size

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 18 / 40

Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =
∫
Rd

hσk (u − v)MkPkxk–1(v)dv ∈ Hk

hσk : pooling filter at scale σk
hσk (u) := σ−dk h(u/σk) with h(u) Gaussian
linear, non-expansive operator: ‖Ak‖ ≤ 1
In practice: discretization, sampling at resolution σk after pooling
“Preserves information” when subsampling ≤ patch size

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 18 / 40

Recap: Pk , Mk , Ak

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 19 / 40

Multilayer construction

Assumption on x0
x0 is typically a discrete signal aquired with physical device.
Natural assumption: x0 = A0x , with x the original continuous signal, A0 local integrator
with scale σ0 (anti-aliasing).

Multilayer representation

Φ(x0) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

Sk , σk grow exponentially in practice (i.e., fixed with subsampling).

Final kernel
KCKN(x , x ′) = 〈Φ(x),Φ(x ′)〉L2(Ω) =

∫
Ω
〈xn(u), x ′n(u)〉du

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 20 / 40

Multilayer construction

Assumption on x0
x0 is typically a discrete signal aquired with physical device.
Natural assumption: x0 = A0x , with x the original continuous signal, A0 local integrator
with scale σ0 (anti-aliasing).

Multilayer representation

Φ(x0) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

Sk , σk grow exponentially in practice (i.e., fixed with subsampling).

Final kernel
KCKN(x , x ′) = 〈Φ(x),Φ(x ′)〉L2(Ω) =

∫
Ω
〈xn(u), x ′n(u)〉du

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 20 / 40

Multilayer construction

Assumption on x0
x0 is typically a discrete signal aquired with physical device.
Natural assumption: x0 = A0x , with x the original continuous signal, A0 local integrator
with scale σ0 (anti-aliasing).

Multilayer representation

Φ(x0) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

Sk , σk grow exponentially in practice (i.e., fixed with subsampling).

Final kernel
KCKN(x , x ′) = 〈Φ(x),Φ(x ′)〉L2(Ω) =

∫
Ω
〈xn(u), x ′n(u)〉du

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 20 / 40

Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a))
Let Φn(x) = Φ(A0x) and assume ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτx)− Φn(x)‖ ≤
(

Cβ (n + 1) ‖∇τ‖∞ + C
σn
‖τ‖∞

)
‖x‖

Translation invariance: large σn
Stability: small patch sizes (β ≈ patch size, Cβ = O(β3) for images)
Signal preservation: subsampling factor ≈ patch size

=⇒ need several layers with small patches n = O(log(σn/σ0)/ log β)

Achieved by controlling norm of commutator [Lτ ,PkAk–1]
I Extend result by Mallat (2012) for controlling ‖[Lτ ,A]‖
I Need patches Sk adapted to resolution σk–1: diam Sk ≤ βσk–1

Extensions to other transformation groups, e.g. roto-translations

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 21 / 40

Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a))
Let Φn(x) = Φ(A0x) and assume ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτx)− Φn(x)‖ ≤
(

Cβ (n + 1) ‖∇τ‖∞ + C
σn
‖τ‖∞

)
‖x‖

Translation invariance: large σn
Stability: small patch sizes (β ≈ patch size, Cβ = O(β3) for images)
Signal preservation: subsampling factor ≈ patch size

=⇒ need several layers with small patches n = O(log(σn/σ0)/ log β)

Achieved by controlling norm of commutator [Lτ ,PkAk–1]
I Extend result by Mallat (2012) for controlling ‖[Lτ ,A]‖
I Need patches Sk adapted to resolution σk–1: diam Sk ≤ βσk–1

Extensions to other transformation groups, e.g. roto-translations

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 21 / 40

Stability to deformations

Theorem (Stability of CKN (Bietti and Mairal, 2019a))
Let Φn(x) = Φ(A0x) and assume ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτx)− Φn(x)‖ ≤
(

Cβ (n + 1) ‖∇τ‖∞ + C
σn
‖τ‖∞

)
‖x‖

Translation invariance: large σn
Stability: small patch sizes (β ≈ patch size, Cβ = O(β3) for images)
Signal preservation: subsampling factor ≈ patch size

=⇒ need several layers with small patches n = O(log(σn/σ0)/ log β)

Achieved by controlling norm of commutator [Lτ ,PkAk–1]
I Extend result by Mallat (2012) for controlling ‖[Lτ ,A]‖
I Need patches Sk adapted to resolution σk–1: diam Sk ≤ βσk–1

Extensions to other transformation groups, e.g. roto-translations

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 21 / 40

Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019b))
Let Φn(x) = ΦNTK (A0x), and assume ‖∇τ‖∞ ≤ 1/2

‖Φn(Lτx)− Φn(x)‖

≤
(

Cβn7/4‖∇τ‖1/2∞ + C ′βn2‖∇τ‖∞ +
√

n + 1 C
σn
‖τ‖∞

)
‖x‖,

Comparison with random feature CKN on deformed MNIST digits:

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 22 / 40

Stability to deformations for convolutional NTK

Theorem (Stability of NTK (Bietti and Mairal, 2019b))
Let Φn(x) = ΦNTK (A0x), and assume ‖∇τ‖∞ ≤ 1/2

‖Φn(Lτx)− Φn(x)‖

≤
(

Cβn7/4‖∇τ‖1/2∞ + C ′βn2‖∇τ‖∞ +
√

n + 1 C
σn
‖τ‖∞

)
‖x‖,

Comparison with random feature CKN on deformed MNIST digits:

0 1 2 3
deformation size

0.0

0.1

0.2

m
ea

n
re

la
tiv

e
di

st
an

ce

deformations
deformations + translation
same label
all labels

(a) CKN

0 1 2 3
deformation size

0.0

0.1

0.2

0.3

m
ea

n
re

la
tiv

e
di

st
an

ce

(b) NTK
Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 22 / 40

Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 23 / 40

RKHS of patch kernels Kk

Kk(z , z ′) = ‖z‖‖z ′‖κ
(〈z , z ′〉
‖z‖‖z ′‖

)
, κ(u) =

∞∑
j=0

b2
j uj

RKHS contains homogeneous “neuron” functions:

f : z 7→ ‖z‖σ(〈g , z〉/‖z‖)

Smooth activations: σ(u) =
∑∞

j=0 ajuj

Norm: ‖f ‖2Hk
≤ C2

σ(‖g‖2) =
∑∞

j=0
a2j
b2j
‖g‖2j <∞

(Bietti and Mairal, 2019a). Homogeneous version of (Zhang et al., 2016, 2017)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 24 / 40

RKHS of patch kernels Kk

Kk(z , z ′) = ‖z‖‖z ′‖κ
(〈z , z ′〉
‖z‖‖z ′‖

)
, κ(u) =

∞∑
j=0

b2
j uj

RKHS contains homogeneous “neuron” functions:

f : z 7→ ‖z‖σ(〈g , z〉/‖z‖)

Smooth activations: σ(u) =
∑∞

j=0 ajuj

Norm: ‖f ‖2Hk
≤ C2

σ(‖g‖2) =
∑∞

j=0
a2j
b2j
‖g‖2j <∞

(Bietti and Mairal, 2019a). Homogeneous version of (Zhang et al., 2016, 2017)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 24 / 40

RKHS of patch kernels Kk

Examples:
σ(u) = u (linear): C2

σ(λ2) = O(λ2)
σ(u) = up (polynomial): C2

σ(λ2) = O(λ2p)
σ ≈ sin, sigmoid, smooth ReLU: C2

σ(λ2) = O(ecλ2)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

f : x (x)
ReLU
sReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

f(x
)

f : x |x| (wx/|x|)
ReLU, w=1
sReLU, w = 0
sReLU, w = 0.5
sReLU, w = 1
sReLU, w = 2

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 24 / 40

Constructing a CNN in the RKHS HCKN

Consider a CNN with filters W ij
k (u), u ∈ Sk

“Smooth homogeneous” activations σ
The CNN can be constructed hierarchically in HCKN

Norm upper bound:

‖fσ‖2H ≤ ‖Wn+1‖22 C2
σ(‖Wn‖22 C2

σ(‖Wn–1‖22 C2
σ(. . .)))

Linear layers: product of spectral norms

(Bietti and Mairal, 2019a)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 25 / 40

Constructing a CNN in the RKHS HCKN

Consider a CNN with filters W ij
k (u), u ∈ Sk

“Smooth homogeneous” activations σ
The CNN can be constructed hierarchically in HCKN

Norm upper bound (linear layers):

‖fσ‖2H ≤ ‖Wn+1‖22 · ‖Wn‖22 · ‖Wn–1‖22 . . . ‖W1‖22

Linear layers: product of spectral norms

(Bietti and Mairal, 2019a)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 25 / 40

Link with generalization

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ H, ‖f ‖H ≤ B} =⇒ RadN(FB) ≤ O
(BR√

N

)

Margin bound for a learned model f̂N with margin (confidence) γ > 0

P(y f̂N(x) < 0) ≤ O
(
‖f̂N‖HR
γ
√

N

)

If f̂N is a CNN: related to recent generalization bounds for neural networks based on
product of spectral norms (e.g., Bartlett et al., 2017; Neyshabur et al., 2018)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 26 / 40

Link with generalization

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ H, ‖f ‖H ≤ B} =⇒ RadN(FB) ≤ O
(BR√

N

)

Margin bound for a learned model f̂N with margin (confidence) γ > 0

P(y f̂N(x) < 0) ≤ O
(
‖f̂N‖HR
γ
√

N

)

If f̂N is a CNN: related to recent generalization bounds for neural networks based on
product of spectral norms (e.g., Bartlett et al., 2017; Neyshabur et al., 2018)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 26 / 40

Going further for the non-convolutional case

Fully-connected models =⇒ dot-product kernels

K (x , y) = κ(x>y) for x , y ∈ Sp–1

Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
Rotation-invariant kernel on the sphere
=⇒ RKHS description in the L2(Sp–1) basis of spherical harmonics Yk,j

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 27 / 40

Going further for the non-convolutional case

Fully-connected models =⇒ dot-product kernels

K (x , y) = κ(x>y) for x , y ∈ Sp–1

Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
Rotation-invariant kernel on the sphere
=⇒ RKHS description in the L2(Sp–1) basis of spherical harmonics Yk,j

Example (3/6)

Definition (Spherical harmonics)

A homogeneous polynomial of degree k � 0 in Rd whose Laplacian
vanishes is called a homogeneous harmonic of order k .

A spherical harmonic of order k is a homogeneous harmonic of order
k on the unit sphere Sd�1

The set Yk(d) of spherical harmonics is a vector space of dimension

N(n, k) = dim (Yk(d)) =
(2k + d � 2)(k + d � 3)!

k!(d � 2)!
.

237 / 652

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 27 / 40

Going further for the non-convolutional case

Fully-connected models =⇒ dot-product kernels

K (x , y) = κ(x>y) for x , y ∈ Sp–1

Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
Rotation-invariant kernel on the sphere
=⇒ RKHS description in the L2(Sp–1) basis of spherical harmonics Yk,j

κ(x>y) =
∞∑
k=0

µk

N(p,k)∑
j=1

Yk,j(x)Yk,j(y), for x , y ∈ Sp–1

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 27 / 40

Going further for the non-convolutional case

Fully-connected models =⇒ dot-product kernels

K (x , y) = κ(x>y) for x , y ∈ Sp–1

Infinitely wide random networks (Neal, 1996; Cho and Saul, 2009; Lee et al., 2018)
NTK for infinitely wide networks (Jacot et al., 2018)

Precise description of the RKHS (Mercer decomposition)
Rotation-invariant kernel on the sphere
=⇒ RKHS description in the L2(Sp–1) basis of spherical harmonics Yk,j

H =

f =
∞∑
k=0

N(p,k)∑
j=1

ak,jYk,j(·) s.t. ‖f ‖2H :=
∑
k,j

a2k,j
µk

<∞

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 27 / 40

Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)
Decay of µk ↔ regularity of functions in the RKHS
Leads to sufficient conditions for RKHS membership
Rates of approximation for Lipschitz functions

NTK vs random features (Bietti and Mairal, 2019b)
f has p/2 η-bounded derivatives =⇒ f ∈ HNTK , ‖f ‖HNTK ≤ O(η)
p/2 + 1 needed for RF (Bach, 2017)
=⇒ HNTK is “larger” than HRF

Similar improvement for approximation of Lipschitz functions
See also (Ghorbani et al., 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 28 / 40

Approximation for two-layer ReLU networks

Approximation of functions on the sphere (Bach, 2017)
Decay of µk ↔ regularity of functions in the RKHS
Leads to sufficient conditions for RKHS membership
Rates of approximation for Lipschitz functions

NTK vs random features (Bietti and Mairal, 2019b)
f has p/2 η-bounded derivatives =⇒ f ∈ HNTK , ‖f ‖HNTK ≤ O(η)
p/2 + 1 needed for RF (Bach, 2017)
=⇒ HNTK is “larger” than HRF

Similar improvement for approximation of Lipschitz functions
See also (Ghorbani et al., 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 28 / 40

Some experiments on Cifar10

Convolutional kernels with 3x3 patches + kernel ridge regression (very costly!)

Conv. layers subsampling kernel test acc.
2 2-5 ReLU RF 86.63%
2 2-5 ReLU NTK 87.19%

2 2-5 exp, σ = 0.6 87.93%
3 2-2-2 exp, σ = 0.6 88.2%

16 (Li et al., 2019) last layer only ReLU RF 87.28%
16 (Li et al., 2019) last layer only ReLU NTK 86.77%

Li et al. (2019): no pooling before last layer, more complicated pre-processing

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 29 / 40

Some experiments on Cifar10

Convolutional kernels with 3x3 patches + kernel ridge regression (very costly!)

Conv. layers subsampling kernel test acc.
2 2-5 ReLU RF 86.63%
2 2-5 ReLU NTK 87.19%
2 2-5 exp, σ = 0.6 87.93%
3 2-2-2 exp, σ = 0.6 88.2%

16 (Li et al., 2019) last layer only ReLU RF 87.28%
16 (Li et al., 2019) last layer only ReLU NTK 86.77%

Li et al. (2019): no pooling before last layer, more complicated pre-processing

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 29 / 40

Some experiments on Cifar10

Convolutional kernels with 3x3 patches + kernel ridge regression (very costly!)

Conv. layers subsampling kernel test acc.
2 2-5 ReLU RF 86.63%
2 2-5 ReLU NTK 87.19%
2 2-5 exp, σ = 0.6 87.93%
3 2-2-2 exp, σ = 0.6 88.2%

16 (Li et al., 2019) last layer only ReLU RF 87.28%
16 (Li et al., 2019) last layer only ReLU NTK 86.77%

Li et al. (2019): no pooling before last layer, more complicated pre-processing

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 29 / 40

Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 30 / 40

Regularizing deep learning models in practice

Two issues with today’s deep learning models:
Poor performance on small datasets
Lack of robustness to adversarial perturbations

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 31 / 40

Regularizing deep learning models in practice

Two issues with today’s deep learning models:
Poor performance on small datasets
Lack of robustness to adversarial perturbations

(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
lossdecay = �

P
w2

i /k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n between the original x and distorted

6

clean + noise → “ostrich”

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 31 / 40

Regularizing deep learning models in practice

Two issues with today’s deep learning models:
Poor performance on small datasets
Lack of robustness to adversarial perturbations

(a real ostrich)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 31 / 40

Regularizing deep learning models in practice

Two issues with today’s deep learning models:
Poor performance on small datasets
Lack of robustness to adversarial perturbations

New approach to regularization (Bietti et al., 2019):
View generic CNN fθ as an element of a RKHS H

I CNNs fθ with ReLUs are (approximately) in the RKHS for CKNs
Regularize using ‖fθ‖H

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 31 / 40

Better models through regularization

Controlling upper bounds: spectral norm penalties/constraints

Controlling lower bounds using ‖f ‖H = sup‖u‖H≤1〈f , u〉
=⇒ consider tractable subsets of the unit ball using properties of Φ

‖f ‖H ≥ sup
x ,‖δ‖≤1

(adversarial perturbations)

‖f ‖H ≥ sup
x ,‖τ‖≤C

f (Lτx)− f (x) (adversarial deformations)

‖f ‖H ≥ sup
x
‖∇f (x)‖2 (gradient penalty)

Best performance by combining upper + lower bound approaches

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 32 / 40

Better models through regularization

Controlling upper bounds: spectral norm penalties/constraints
Controlling lower bounds using ‖f ‖H = sup‖u‖H≤1〈f , u〉

=⇒ consider tractable subsets of the unit ball using properties of Φ

‖f ‖H ≥ sup
x ,‖δ‖≤1

(adversarial perturbations)

‖f ‖H ≥ sup
x ,‖τ‖≤C

f (Lτx)− f (x) (adversarial deformations)

‖f ‖H ≥ sup
x
‖∇f (x)‖2 (gradient penalty)

Best performance by combining upper + lower bound approaches

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 32 / 40

Better models through regularization

Controlling upper bounds: spectral norm penalties/constraints
Controlling lower bounds using ‖f ‖H = sup‖u‖H≤1〈f , u〉
=⇒ consider tractable subsets of the unit ball using properties of Φ

‖f ‖H ≥ sup
x ,‖δ‖≤1

(adversarial perturbations)

‖f ‖H ≥ sup
x ,‖τ‖≤C

f (Lτx)− f (x) (adversarial deformations)

‖f ‖H ≥ sup
x
‖∇f (x)‖2 (gradient penalty)

Best performance by combining upper + lower bound approaches

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 32 / 40

Better models through regularization

Controlling upper bounds: spectral norm penalties/constraints
Controlling lower bounds using ‖f ‖H = sup‖u‖H≤1〈f , u〉
=⇒ consider tractable subsets of the unit ball using properties of Φ

‖f ‖H ≥ sup
x ,‖δ‖≤1

〈f ,Φ(x + δ)− Φ(x)〉H (adversarial perturbations)

‖f ‖H ≥ sup
x ,‖τ‖≤C

f (Lτx)− f (x) (adversarial deformations)

‖f ‖H ≥ sup
x
‖∇f (x)‖2 (gradient penalty)

Best performance by combining upper + lower bound approaches

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 32 / 40

Better models through regularization

Controlling upper bounds: spectral norm penalties/constraints
Controlling lower bounds using ‖f ‖H = sup‖u‖H≤1〈f , u〉
=⇒ consider tractable subsets of the unit ball using properties of Φ

‖f ‖H ≥ sup
x ,‖δ‖≤1

f (x + δ)− f (x) (adversarial perturbations)

‖f ‖H ≥ sup
x ,‖τ‖≤C

f (Lτx)− f (x) (adversarial deformations)

‖f ‖H ≥ sup
x
‖∇f (x)‖2 (gradient penalty)

Best performance by combining upper + lower bound approaches

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 32 / 40

Better models through regularization

Controlling upper bounds: spectral norm penalties/constraints
Controlling lower bounds using ‖f ‖H = sup‖u‖H≤1〈f , u〉
=⇒ consider tractable subsets of the unit ball using properties of Φ

‖f ‖H ≥ sup
x ,‖δ‖≤1

f (x + δ)− f (x) (adversarial perturbations)

‖f ‖H ≥ sup
x ,‖τ‖≤C

f (Lτx)− f (x) (adversarial deformations)

‖f ‖H ≥ sup
x
‖∇f (x)‖2 (gradient penalty)

Best performance by combining upper + lower bound approaches

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 32 / 40

Better models through regularization

Controlling upper bounds: spectral norm penalties/constraints
Controlling lower bounds using ‖f ‖H = sup‖u‖H≤1〈f , u〉
=⇒ consider tractable subsets of the unit ball using properties of Φ

‖f ‖H ≥ sup
x ,‖δ‖≤1

f (x + δ)− f (x) (adversarial perturbations)

‖f ‖H ≥ sup
x ,‖τ‖≤C

f (Lτx)− f (x) (adversarial deformations)

‖f ‖H ≥ sup
x
‖∇f (x)‖2 (gradient penalty)

Best performance by combining upper + lower bound approaches

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 32 / 40

Better models through regularization

Controlling upper bounds: spectral norm penalties/constraints
Controlling lower bounds using ‖f ‖H = sup‖u‖H≤1〈f , u〉
=⇒ consider tractable subsets of the unit ball using properties of Φ

‖f ‖H ≥ sup
x ,‖δ‖≤1

f (x + δ)− f (x) (adversarial perturbations)

‖f ‖H ≥ sup
x ,‖τ‖≤C

f (Lτx)− f (x) (adversarial deformations)

‖f ‖H ≥ sup
x
‖∇f (x)‖2 (gradient penalty)

Best performance by combining upper + lower bound approaches

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 32 / 40

Regularization on small datasets: image classification
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

A Kernel Perspective for Regularizing Deep Neural Networks

Table 2. Regularization on 300 or 1 000 examples from MNIST,
using deformations from Infinite MNIST. (⇤) indicates that random
deformations were included as training examples, while kfk2

⌧ and
kD⌧fk2 use them as part of the regularization penalty.

Method 300 VGG 1k VGG
Weight decay 89.32 94.08
SN projection 90.69 95.01
grad-`2 93.63 96.67
kfk2

� penalty 94.17 96.99
krfk2 penalty 94.08 96.82
Weight decay (⇤) 92.41 95.64
grad-`2 (⇤) 95.05 97.48
kD⌧fk2 penalty 94.18 96.98
kfk2

⌧ penalty 94.42 97.13
kfk2

⌧ + krfk2 94.75 97.40
kfk2

⌧ + kfk2
� 95.23 97.66

kfk2
⌧ + kfk2

� (⇤) 95.53 97.56
kfk2

⌧ + kfk2
� + SN proj 95.20 97.60

kfk2
⌧ + kfk2

� + SN proj (⇤) 95.40 97.77

erage pooling after each 3x3 convolution layer, in order to
more closely match the architecture assumptions of Bietti
& Mairal (2018) for deformation stability. We consider two
lower bound penalties that leverage the digit transformations
in Infinite MNIST: one based on “adversarial” deformations
around each digit, denoted kfk2

⌧ ; and a tangent propaga-
tion (Simard et al., 1998) variant, denoted kD⌧fk2, which
provides an approximation to kfk2

⌧ for small deformations
based on gradients along a few tangent vector directions
given by deformations (see Appendix B for details). Table 2
shows the obtained test accuracy for subsets of MNIST of
size 300 and 1 000. Overall, we find that combining both
adversarial penalties kfk2

⌧ and kfk2
� performs best, which

suggests that it is helpful to obtain tighter lower approxi-
mations of the RKHS norm by considering perturbations of
different kinds. Explicitly controlling the spectral norms can
further improve performance, as does training on deformed
digits, which may yield better margins by exploiting the
additional knowledge that small deformations preserve la-
bels. Note that data augmentation alone (with some weight
decay) does quite poorly in this case, even compared to our
lower bound penalties which do not use deformations.

Protein homology detection. Remote homology detec-
tion between protein sequences is an important problem
to understand protein structure. Given a protein sequence,
the goal is to predict whether it belongs to a superfamily
of interest. We consider the Structural Classification Of
Proteins (SCOP) version 1.67 dataset (Murzin et al., 1995),
which we process as described in Appendix A.3 in order to
obtain 102 balanced binary classification tasks with 100 pro-
tein sequences each, thus resulting in a low-sample regime.
Protein sequences were also cut to 400 amino acids.

Sequences are represented with a one-hot encoding

Table 3. Regularization on protein homology detection tasks, with
or without data augmentation (DA). Fixed hyperparameters are
selected using the first half of the datasets, and we report the
average auROC50 score on the second half. See Section A.3 in the
appendix for more details and statistical testing.

Method No DA DA
No weight decay 0.446 0.500
Weight decay 0.501 0.546
SN proj 0.591 0.632
PGD-`2 0.575 0.595
grad-`2 0.540 0.552
kfk2

� 0.600 0.608
krfk2 0.585 0.611
PGD-`2 + SN proj 0.596 0.627
grad-`2 + SN proj 0.592 0.624
kfk2

� + SN proj 0.630 0.644
krfk2 + SN proj 0.603 0.625

strategy—that is, a sequence of length l is represented as a
binary matrix in {0, 1}20⇥l, where 20 is the number of dif-
ferent amino acids (alphabet size of the sequences). Such a
structure can then be processed by convolutional neural net-
works (Alipanahi et al., 2015). In this paper, we do not try to
optimize the structure of the network for the task, since our
goal is only to evaluate the effect of regularization strategies.
Therefore, we use a simple convolutional network with 3
convolutional layers followed by global max-pooling and
a final fully-connected layer (we use filters of size 5, and a
max-pooling layer after the second convolutional layer).

Training was done using Adam with a learning rate fixed to
0.01, and a weight decay parameter tuned for each method.
Since hyper-parameter selection per dataset is difficult due
to the low sample size, we use the same parameters across
datasets. This allows us to use the first 51 datasets as a
validation set for hyper-parameter tuning, and we report
average performance with these fixed choices on the remain-
ing 51 datasets. The standard performance measure for this
task is the auROC50 score (area under the ROC curve up to
50% false positives). We note that the selection of hyper-
parameters has a transductive component, since some of the
sequences in the test datasets may also appear in the datasets
used for validation (possibly with a different label).

The results are shown in Table 3. The procedure used
for data augmentation (right column) is described in Ap-
pendix A.3. We found that the most effective approach is
the adversarial perturbation penalty, together with SN con-
straints. In particular, we found it to outperform the gradient
penalty krfk2, perhaps because in this case gradient penal-
ties are only computed on a discrete set of possible points
given by one-hot encodings, while adversarial perturbations
may increase stability to wider regions, potentially covering
different possible encoded sequences.

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 33 / 40

Regularization on small datasets: protein homology detection
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

A Kernel Perspective for Regularizing Deep Neural Networks

Table 2. Regularization on 300 or 1 000 examples from MNIST,
using deformations from Infinite MNIST. (⇤) indicates that random
deformations were included as training examples, while kfk2

⌧

and kD⌧fk2 use them as part of the regularization penalty. See
Section A.2 in the appendix for more results and statistical testing.

Method 300 VGG 1k VGG
Weight decay 89.32 94.08
SN projection 90.69 95.01
grad-`2 93.63 96.67
kfk2

� penalty 94.17 96.99
krfk2 penalty 94.08 96.82
Weight decay (⇤) 92.41 95.64
grad-`2 (⇤) 95.05 97.48
kD⌧fk2 penalty 94.18 96.98
kfk2

⌧ penalty 94.42 97.13
kfk2

⌧ + krfk2 94.75 97.40
kfk2

⌧ + kfk2
� 95.23 97.66

kfk2
⌧ + kfk2

� (⇤) 95.53 97.56
kfk2

⌧ + kfk2
� + SN proj 95.20 97.60

kfk2
⌧ + kfk2

� + SN proj (⇤) 95.40 97.77

erage pooling after each 3x3 convolution layer, in order to
more closely match the architecture assumptions of Bietti
& Mairal (2018) for deformation stability. We consider two
lower bound penalties that leverage the digit transformations
in Infinite MNIST: one based on “adversarial” deformations
around each digit, denoted kfk2

⌧ ; and a tangent propaga-
tion (Simard et al., 1998) variant, denoted kD⌧fk2, which
provides an approximation to kfk2

⌧ for small deformations
based on gradients along a few tangent vector directions
given by deformations (see Appendix B for details). Table 2
shows the obtained test accuracy for subsets of MNIST of
size 300 and 1 000. Overall, we find that combining both
adversarial penalties kfk2

⌧ and kfk2
� performs best, which

suggests that it is helpful to obtain tighter lower approxi-
mations of the RKHS norm by considering perturbations of
different kinds. Explicitly controlling the spectral norms can
further improve performance, as does training on deformed
digits, which may yield better margins by exploiting the
additional knowledge that small deformations preserve la-
bels. Note that data augmentation alone (with some weight
decay) does quite poorly in this case, even compared to our
lower bound penalties which do not use deformations.

Protein homology detection. Remote homology detec-
tion between protein sequences is an important problem
to understand protein structure. Given a protein sequence,
the goal is to predict whether it belongs to a superfamily
of interest. We consider the Structural Classification Of
Proteins (SCOP) version 1.67 dataset (Murzin et al., 1995),
which we process as described in Appendix A.3 in order to
obtain 102 balanced binary classification tasks with 100 pro-
tein sequences each, thus resulting in a low-sample regime.
Protein sequences were also cut to 400 amino acids.

Table 3. Regularization on protein homology detection tasks, with
or without data augmentation (DA). Fixed hyperparameters are
selected using the first half of the datasets, and we report the
average auROC50 score on the second half.

Method No DA DA
No weight decay 0.446 0.500
Weight decay 0.501 0.546
SN proj 0.591 0.632
PGD-`2 0.575 0.595
grad-`2 0.540 0.552
kfk2

� 0.600 0.608
krfk2 0.585 0.611
PGD-`2 + SN proj 0.596 0.627
grad-`2 + SN proj 0.592 0.624
kfk2

� + SN proj 0.630 0.644
krfk2 + SN proj 0.603 0.625

Sequences are represented with a one-hot encoding
strategy—that is, a sequence of length l is represented as a
binary matrix in {0, 1}20⇥l, where 20 is the number of dif-
ferent amino acids (alphabet size of the sequences). Such a
structure can then be processed by convolutional neural net-
works (Alipanahi et al., 2015). In this paper, we do not try to
optimize the structure of the network for the task, since our
goal is only to evaluate the effect of regularization strategies.
Therefore, we use a simple convolutional network with 3
convolutional layers followed by global max-pooling and
a final fully-connected layer (we use filters of size 5, and a
max-pooling layer after the second convolutional layer).

Training was done using Adam with a learning rate fixed to
0.01, and a weight decay parameter tuned for each method.
Since hyper-parameter selection per dataset is difficult due
to the low sample size, we use the same parameters across
datasets. This allows us to use the first 51 datasets as a
validation set for hyper-parameter tuning, and we report
average performance with these fixed choices on the remain-
ing 51 datasets. The standard performance measure for this
task is the auROC50 score (area under the ROC curve up to
50% false positives). We note that the selection of hyper-
parameters has a transductive component, since some of the
sequences in the test datasets may also appear in the datasets
used for validation (possibly with a different label).

The results are shown in Table 3. The procedure used
for data augmentation (right column) is described in Ap-
pendix A.3. We found that the most effective approach is
the adversarial perturbation penalty, together with SN con-
straints. In particular, we found it to outperform the gradient
penalty krfk2, perhaps because in this case gradient penal-
ties are only computed on a discrete set of possible points
given by one-hot encodings, while adversarial perturbations
may increase stability to wider regions, potentially covering
different possible encoded sequences.

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 34 / 40

Regularization for robustness

Links with robust optimization/adversarial training
Robust optimization yields another lower bound (hinge/logistic loss)

1
N

N∑
i=1

sup
‖δ‖2≤ε

`(yi , f (xi + δ)) ≤ 1
N

N∑
i=1

`(yi , f (xi)) + ε‖f ‖H

But: may only encourage local robustness around training data

Global vs local robustness
Controlling ‖f ‖H allows a more global form of robustness
Guarantees on adversarial generalization with `2 perturbations

I Extension of margin-based bound, by using ‖f ‖H ≥ ‖f ‖Lip near the decision boundary
But: may cause a loss in accuracy in practice

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 35 / 40

Regularization for robustness

Links with robust optimization/adversarial training
Robust optimization yields another lower bound (hinge/logistic loss)

1
N

N∑
i=1

sup
‖δ‖2≤ε

`(yi , f (xi + δ)) ≤ 1
N

N∑
i=1

`(yi , f (xi)) + ε‖f ‖H

But: may only encourage local robustness around training data

Global vs local robustness
Controlling ‖f ‖H allows a more global form of robustness
Guarantees on adversarial generalization with `2 perturbations

I Extension of margin-based bound, by using ‖f ‖H ≥ ‖f ‖Lip near the decision boundary
But: may cause a loss in accuracy in practice

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 35 / 40

Robustness trade-offs on Cifar10

0.75 0.80 0.85 0.90
standard accuracy

0.65

0.70

0.75

0.80

0.85

ad
ve

rs
ar

ia
l a

cc
ur

ac
y

ℓ2, εtest = 0.1
PGD-ℓ2
grad-ℓ2
|f|2δ
|∇f|2
PGD-ℓ2+
SN proj
SN proj
SN pen
(SVD)
clean

0.4 0.6 0.8
standard accuracy

0.0

0.1

0.2

0.3

0.4

ℓ2, εtest = 1.0

0.4 0.6 0.8
standard accuracy

0.0

0.1

0.2

0.3

ℓ2, εtest = 1.5

State-of-the-art robust accuracy for large εtest

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 36 / 40

Robustness trade-offs on Cifar10

0.75 0.80 0.85 0.90
standard accuracy

0.65

0.70

0.75

0.80

0.85

ad
ve

rs
ar

ia
l a

cc
ur

ac
y

ℓ2, εtest = 0.1
PGD-ℓ2
grad-ℓ2
|f|2δ
|∇f|2
PGD-ℓ2+
SN proj
SN proj
SN pen
(SVD)
clean

0.4 0.6 0.8
standard accuracy

0.0

0.1

0.2

0.3

0.4

ℓ2, εtest = 1.0

0.4 0.6 0.8
standard accuracy

0.0

0.1

0.2

0.3

ℓ2, εtest = 1.5

State-of-the-art robust accuracy for large εtest

(Bietti, Mialon, Chen, and Mairal, 2019)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 36 / 40

Outline

1 Convolutional kernels and their stability

2 Approximation and complexity

3 Applications to regularization and robustness

4 Conclusions and perspectives

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 37 / 40

Conclusions

Benefits of convolutional kernels
Translation invariance + deformation stability with small patches and pooling
Extensions to other groups (roto-translations)
RKHS contains CNNs with smooth activations

New practical regularization strategies
Regularization of generic CNNs using RKHS norm
Useful for small datasets, state-of-the-art for `2-adversarial robustness

Links with over-parameterized optimization: neural tangent kernels
NTK for CNNs takes a similar form to CKNs
Weaker stability guarantees than RF, but better approximation properties

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 38 / 40

Conclusions

Benefits of convolutional kernels
Translation invariance + deformation stability with small patches and pooling
Extensions to other groups (roto-translations)
RKHS contains CNNs with smooth activations

New practical regularization strategies
Regularization of generic CNNs using RKHS norm
Useful for small datasets, state-of-the-art for `2-adversarial robustness

Links with over-parameterized optimization: neural tangent kernels
NTK for CNNs takes a similar form to CKNs
Weaker stability guarantees than RF, but better approximation properties

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 38 / 40

Conclusions

Benefits of convolutional kernels
Translation invariance + deformation stability with small patches and pooling
Extensions to other groups (roto-translations)
RKHS contains CNNs with smooth activations

New practical regularization strategies
Regularization of generic CNNs using RKHS norm
Useful for small datasets, state-of-the-art for `2-adversarial robustness

Links with over-parameterized optimization: neural tangent kernels
NTK for CNNs takes a similar form to CKNs
Weaker stability guarantees than RF, but better approximation properties

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 38 / 40

Perspectives

Further study of convolutional kernels
More precise approximation guarantees?
More empirical evaluation; better kernel approximations?

Beyond kernels for deep learning
Kernels do not fully explain success of deep learning
Simple, tractable, interpretable models that improve on kernels?
Inductive bias of optimization beyond “lazy training”? lazy only for some layers?

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 39 / 40

Perspectives

Further study of convolutional kernels
More precise approximation guarantees?
More empirical evaluation; better kernel approximations?

Beyond kernels for deep learning
Kernels do not fully explain success of deep learning
Simple, tractable, interpretable models that improve on kernels?
Inductive bias of optimization beyond “lazy training”? lazy only for some layers?

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 39 / 40

Thanks!

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 40 / 40

References I

F. Bach. Breaking the curse of dimensionality with convex neural networks. Journal of Machine
Learning Research (JMLR), 18(19):1–53, 2017.

P. L. Bartlett, D. J. Foster, and M. Telgarsky. Spectrally-normalized margin bounds for neural
networks. In Advances in Neural Information Processing Systems (NIPS), 2017.

A. Bietti and J. Mairal. Group invariance, stability to deformations, and complexity of deep
convolutional representations. Journal of Machine Learning Research (JMLR), 20(25):1–49, 2019a.

A. Bietti and J. Mairal. On the inductive bias of neural tangent kernels. In Advances in Neural
Information Processing Systems (NeurIPS), 2019b.

A. Bietti, G. Mialon, D. Chen, and J. Mairal. A kernel perspective for regularizing deep neural
networks. In Proceedings of the International Conference on Machine Learning (ICML), 2019.

J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 35(8):1872–1886, 2013.

L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in Neural Information
Processing Systems (NIPS), 2009.

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 41 / 40

References II
T. Cohen and M. Welling. Group equivariant convolutional networks. In International Conference on

Machine Learning (ICML), 2016.
B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari. Linearized two-layers neural networks in high

dimension. arXiv preprint arXiv:1904.12191, 2019.
A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural

networks. In Advances in Neural Information Processing Systems (NeurIPS), 2018.
R. Kondor and S. Trivedi. On the generalization of equivariance and convolution in neural networks to

the action of compact groups. In Proceedings of the International Conference on Machine Learning
(ICML), 2018.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551,
1989.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein. Deep neural
networks as gaussian processes. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 42 / 40

References III
J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks. In Advances in

Neural Information Processing Systems (NIPS), 2016.
J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. Convolutional kernel networks. In Advances in

Neural Information Processing Systems (NIPS), 2014.
S. Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics, 65(10):

1331–1398, 2012.
R. M. Neal. Bayesian learning for neural networks. Springer, 1996.
B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. A PAC-Bayesian approach to

spectrally-normalized margin bounds for neural networks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2018.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural
Information Processing Systems (NIPS), 2007.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In
Proceedings of the International Conference on Learning Representations (ICLR), 2014.

Y. Zhang, J. D. Lee, and M. I. Jordan. `1-regularized neural networks are improperly learnable in
polynomial time. In International Conference on Machine Learning (ICML), 2016.

Y. Zhang, P. Liang, and M. J. Wainwright. Convexified convolutional neural networks. In International
Conference on Machine Learning (ICML), 2017.

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 43 / 40

Convolutional NTK kernel mapping

Define
M(x , y)(u) =

(
ϕ0(x(u))⊗ y(u)

ϕ1(x(u))

)

Theorem (NTK feature map for CNN)

KNTK (x , x ′) = 〈Φ(x),Φ(x ′)〉L2(Ω),

with Φ(x)(u) = AnM(xn, yn)(u), where y1(u) = x1(u) = P1x(u) and

xk(u) = PkAk–1ϕ1(xk–1)(u)
yk(u) = PkAk–1M(xk–1, yk–1)(u).

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 44 / 40

Discretization and signal preservation
The multilayer convolutional kernel

I0 : ⌦0 ! H0I0(!0) 2 H0

P!1 2 P0 (patch)

Kernel trick

I0.5(!1) = '1(P!1) 2 H1
I0.5 : ⌦0 ! H1

I1 : ⌦1 ! H1

Linear pooling

I1(!2) 2 H1

How do we go from I0.5 : ⌦0 ! H1 to I1 : ⌦1 ! H1?

Linear pooling!
Julien Mairal Towards deep kernel machines 28/51

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 45 / 40

Discretization and signal preservation

x̄k : subsampling factor sk after pooling with scale σk ≈ sk :

x̄k [n] = AkMkPk x̄k–1[nsk]

Claim: We can recover x̄k−1 from x̄k if subsampling sk ≤ patch size
How? Kernels! Recover patches with linear functions (contained in RKHS)

〈fw ,MkPkx(u)〉 = fw (Pkx(u)) = 〈w ,Pkx(u)〉

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 46 / 40

Discretization and signal preservation

x̄k : subsampling factor sk after pooling with scale σk ≈ sk :

x̄k [n] = AkMkPk x̄k–1[nsk]

Claim: We can recover x̄k−1 from x̄k if subsampling sk ≤ patch size

How? Kernels! Recover patches with linear functions (contained in RKHS)

〈fw ,MkPkx(u)〉 = fw (Pkx(u)) = 〈w ,Pkx(u)〉

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 46 / 40

Discretization and signal preservation

x̄k : subsampling factor sk after pooling with scale σk ≈ sk :

x̄k [n] = AkMkPk x̄k–1[nsk]

Claim: We can recover x̄k−1 from x̄k if subsampling sk ≤ patch size
How? Kernels! Recover patches with linear functions (contained in RKHS)

〈fw ,MkPkx(u)〉 = fw (Pkx(u)) = 〈w ,Pkx(u)〉

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 46 / 40

Signal recovery: example in 1D

xk−1

Pkxk−1(u) ∈ Pk

MkPkxk−1

dot-product kernel

AkMkPkxk−1

linear pooling

downsampling

xk

recovery with linear measurements

Akxk−1

deconvolution

xk−1

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 47 / 40

Beyond the translation group

Global invariance to other groups?

Rotations, reflections, roto-translations, ...
Group action Lgx(u) = x(g−1u)
Equivariance in inner layers + (global) pooling in last layer
Similar construction to Cohen and Welling (2016); Kondor and Trivedi (2018)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 48 / 40

G-equivariant layer construction

Feature maps x(u) defined on u ∈ G (G : locally compact group)
I Input needs special definition when G 6= Ω

Patch extraction:
Px(u) = (x(uv))v∈S

Non-linear mapping: equivariant because pointwise!
Pooling (µ: left-invariant Haar measure):

Ax(u) =
∫
G

x(uv)h(v)dµ(v) =
∫
G

x(v)h(u−1v)dµ(v)

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 49 / 40

Group invariance and stability

Roto-translation group G = R2 o SO(2) (translations + rotations)
Stability w.r.t. translation group
Global invariance to rotations (only global pooling at final layer)

I Inner layers: patches and pooling only on translation group
I Last layer: global pooling on rotations
I Cohen and Welling (2016): pooling on rotations in inner layers hurts performance on Rotated

MNIST

Alberto Bietti Foundations of DL through kernel methods TTIC, February 2020 50 / 40

	Convolutional kernels and their stability
	Approximation and complexity
	Applications to regularization and robustness
	Conclusions and perspectives

