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Success of Deep Learning

State-of-the-art models in various domains (images, speech, language, biology, ...)
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f (x) = Wnσ(Wn–1 · · ·σ(W1x) · · · )

Recipe: huge models + lots of data + compute + simple algorithms

Q: Why do they work?
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Exploiting Data Structure through ArchitecturesConvolutional Neural Networks in Front of the Scene

The keywords: multi-scale, compositional, invariant, local features.
Picture from Y. LeCun’s tutorial:

Julien Mairal Data Science in the Alps 5/21Convolutional networks (CNNs)
Model local information at different scales, hierarchically
Provide some invariance through pooling
Useful inductive biases for learning efficiently on structured data
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Exploiting Data Structure through ArchitecturesParadigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

(LeCun et al., 1998)

Convolutional networks (CNNs)
Model local information at different scales, hierarchically
Provide some invariance through pooling
Useful inductive biases for learning efficiently on structured data
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Exploiting Data Structure through Architectures

(He et al., 2016)

Convolutional networks (CNNs)
Model local information at different scales, hierarchically
Provide some invariance through pooling
Useful inductive biases for learning efficiently on structured data
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Understanding Deep Learning
The challenge of deep learning theory

Over-parameterized (millions of parameters)
Expressive (can approximate any function)
Complex architectures for exploiting problem structure
Yet, easy to optimize to zero training error with (stochastic) gradient descent!

A functional viewpoint
View deep networks as functions in some functional space
Non-parametric models, natural measures of complexity (e.g., norms)
Optimization performs implicit regularization towards

min
f

Ω(f ) s.t. yi = f (xi ), i = 1, . . . , n

Q: What is an appropriate functional space / norm Ω?
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Kernels

X •
•

•
• HΦ

• •
•

•

x Φ(x)

Kernels?
Map data x ∈ X to high-dimensional space, Φ(x) ∈ H (H: “RKHS”)
Functions f ∈ H are linear in features: f (x) = 〈f ,Φ(x)〉H (f can be non-linear in x !)
Learning with a positive definite kernel K (x , x ′) = 〈Φ(x),Φ(x ′)〉H

I H can be infinite-dimensional! (kernel trick)
I Use a kernel matrix K = [K (xi , xj)]ij ∈ RN×N or its approximations
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Why Kernels?

Clean and well-developed theory
Tractable (convex) optimization algorithms
Statistical and approximation properties are well understood for many kernels

I e.g., Sobolev spaces, interaction splines (Wahba, 1990; Caponnetto and De Vito, 2007)
Related to over-parameterized networks in certain regimes (Neal, 1996; Jacot et al., 2018)

Guarantees for optimization, statistics, and approximation together are rare in deep
learning! e.g.:

I Benefits of depth (e.g., Eldan and Shamir, 2016; Mhaskar and Poggio, 2016): no algorithms
I Optimization landscape (e.g., Soltanolkotabi et al., 2018): no universal approximation

This talk: kernels for convolutional models (B. and Mairal, 2019a,b; B. et al., 2021; B., 2022)
Formal study of convolutional kernels and their RKHS
Benefits of (deep) convolutional structure
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Kernels for Deep Models: Infinite-Width Networks

f (x) = 1√
m

m∑
i=1

viρ(w>i x), m→∞

Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): wi ∼ N (0, I), vi trained

KRF (x , x ′) = Ew [ρ(w>x)ρ(w>x ′)] = κρ(x>x ′) when x , x ′ ∈ Sd−1

Neural Tangent Kernel (NTK, Jacot et al., 2018): both wi and vi trained in linearized
model near initialization θ0 = (w0, v0) (“lazy training”, Chizat et al., 2019)

KNTK (x , x ′) = Eθ0 [〈∇θf (x),∇θf (x ′)〉]

RF and NTK extend to deep convolutional architectures (Arora et al., 2019; B. and Mairal,
2019b; Garriga-Alonso et al., 2019; Novak et al., 2019; Yang, 2019)
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Kernels for Deep Models: Hierarchical and Convolutional Kernels

Hierarchical kernels (Cho and Saul, 2009)
Kernels can be constructed hierarchically

K (x , x ′) = 〈Φ(x),Φ(x ′)〉 with Φ(x) = ϕ2(ϕ1(x))

e.g., dot-product kernels on the sphere

K (x , x ′) = κ2(〈ϕ1(x), ϕ1(x ′)〉) = κ2(κ1(x>x ′))

For κρ, corresponds to infinite-width limit of deep fully-connected net

B. and Bach (2021); Chen and Xu (2021): deep = shallow, same RKHS!
=⇒ More structure is needed
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Kernels for Deep Models: Hierarchical and Convolutional Kernels

Convolutional kernels for images (Mairal et al., 2014; Mairal, 2016)

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Good performance on standard vision tasks (Mairal, 2016; Shankar et al., 2020; B., 2022)

Q: What are the provable benefits of convolutional kernels?
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Outline

1 Invariance and Stability to Deformations (B. and Mairal, 2019a,b)

2 Generalization Benefits under Invariance and Stability (B. et al., 2021)

3 Benefits of Locality and Depth (B., 2022)

4 Concluding Remarks
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Folklore Properties of Convolutional ModelsParadigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33

Convolutional architectures:
Capture multi-scale structure in natural signals
Provide some translation invariance

Q: Beyond translation invariance?
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Stability to Deformations

Deformations
τ : Ω→ Ω: smooth vector field
τ · x(u) = x(u − τ(u)): deformation operator
Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Studied for fixed wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Stability to Deformations

Deformations
τ : Ω→ Ω: smooth vector field
τ · x(u) = x(u − τ(u)): deformation operator
Much richer group of transformations than translations

Definition of stability
Representation Φ(·) is stable (Mallat, 2012) if:

‖Φ(τ · x)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation
‖τ‖∞ = supu |τ(u)| controls translation
C2 → 0: translation invariance

Q: Can we achieve this along with approximation using kernels?

Alberto Bietti Benefits of Convolutional Models UMN, Feb 2, 2022 12 / 30



Stability to Deformations

Deformations
τ : Ω→ Ω: smooth vector field
τ · x(u) = x(u − τ(u)): deformation operator
Much richer group of transformations than translations

Definition of stability
Representation Φ(·) is stable (Mallat, 2012) if:

‖Φ(τ · x)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation
‖τ‖∞ = supu |τ(u)| controls translation
C2 → 0: translation invariance

Q: Can we achieve this along with approximation using kernels?

Alberto Bietti Benefits of Convolutional Models UMN, Feb 2, 2022 12 / 30



Deformation Stability with Kernels (B. and Mairal, 2019a)

Geometry of the kernel mapping: f (x) = 〈f ,Φ(x)〉H

|f (x)− f (x ′)| ≤ ‖f ‖H · ‖Φ(x)− Φ(x ′)‖H

‖f ‖H controls complexity of the model
Φ(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)
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Convolutional Kernel Construction (B. and Mairal, 2019a)

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

Continuous initial signal x(u)

At each layer k:
Pk : Extract patches of size |Sk |

Mk : Apply kernel map ϕk to patches
Ak : Gaussian pooling at scale σk

Multi-layer construction

Φ(x) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x

|Sk |, σk typically exponential in k, fixed “patch size” β := |Sk |/σk–1

In practice, discretize with subsampling ≤ patch size to preserve information
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Convolutional Kernel Construction (B. and Mairal, 2019a)
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Stability of Convolutional Kernels
Theorem (Stability of Convolutional Kernel (B. and Mairal, 2019a))
Let Φ be a n-layer conv kernel with initial anti-aliasing at σ0. If ‖∇τ‖∞ ≤ 1/2,

‖Φ(τ · x)− Φ(x)‖ ≤
(

C1β
3 (n + 1) ‖∇τ‖∞ + C2

σn
‖τ‖∞

)
‖x‖

Translation invariance: large σn

Patch size: β ≈ σk+1/σk

Signal preservation/universal approximation: subsampling factor ≈ patch size
Exponential benefits of depth for stability:

I Shallow: n = 1, β ≈ σn/σ0 =⇒ O((σn/σ0)3)
I Deep: β = O(1), n ≈ log(σn/σ0)/ log β =⇒ O(log(σn/σ0))

Achieved by controlling operator norm of a commutator [Lτ ,PkAk–1]
I Extend result by Mallat (2012) for controlling ‖[Lτ ,A]‖, need |Sk | ≤ βσk–1

Extensions to other transformation groups, e.g., roto-translations (B. and Mairal, 2019a)
Similar stability results hold for convolutional NTK (B. and Mairal, 2019b)
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Non-parametric Regression on the Sphere
Problem setup

Goal: bound on the excess risk R(f̂ )− R(f ∗) = Ex∼τ [(f̂ (x)− f ∗(x))2]
f ∗(x) := E[y |x ] and x ∼ τ : uniform distribution on the sphere Sd−1

Kernel ridge regression estimator for some kernel K on data {(xi , yi )}ni=1:

f̂K ,n := arg min
f ∈HK

1
n

n∑
i=1

(yi − f (xi ))2 + λ‖f ‖2HK

Harmonic analysis on the sphere
L2(τ) basis of spherical harmonics Yk,j

N(d , k) harmonics of degree k, form a basis of Vd ,k

Diagonalizes dot-product kernels K (x , x ′) = κ(〈x , x ′〉)
Assume f ∗ is smooth ↔ decay of coefficients of f ∗

Example (3/6)

Definition (Spherical harmonics)

A homogeneous polynomial of degree k � 0 in Rd whose Laplacian
vanishes is called a homogeneous harmonic of order k .

A spherical harmonic of order k is a homogeneous harmonic of order
k on the unit sphere Sd�1

The set Yk(d) of spherical harmonics is a vector space of dimension

N(n, k) = dim (Yk(d)) =
(2k + d � 2)(k + d � 3)!

k!(d � 2)!
.

237 / 652

Q: How can we encode invariance and stability?
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Geometric Priors

Invariant Function Classes

• These domain transformations are lifted to linear transformations (a.k.a. 
group representations):

$ " ! = "($"#!)
' ∶ Ω → Ω ' ∶ #(Ω) → #(Ω)

Functions f : X → R that are “smooth” along known transformations of input x
e.g., translations, rotations, permutations, deformations
We consider: permutations σ ∈ G

(σ · x)[u] = x [σ−1(u)]

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

f (σ · x) = f (x), σ ∈ G

Geometric stability: For other sets G (e.g., local shifts, deformations), we want

f (σ · x) ≈ f (x), σ ∈ G
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Geometric Priors: Pooling Operator

SG f (x) := 1
|G |

∑
σ∈G

f (σ · x)

Invariant spherical harmonics, when G is a group (Meyer, 1954; Mei et al., 2021)
SG acts as a projection operator
N(d , k) invariant harmonics of degree k, form a basis of V d ,k = SGVd ,k

f ∗ is G-invariant ↔ f ∗ = SG f ∗

Invariant kernels with pooling (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

K (x , x ′) = κ(〈x , x ′〉), KG(x , x ′) = 1
|G |

∑
σ∈G

κ(〈σ · x , x ′〉)

If κ = κρ, corresponds to CNN with pooling f (x) = 1
|G|
∑
σ∈G

1√
m
∑m

i=1 viρ(〈wi , σ · x〉)
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Generalization Benefits of Pooling

K (x , x ′) = κ(〈x , x ′〉), KG(x , x ′) = 1
|G |

∑
σ∈G

κ(〈σ · x , x ′〉)

Theorem (Benefits of pooling (B., Venturi, and Bruna, 2021))
Assume f ∗ is invariant to a group G and smooth of order s.
Ridge regression with kernel KG vs K achieves

ER(f̂KG ,n)− R(f ∗) ≤ Cd

(
νd (n)

n

) 2s
2s+d−1

vs ER(f̂K ,n)− R(f ∗) ≤ Cd

(1
n

) 2s
2s+d−1

,

with νd (n) = 1
|G| + o(1).

=⇒ asymptotic gains by a factor |G | in sample complexity.
|G | can be exponential in d!
Rate and constant Cd are minimax optimal: curse of dimensionality
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Ingredients: Counting Invariant Harmonics

Proposition ((B., Venturi, and Bruna, 2021))
As k →∞, we have

γd (k) := N(d , k)
N(d , k) = 1

|G | + O(k−d+χ),

where χ is the maximal number of cycles of any permutation σ ∈ G \ {Id}.

Asymptotic rate of improvement can be quantified in terms of χ
Relies on singularity analysis of density of 〈σ · x , x〉 (Saldanha and Tomei, 1996)
Related to Mei et al. (2021), but different regimes

I They study d →∞ with fixed k (γd (k) = Θd (d−α)), gains at most polynomial in d
I We study k →∞ with fixed d , gain |G | can be exponential in d .
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Extension to Stability and Discussion

Extension to geometric stability (G is not a group)
Pooling operator SG is no longer a projection, has eigenvalues λk,j ∈ [0, 1]
Different assumption: f ∗ = Sr

Gg for some g and r > 0
Leads to similar bounds with effective sample size n|G | instead of n
|G | is exponential in d for a simple model of deformations!

Curse of dimensionality
If the target f ∗ is non-smooth, e.g., only Lipschitz, the rate is cursed! (and unimprovable)

R(f̂ )− f (f ∗) . n−
2

2+d−1

Q: How can we break this curse?
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Outline

1 Invariance and Stability to Deformations (B. and Mairal, 2019a,b)

2 Generalization Benefits under Invariance and Stability (B. et al., 2021)

3 Benefits of Locality and Depth (B., 2022)

4 Concluding Remarks
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One-layer Convolutional Kernels on Patches

x

xu

Kh(x , x ′) =
∑
u∈Ω

k(xu, x ′u)

One-layer local convolutional kernel
1D signal x [u], u ∈ Ω, localized patches xu = (x [u], . . . , x [u + s]) ∈ Rp

RKHS HK contains functions f (x) =
∑

u∈Ω gu(xu) with gu ∈ Hk

Pooling filter h with
∑

u h[u] = 1
Pooling: same functions, RKHS norm encourages similarities between the gu

Global pooling (h[u] = 1/|Ω|): all the gu must be equal (translation invariance)
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Benefits of Locality and Pooling

Assume non-overlapping patches xu uniform on the sphere Sp−1

Assume invariant target f ∗(x) =
∑

u∈Ω g∗(xu)
No pooling (h = δ) vs global pooling (h = 1)

Theorem (Generalization with one-layer (B., 2022))
Assume g∗ smooth of order s. Kernel ridge regression with Kh yields

ER(f̂1,n)− R(f ∗) ≤ Cp

(1
n

) 2s
2s+p−1

vs ER(f̂δ,n)− R(f ∗) ≤ Cp

( |Ω|
n

) 2s
2s+p−1

Breaks the curse of dimensionality! p instead of d = p|Ω| in the rate
With localized pooling, we can also learn f ∗(x) =

∑
u∈Ω gu(xu) with different gu

For overlapping patches see (Favero et al., 2021; Misiakiewicz and Mei, 2021)

Q: How can we capture long-range interactions?
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Two-layer Convolutional Kernels

x

xu ∈ H|S1|
0

u 7→ ϕ1(xu)

κ1

h1

Φ1(x)

∈ H|S2|
1

κ2

h2

Φ2(x)

Captures interactions between different patches

If κ2(u) = u2, RKHS contains functions

f ∗(x) =
∑
|u−v |≤r

gu,v (xu, xv )

gu,v ∈ Hk ⊗Hk

Receptive field r depends on h1 and S2
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Experiments on Cifar10

2-layers, 3x3 patches, pooling/downsampling sizes (2,5). Patch kernels κ1, κ2.

κ1 κ2 Test acc.
Gauss Gauss 87.9%
Gauss Poly3 87.7%
Gauss Poly2 86.9%
Gauss Poly1 (Linear) 80.9%

Polynomial kernels suffice at second layer!

Best performance (B., 2022): 88.3% (2 layers, larger patches at 2nd layer).

Shankar et al. (2020): 88.2% (10 layers). 90% with data augmentation (≈ AlexNet)
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Generalization Benefits with Two Layers

Consider f ∗(x) =
∑

u,v∈Ω g∗(xu, xv )
Assume Ex [k(xu, xu′)k(xv , xv ′)] ≤ ε if u 6= u′ or v 6= v ′

Compare different pooling layers (h1, h2 ∈ {δ, 1}) and patch sizes (|S2|):

Generalization bound: when g∗ ∈ Hk ⊗Hk , we have

h1 h2 |S2| R(f̂n)− R(f ∗) (for ε→ 0)
δ δ |Ω| ‖g∗‖|Ω|2.5/

√
n

δ 1 |Ω| ‖g∗‖|Ω|2/
√

n
1 1 |Ω| ‖g∗‖|Ω|/

√
n

1 δ or 1 1 ‖g∗‖/
√

n

Polynomial gains in |Ω| when using the right architecture!
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u,v∈Ω g∗(xu, xv )
Assume Ex [k(xu, xu′)k(xv , xv ′)] ≤ ε if u 6= u′ or v 6= v ′

Compare different pooling layers (h1, h2 ∈ {δ, 1}) and patch sizes (|S2|):

Generalization bound: when g∗ ∈ Hk ⊗Hk , we have

h1 h2 |S2| R(f̂n)− R(f ∗) (for ε→ 0)
δ δ |Ω| ‖g∗‖|Ω|2.5/

√
n

δ 1 |Ω| ‖g∗‖|Ω|2/
√

n
1 1 |Ω| ‖g∗‖|Ω|/

√
n

1 δ or 1 1 ‖g∗‖/
√

n
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Outline

1 Invariance and Stability to Deformations (B. and Mairal, 2019a,b)

2 Generalization Benefits under Invariance and Stability (B. et al., 2021)

3 Benefits of Locality and Depth (B., 2022)

4 Concluding Remarks
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Concluding Remarks
Benefits of deep convolutional models

Depth improves deformation stability in convolutional models
Pooling improves generalization under invariance and stability
Locality + depth + pooling capture structured interaction models with symmetries

Kernels can help us understand deep learning architectures

Future directions
Convolutional networks beyond kernels (data-adaptive filters, interaction terms)

I e.g., mean-field regimes (Chizat and Bach, 2018; Mei et al., 2019)
Extensions to other architectures

I e.g., GNNs, Transformers
Role of architecture beyond supervised learning

I e.g., generative models, self-supervised learning

Thanks!
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