Benefits of (Deep) Convolutional Models: a Kernel Perspective

Alberto Bietti

NYU

ML seminar, University of Minnesota. February 2, 2022.

Success of Deep Learning

State-of-the-art models in various domains (images, speech, language, biology, ...)

ENGLISH - DETECTED	ENGLISH	CH 🗸	÷	FRENCH	CHINESE (TRADITIONAL)	\sim
where is the tra	in station?	×		où est la g	gare? ⊘	☆
۹	27/	/5000 🧪		•		:

Success of Deep Learning

State-of-the-art models in various domains (images, speech, language, biology, ...)

$$f(x) = W_n \sigma(W_{n-1} \cdots \sigma(W_1 x) \cdots)$$

Recipe: huge models + lots of data + compute + simple algorithms

Success of Deep Learning

State-of-the-art models in various domains (images, speech, language, biology, ...)

$$f(x) = W_n \sigma(W_{n-1} \cdots \sigma(W_1 x) \cdots)$$

Recipe: huge models + lots of data + compute + simple algorithms

Q: Why do they work?

Exploiting Data Structure through Architectures

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Convolutional networks (CNNs)

- Model local information at different scales, hierarchically
- Provide some invariance through pooling
- Useful inductive biases for learning efficiently on structured data

Exploiting Data Structure through Architectures

(LeCun et al., 1998)

Convolutional networks (CNNs)

- Model local information at different scales, hierarchically
- Provide some invariance through pooling
- Useful inductive biases for learning efficiently on structured data

Exploiting Data Structure through Architectures

Convolutional networks (CNNs)

- Model local information at different scales, hierarchically
- Provide some invariance through pooling
- Useful inductive biases for learning efficiently on structured data

Understanding Deep Learning

The challenge of deep learning theory

- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize to zero training error with (stochastic) gradient descent!

Understanding Deep Learning

The challenge of deep learning theory

- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize to zero training error with (stochastic) gradient descent!

A functional viewpoint

- View deep networks as functions in some functional space
- Non-parametric models, natural measures of complexity (e.g., norms)
- Optimization performs implicit regularization towards

$$\min_{f} \Omega(f) \text{ s.t. } y_i = f(x_i), \quad i = 1, \dots, n$$

Understanding Deep Learning

The challenge of deep learning theory

- Over-parameterized (millions of parameters)
- Expressive (can approximate any function)
- Complex architectures for exploiting problem structure
- Yet, easy to optimize to zero training error with (stochastic) gradient descent!

A functional viewpoint

- View deep networks as functions in some functional space
- Non-parametric models, natural measures of complexity (e.g., norms)
- Optimization performs implicit regularization towards

$$\min_{f} \Omega(f) \quad \text{s.t.} \quad y_i = f(x_i), \quad i = 1, \dots, n$$

Q: What is an appropriate functional space / norm Ω ?

Kernels

Kernels?

- Map data $x \in \mathcal{X}$ to high-dimensional space, $\Phi(x) \in \mathcal{H}$ (\mathcal{H} : "RKHS")
- Functions $f \in \mathcal{H}$ are linear in features: $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$ (f can be non-linear in x!)
- Learning with a positive definite kernel $K(x,x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}$
 - ▶ *H* can be infinite-dimensional! (*kernel trick*)
 - Use a kernel matrix $K = [K(x_i, x_j)]_{ij} \in \mathbb{R}^{N \times N}$ or its approximations

Why Kernels?

Clean and well-developed theory

- Tractable (convex) optimization algorithms
- Statistical and approximation properties are well understood for many kernels
 - ► e.g., Sobolev spaces, interaction splines (Wahba, 1990; Caponnetto and De Vito, 2007)
- Related to over-parameterized networks in certain regimes (Neal, 1996; Jacot et al., 2018)

Why Kernels?

Clean and well-developed theory

- Tractable (convex) optimization algorithms
- Statistical and approximation properties are well understood for many kernels
 - ► e.g., Sobolev spaces, interaction splines (Wahba, 1990; Caponnetto and De Vito, 2007)
- Related to over-parameterized networks in certain regimes (Neal, 1996; Jacot et al., 2018)
- Guarantees for *optimization*, *statistics*, and *approximation* **together** are rare in deep learning! *e.g.*:
 - ► Benefits of depth (e.g., Eldan and Shamir, 2016; Mhaskar and Poggio, 2016): no algorithms
 - ► Optimization landscape (e.g., Soltanolkotabi et al., 2018): no universal approximation

Why Kernels?

Clean and well-developed theory

- Tractable (convex) optimization algorithms
- Statistical and approximation properties are well understood for many kernels
 - ► e.g., Sobolev spaces, interaction splines (Wahba, 1990; Caponnetto and De Vito, 2007)
- Related to over-parameterized networks in certain regimes (Neal, 1996; Jacot et al., 2018)
- Guarantees for *optimization*, *statistics*, and *approximation* **together** are rare in deep learning! *e.g.*:
 - ► Benefits of depth (*e.g.*, Eldan and Shamir, 2016; Mhaskar and Poggio, 2016): no algorithms
 - ► Optimization landscape (e.g., Soltanolkotabi et al., 2018): no universal approximation

This talk: kernels for convolutional models (B. and Mairal, 2019a,b; B. et al., 2021; B., 2022)

- Formal study of convolutional kernels and their RKHS
- Benefits of (deep) convolutional structure

Kernels for Deep Models: Infinite-Width Networks

$$f(x) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \rho(w_i^{\top} x), \qquad m \to \infty$$

• Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): $w_i \sim \mathcal{N}(0, I)$, v_i trained

$$\mathcal{K}_{RF}(x,x') = \mathbb{E}_w[\rho(w^\top x)\rho(w^\top x')] = \kappa_\rho(x^\top x') \text{ when } x, x' \in \mathbb{S}^{d-1}$$

Kernels for Deep Models: Infinite-Width Networks

$$f(x) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \rho(w_i^{\top} x), \qquad m \to \infty$$

• Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): $w_i \sim \mathcal{N}(0, I)$, v_i trained

$$\mathcal{K}_{RF}(x,x') = \mathbb{E}_{w}[\rho(w^{\top}x)\rho(w^{\top}x')] = \kappa_{\rho}(x^{\top}x') \text{ when } x, x' \in \mathbb{S}^{d-1}$$

Neural Tangent Kernel (NTK, Jacot et al., 2018): both w_i and v_i trained in linearized model near initialization θ₀ = (w₀, v₀) ("lazy training", Chizat et al., 2019)

$$K_{NTK}(x,x') = \mathbb{E}_{\theta_0}[\langle \nabla_{\theta} f(x), \nabla_{\theta} f(x') \rangle]$$

Kernels for Deep Models: Infinite-Width Networks

$$f(x) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \rho(w_i^{\top} x), \qquad m \to \infty$$

• Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): $w_i \sim \mathcal{N}(0, I)$, v_i trained

$$\mathcal{K}_{RF}(x,x') = \mathbb{E}_{w}[\rho(w^{\top}x)\rho(w^{\top}x')] = \kappa_{\rho}(x^{\top}x') \text{ when } x, x' \in \mathbb{S}^{d-1}$$

• Neural Tangent Kernel (NTK, Jacot et al., 2018): both w_i and v_i trained in linearized model near initialization $\theta_0 = (w_0, v_0)$ ("lazy training", Chizat et al., 2019)

$$\mathcal{K}_{NTK}(x,x') = \mathbb{E}_{\theta_0}[\langle \nabla_{\theta} f(x), \nabla_{\theta} f(x') \rangle]$$

• RF and NTK extend to deep convolutional architectures (Arora et al., 2019; B. and Mairal, 2019b; Garriga-Alonso et al., 2019; Novak et al., 2019; Yang, 2019)

Hierarchical kernels (Cho and Saul, 2009)

• Kernels can be constructed hierarchically

$$\mathcal{K}(x,x') = \langle \Phi(x), \Phi(x') \rangle$$
 with $\Phi(x) = \varphi_2(\varphi_1(x))$

• e.g., dot-product kernels on the sphere

$$\mathcal{K}(x,x') = \kappa_2(\langle \varphi_1(x), \varphi_1(x') \rangle) = \kappa_2(\kappa_1(x^{\top}x'))$$

• For κ_{ρ} , corresponds to infinite-width limit of deep *fully-connected* net

Hierarchical kernels (Cho and Saul, 2009)

• Kernels can be constructed hierarchically

$$\mathcal{K}(x,x') = \langle \Phi(x), \Phi(x') \rangle$$
 with $\Phi(x) = \varphi_2(\varphi_1(x))$

• e.g., dot-product kernels on the sphere

$$K(x,x') = \kappa_2(\langle \varphi_1(x), \varphi_1(x') \rangle) = \kappa_2(\kappa_1(x^\top x'))$$

- For κ_{ρ} , corresponds to infinite-width limit of deep *fully-connected* net
- B. and Bach (2021); Chen and Xu (2021): deep = shallow, same RKHS!
- \implies More structure is needed

Convolutional kernels for images (Mairal et al., 2014; Mairal, 2016)

• Good performance on standard vision tasks (Mairal, 2016; Shankar et al., 2020; B., 2022)

Convolutional kernels for images (Mairal et al., 2014; Mairal, 2016)

• Good performance on standard vision tasks (Mairal, 2016; Shankar et al., 2020; B., 2022)

Q: What are the provable benefits of convolutional kernels?

Outline

1 Invariance and Stability to Deformations (B. and Mairal, 2019a,b)

2 Generalization Benefits under Invariance and Stability (B. et al., 2021)

3 Benefits of Locality and Depth (B., 2022)

4 Concluding Remarks

Outline

1 Invariance and Stability to Deformations (B. and Mairal, 2019a,b)

2 Generalization Benefits under Invariance and Stability (B. et al., 2021)

3 Benefits of Locality and Depth (B., 2022)

4 Concluding Remarks

Folklore Properties of Convolutional Models

Convolutional architectures:

- Capture multi-scale structure in natural signals
- Provide some translation invariance

Folklore Properties of Convolutional Models

Convolutional architectures:

- Capture multi-scale structure in natural signals
- Provide some translation invariance

Q: Beyond translation invariance?

Stability to Deformations

Deformations

- $\tau: \Omega \to \Omega$: smooth vector field
- $\tau \cdot x(u) = x(u \tau(u))$: deformation operator
- Much richer group of transformations than translations

• Studied for fixed wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)

Stability to Deformations

Deformations

- $\tau: \Omega \to \Omega$: smooth vector field
- $\tau \cdot x(u) = x(u \tau(u))$: deformation operator
- Much richer group of transformations than translations

Definition of stability

• Representation $\Phi(\cdot)$ is **stable** (Mallat, 2012) if:

$$\|\Phi(\tau \cdot x) - \Phi(x)\| \leq (C_1 \|\nabla \tau\|_{\infty} + C_2 \|\tau\|_{\infty}) \|x\|$$

- $\|\nabla \tau\|_{\infty} = \sup_{u} \|\nabla \tau(u)\|$ controls deformation
- $\|\tau\|_{\infty} = \sup_{u} |\tau(u)|$ controls translation
- $C_2 \rightarrow 0$: translation invariance

Stability to Deformations

Deformations

- $\tau: \Omega \to \Omega$: smooth vector field
- $\tau \cdot x(u) = x(u \tau(u))$: deformation operator
- Much richer group of transformations than translations

Definition of stability

• Representation $\Phi(\cdot)$ is **stable** (Mallat, 2012) if:

$$\|\Phi(\tau \cdot x) - \Phi(x)\| \leq (C_1 \|\nabla \tau\|_{\infty} + C_2 \|\tau\|_{\infty}) \|x\|$$

- $\|\nabla \tau\|_{\infty} = \sup_{u} \|\nabla \tau(u)\|$ controls deformation
- $\|\tau\|_{\infty} = \sup_{u} |\tau(u)|$ controls translation
- $C_2 \rightarrow 0$: translation invariance

Q: Can we achieve this along with approximation using kernels?

Deformation Stability with Kernels (B. and Mairal, 2019a)

Geometry of the kernel mapping: $f(x) = \langle f, \Phi(x) \rangle_{\mathcal{H}}$

 $|f(x) - f(x')| \le \|f\|_{\mathcal{H}} \cdot \|\Phi(x) - \Phi(x')\|_{\mathcal{H}}$

- $\|f\|_{\mathcal{H}}$ controls **complexity** of the model
- Φ(x) encodes CNN architecture independently of the model (smoothness, invariance, stability to deformations)

Continuous initial signal x(u)

At each layer k:

• P_k : Extract **patches** of size $|S_k|$

Continuous initial signal x(u)

At each layer k:

- P_k : Extract **patches** of size $|S_k|$
- M_k : Apply **kernel map** φ_k to patches

Continuous initial signal x(u)

At each layer k:

- P_k : Extract **patches** of size $|S_k|$
- M_k : Apply **kernel map** φ_k to patches
- A_k : Gaussian **pooling** at scale σ_k

Continuous initial signal x(u)

At each layer k:

- P_k : Extract **patches** of size $|S_k|$
- M_k : Apply **kernel map** φ_k to patches
- A_k : Gaussian **pooling** at scale σ_k

Continuous initial signal x(u)

At each layer k:

- P_k : Extract **patches** of size $|S_k|$
- M_k : Apply **kernel map** φ_k to patches
- A_k : Gaussian **pooling** at scale σ_k

Multi-layer construction

$$\Phi(x) = A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \cdots A_1 M_1 P_1 x$$

• $|S_k|$, σ_k typically exponential in k, fixed "**patch size**" $\beta := |S_k| / \sigma_{k-1}$

• In practice, discretize with **subsampling** \leq **patch size** to preserve information

Stability of Convolutional Kernels

Theorem (Stability of Convolutional Kernel (B. and Mairal, 2019a)) Let Φ be a n-layer conv kernel with initial **anti-aliasing** at σ_0 . If $\|\nabla \tau\|_{\infty} \leq 1/2$,

$$\|\Phi(\tau \cdot x) - \Phi(x)\| \le \left(C_1 \beta^3 \left(n + 1\right) \|\nabla \tau\|_{\infty} + \frac{C_2}{\sigma_n} \|\tau\|_{\infty}\right) \|x\|$$

- Translation invariance: large σ_n
- Patch size: $\beta \approx \sigma_{k+1}/\sigma_k$
- ${\scriptstyle \bullet}$ Signal preservation/universal approximation: subsampling factor \approx patch size
- Exponential benefits of depth for stability:
 - Shallow: n = 1, $\beta \approx \sigma_n / \sigma_0 \implies O((\sigma_n / \sigma_0)^3)$
 - Deep: $\beta = O(1)$, $n \approx \log(\sigma_n/\sigma_0)/\log\beta \implies O(\log(\sigma_n/\sigma_0))$

Stability of Convolutional Kernels

Theorem (Stability of Convolutional Kernel (B. and Mairal, 2019a)) Let Φ be a n-layer conv kernel with initial **anti-aliasing** at σ_0 . If $\|\nabla \tau\|_{\infty} \leq 1/2$,

$$\|\Phi(\tau \cdot x) - \Phi(x)\| \le \left(C_1 \beta^3 \left(n + 1\right) \|\nabla \tau\|_{\infty} + \frac{C_2}{\sigma_n} \|\tau\|_{\infty}\right) \|x\|$$

- Translation invariance: large σ_n
- Patch size: $\beta \approx \sigma_{k+1}/\sigma_k$
- ${\scriptstyle \bullet}$ Signal preservation/universal approximation: subsampling factor \approx patch size
- Exponential benefits of depth for stability:
 - Shallow: n = 1, $\beta \approx \sigma_n / \sigma_0 \implies O((\sigma_n / \sigma_0)^3)$
 - ► Deep: $\beta = O(1)$, $n \approx \log(\sigma_n/\sigma_0)/\log\beta \implies O(\log(\sigma_n/\sigma_0))$
- Achieved by controlling operator norm of a **commutator** $[L_{\tau}, P_k A_{k-1}]$
 - Extend result by Mallat (2012) for controlling $||[L_{\tau}, A]||$, need $|S_k| \leq \beta \sigma_{k-1}$
Stability of Convolutional Kernels

Theorem (Stability of Convolutional Kernel (B. and Mairal, 2019a)) Let Φ be a n-layer conv kernel with initial **anti-aliasing** at σ_0 . If $\|\nabla \tau\|_{\infty} \le 1/2$,

$$\|\Phi(\tau \cdot x) - \Phi(x)\| \le \left(C_1\beta^3(n+1)\|\nabla \tau\|_{\infty} + \frac{C_2}{\sigma_n}\|\tau\|_{\infty}\right)\|x\|$$

- Translation invariance: large σ_n
- Patch size: $\beta \approx \sigma_{k+1}/\sigma_k$
- $\,$ Signal preservation/universal approximation: subsampling factor \approx patch size
- Exponential benefits of depth for stability:
 - Shallow: n = 1, $\beta \approx \sigma_n / \sigma_0 \implies O((\sigma_n / \sigma_0)^3)$
 - Deep: $\beta = O(1), n \approx \log(\sigma_n/\sigma_0)/\log\beta \implies O(\log(\sigma_n/\sigma_0))$
- Achieved by controlling operator norm of a **commutator** $[L_{\tau}, P_k A_{k-1}]$
 - Extend result by Mallat (2012) for controlling $||[L_{\tau}, A]||$, need $|S_k| \leq \beta \sigma_{k-1}$
- Extensions to other transformation groups, e.g., roto-translations (B. and Mairal, 2019a)
- Similar stability results hold for convolutional NTK (B. and Mairal, 2019b)

Outline

1) Invariance and Stability to Deformations (B. and Mairal, 2019a,b)

2 Generalization Benefits under Invariance and Stability (B. et al., 2021)

3 Benefits of Locality and Depth (B., 2022)

4 Concluding Remarks

Non-parametric Regression on the Sphere

Problem setup

- Goal: bound on the excess risk $R(\hat{f}) R(f^*) = \mathbb{E}_{x \sim \tau}[(\hat{f}(x) f^*(x))^2]$
- $f^*(x) := \mathbb{E}[y|x]$ and $x \sim \tau$: uniform distribution on the sphere \mathbb{S}^{d-1}
- Kernel ridge regression estimator for some kernel K on data $\{(x_i, y_i)\}_{i=1}^n$:

$$\hat{f}_{\mathcal{K},n} := rg\min_{f\in\mathcal{H}_{\mathcal{K}}}rac{1}{n}\sum_{i=1}^n(y_i-f(x_i))^2+\lambda\|f\|^2_{\mathcal{H}_{\mathcal{K}}}$$

Non-parametric Regression on the Sphere

Problem setup

- Goal: bound on the excess risk $R(\hat{f}) R(f^*) = \mathbb{E}_{x \sim \tau}[(\hat{f}(x) f^*(x))^2]$
- $f^*(x) := \mathbb{E}[y|x]$ and $x \sim \tau$: uniform distribution on the sphere \mathbb{S}^{d-1}
- Kernel ridge regression estimator for some kernel K on data $\{(x_i, y_i)\}_{i=1}^n$:

$$\hat{f}_{\mathcal{K},n} := rg\min_{f\in\mathcal{H}_{\mathcal{K}}}rac{1}{n}\sum_{i=1}^n(y_i-f(x_i))^2 + \lambda \|f\|_{\mathcal{H}_{\mathcal{K}}}^2$$

Harmonic analysis on the sphere

- $L^2(\tau)$ basis of spherical harmonics $Y_{k,j}$
- N(d, k) harmonics of degree k, form a basis of $V_{d,k}$
- Diagonalizes dot-product kernels $K(x, x') = \kappa(\langle x, x' \rangle)$
- Assume f^* is smooth \leftrightarrow decay of coefficients of f^*

Non-parametric Regression on the Sphere

Problem setup

- Goal: bound on the excess risk $R(\hat{f}) R(f^*) = \mathbb{E}_{x \sim \tau}[(\hat{f}(x) f^*(x))^2]$
- $f^*(x) := \mathbb{E}[y|x]$ and $x \sim \tau$: uniform distribution on the sphere \mathbb{S}^{d-1}
- Kernel ridge regression estimator for some kernel K on data $\{(x_i, y_i)\}_{i=1}^n$:

$$\hat{f}_{\mathcal{K},n} := rg\min_{f\in\mathcal{H}_{\mathcal{K}}}rac{1}{n}\sum_{i=1}^n(y_i-f(x_i))^2 + \lambda \|f\|_{\mathcal{H}_{\mathcal{K}}}^2$$

Harmonic analysis on the sphere

- $L^2(\tau)$ basis of spherical harmonics $Y_{k,j}$
- N(d, k) harmonics of degree k, form a basis of $V_{d,k}$
- Diagonalizes dot-product kernels $K(x, x') = \kappa(\langle x, x' \rangle)$
- Assume f^* is smooth \leftrightarrow decay of coefficients of f^*

Q: How can we encode invariance and stability?

Geometric Priors

Functions $f : \mathcal{X} \to \mathbb{R}$ that are "smooth" along known transformations of input x

- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)[u] = x[\sigma^{-1}(u)]$$

Geometric Priors

Functions $f : \mathcal{X} \to \mathbb{R}$ that are "smooth" along known transformations of input x

- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)[u] = x[\sigma^{-1}(u)]$$

Group invariance: If G is a group (*e.g.*, cyclic shifts, all permutations), we want

$$f(\sigma \cdot x) = f(x), \quad \sigma \in G$$

Geometric Priors

Functions $f : \mathcal{X} \to \mathbb{R}$ that are "smooth" along known transformations of input x

- e.g., translations, rotations, permutations, deformations
- We consider: **permutations** $\sigma \in G$

$$(\sigma \cdot x)[u] = x[\sigma^{-1}(u)]$$

Group invariance: If G is a group (*e.g.*, cyclic shifts, all permutations), we want

$$f(\sigma \cdot x) = f(x), \quad \sigma \in G$$

Geometric stability: For other sets G (e.g., local shifts, deformations), we want

$$f(\sigma \cdot x) \approx f(x), \quad \sigma \in G$$

Geometric Priors: Pooling Operator

$$S_G f(x) := \frac{1}{|G|} \sum_{\sigma \in G} f(\sigma \cdot x)$$

Geometric Priors: Pooling Operator

$$S_G f(x) := \frac{1}{|G|} \sum_{\sigma \in G} f(\sigma \cdot x)$$

Invariant spherical harmonics, when G is a group (Meyer, 1954; Mei et al., 2021)

- S_G acts as a projection operator
- $\overline{N}(d,k)$ invariant harmonics of degree k, form a basis of $\overline{V}_{d,k} = S_G V_{d,k}$
- f^* is *G*-invariant $\leftrightarrow f^* = S_G f^*$

Geometric Priors: Pooling Operator

$$S_G f(x) := \frac{1}{|G|} \sum_{\sigma \in G} f(\sigma \cdot x)$$

Invariant spherical harmonics, when G is a group (Meyer, 1954; Mei et al., 2021)

- S_G acts as a projection operator
- $\overline{N}(d,k)$ invariant harmonics of degree k, form a basis of $\overline{V}_{d,k} = S_G V_{d,k}$

•
$$f^*$$
 is *G*-invariant $\leftrightarrow f^* = S_G f^*$

Invariant kernels with pooling (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

$$\mathcal{K}(x,x') = \kappa(\langle x,x'
angle), \qquad \mathcal{K}_{\mathcal{G}}(x,x') = rac{1}{|\mathcal{G}|}\sum_{\sigma\in\mathcal{G}}\kappa(\langle\sigma\cdot x,x'
angle)$$

• If $\kappa = \kappa_{\rho}$, corresponds to CNN with pooling $f(x) = \frac{1}{|G|} \sum_{\sigma \in G} \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \rho(\langle w_i, \sigma \cdot x \rangle)$

Generalization Benefits of Pooling

$$K(x,x') = \kappa(\langle x,x' \rangle), \qquad K_G(x,x') = \frac{1}{|G|} \sum_{\sigma \in G} \kappa(\langle \sigma \cdot x,x' \rangle)$$

Theorem (Benefits of pooling (B., Venturi, and Bruna, 2021)) Assume f^* is **invariant** to a group G and **smooth** of order s. Ridge regression with kernel K_G vs K achieves

$$\mathbb{E} R(\hat{f}_{K_G,n}) - R(f^*) \leq C_d \left(\frac{\nu_d(n)}{n}\right)^{\frac{2s}{2s+d-1}} \quad vs \quad \mathbb{E} R(\hat{f}_{K,n}) - R(f^*) \leq C_d \left(\frac{1}{n}\right)^{\frac{2s}{2s+d-1}},$$

ith $\nu_d(n) = \frac{1}{|G|} + o(1).$

W

Generalization Benefits of Pooling

$$K(x,x') = \kappa(\langle x,x' \rangle), \qquad K_G(x,x') = \frac{1}{|G|} \sum_{\sigma \in G} \kappa(\langle \sigma \cdot x,x' \rangle)$$

Theorem (Benefits of pooling (B., Venturi, and Bruna, 2021)) Assume f^* is **invariant** to a group G and **smooth** of order s. Ridge regression with kernel K_G vs K achieves

$$\mathbb{E} R(\hat{f}_{K_{G},n}) - R(f^{*}) \leq C_{d} \left(\frac{\nu_{d}(n)}{n}\right)^{\frac{2s}{2s+d-1}} \quad vs \quad \mathbb{E} R(\hat{f}_{K,n}) - R(f^{*}) \leq C_{d} \left(\frac{1}{n}\right)^{\frac{2s}{2s+d-1}},$$

th $\nu_{d}(n) = \frac{1}{|G|} + o(1).$

 \implies asymptotic gains by a factor |G| in sample complexity.

- |G| can be exponential in d!
- Rate and constant C_d are minimax optimal: curse of dimensionality

wit

Ingredients: Counting Invariant Harmonics

Proposition ((B., Venturi, and Bruna, 2021)) As $k \to \infty$, we have $\gamma_d(k) := \frac{\overline{N}(d,k)}{\overline{N}(d,k)} = \frac{1}{|G|} + O(k^{-d+\chi}),$

where χ is the maximal number of cycles of any permutation $\sigma \in G \setminus \{Id\}$.

Ingredients: Counting Invariant Harmonics

Proposition ((B., Venturi, and Bruna, 2021)) As $k \to \infty$, we have $\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} + O(k^{-d+\chi}),$

where χ is the maximal number of cycles of any permutation $\sigma \in G \setminus \{Id\}$.

- Asymptotic rate of improvement can be quantified in terms of χ
- Relies on singularity analysis of density of $\langle \sigma \cdot x, x \rangle$ (Saldanha and Tomei, 1996)

Ingredients: Counting Invariant Harmonics

Proposition ((B., Venturi, and Bruna, 2021)) As $k \to \infty$, we have $\gamma_d(k) := \frac{\overline{N}(d,k)}{N(d,k)} = \frac{1}{|G|} + O(k^{-d+\chi}),$

where χ is the maximal number of cycles of any permutation $\sigma \in G \setminus \{Id\}$.

- $\, \bullet \,$ Asymptotic rate of improvement can be quantified in terms of χ
- Relies on singularity analysis of density of $\langle \sigma \cdot x, x \rangle$ (Saldanha and Tomei, 1996)
- Related to Mei et al. (2021), but different regimes
 - ▶ They study $d \to \infty$ with fixed k $(\gamma_d(k) = \Theta_d(d^{-\alpha}))$, gains at most polynomial in d
 - We study $k \to \infty$ with fixed *d*, gain |G| can be exponential in *d*.

Extension to Stability and Discussion

Extension to geometric stability (*G* is not a group)

- Pooling operator S_G is no longer a projection, has eigenvalues $\lambda_{k,j} \in [0,1]$
- Different assumption: $f^* = S_G^r g$ for some g and r > 0
- Leads to similar bounds with effective sample size n|G| instead of n
- |G| is exponential in d for a simple model of deformations!

Extension to Stability and Discussion

Extension to geometric stability (*G* is not a group)

- Pooling operator S_G is no longer a projection, has eigenvalues $\lambda_{k,j} \in [0,1]$
- Different assumption: $f^* = S_G^r g$ for some g and r > 0
- Leads to similar bounds with effective sample size n|G| instead of n
- |G| is exponential in d for a simple model of deformations!

Curse of dimensionality

• If the target f^* is non-smooth, *e.g.*, only Lipschitz, the rate is cursed! (and unimprovable)

$$R(\hat{f}) - f(f^*) \lesssim n^{-rac{2}{2+d-1}}$$

Extension to Stability and Discussion

Extension to geometric stability (*G* is not a group)

- Pooling operator S_G is no longer a projection, has eigenvalues $\lambda_{k,j} \in [0,1]$
- Different assumption: $f^* = S_G^r g$ for some g and r > 0
- Leads to similar bounds with effective sample size n|G| instead of n
- |G| is exponential in d for a simple model of deformations!

Curse of dimensionality

• If the target f^* is non-smooth, *e.g.*, only Lipschitz, the rate is cursed! (and unimprovable)

$$R(\hat{f}) - f(f^*) \lesssim n^{-rac{2}{2+d-1}}$$

Q: How can we break this curse?

Outline

1 Invariance and Stability to Deformations (B. and Mairal, 2019a,b)

2 Generalization Benefits under Invariance and Stability (B. et al., 2021)

3 Benefits of Locality and Depth (B., 2022)

4 Concluding Remarks

One-layer Convolutional Kernels on Patches

$$\mathcal{K}_{h}(x,x') = \sum_{u \in \Omega} k(x_{u},x'_{u})$$

One-layer local convolutional kernel

- 1D signal x[u], $u \in \Omega$, **localized** patches $x_u = (x[u], \dots, x[u+s]) \in \mathbb{R}^p$
- RKHS \mathcal{H}_K contains functions $f(x) = \sum_{u \in \Omega} g_u(x_u)$ with $g_u \in \mathcal{H}_k$

One-layer Convolutional Kernels on Patches

$$\mathcal{K}_h(x,x') = \sum_{u \in \Omega} \sum_{v,v' \in \Omega} \frac{h[u-v]h[u-v']k(x_v,x'_{v'})}{h[u-v']k(x_v,x'_{v'})}$$

One-layer local convolutional kernel

- 1D signal x[u], $u \in \Omega$, localized patches $x_u = (x[u], \dots, x[u+s]) \in \mathbb{R}^p$
- RKHS \mathcal{H}_K contains functions $f(x) = \sum_{u \in \Omega} g_u(x_u)$ with $g_u \in \mathcal{H}_k$
- Pooling filter h with $\sum_{u} h[u] = 1$
- **Pooling**: same functions, RKHS norm encourages similarities between the g_u

One-layer Convolutional Kernels on Patches

$$\mathcal{K}_h(x,x') = \sum_{u \in \Omega} \sum_{v,v' \in \Omega} \frac{h[u-v]h[u-v']k(x_v,x'_{v'})}{h[u-v']k(x_v,x'_{v'})}$$

One-layer local convolutional kernel

- 1D signal x[u], $u \in \Omega$, **localized** patches $x_u = (x[u], \dots, x[u+s]) \in \mathbb{R}^p$
- RKHS \mathcal{H}_K contains functions $f(x) = \sum_{u \in \Omega} g_u(x_u)$ with $g_u \in \mathcal{H}_k$
- Pooling filter h with $\sum_{u} h[u] = 1$
- **Pooling**: same functions, RKHS norm encourages similarities between the gu
- Global pooling $(h[u] = 1/|\Omega|)$: all the g_u must be equal (translation invariance)

Benefits of Locality and Pooling

- Assume non-overlapping patches x_u uniform on the sphere \mathbb{S}^{p-1}
- Assume invariant target $f^*(x) = \sum_{u \in \Omega} g^*(x_u)$
- No pooling $(h = \delta)$ vs global pooling (h = 1)

Theorem (Generalization with one-layer (B., 2022)) Assume g^* smooth of order s. Kernel ridge regression with K_h yields

$$\mathbb{E}\,R(\hat{f}_{1,n})-R(f^*)\leq C_p\left(\frac{1}{n}\right)^{\frac{2s}{2s+p-1}}\quad \textit{vs}\quad \mathbb{E}\,R(\hat{f}_{\delta,n})-R(f^*)\leq C_p\left(\frac{|\Omega|}{n}\right)^{\frac{2s}{2s+p-1}}$$

Benefits of Locality and Pooling

- Assume non-overlapping patches x_u uniform on the sphere \mathbb{S}^{p-1}
- Assume invariant target $f^*(x) = \sum_{u \in \Omega} g^*(x_u)$
- No pooling $(h = \delta)$ vs global pooling (h = 1)

Theorem (Generalization with one-layer (B., 2022)) Assume g^* smooth of order s. Kernel ridge regression with K_h yields

$$\mathbb{E}\,R(\hat{f}_{1,n}) - R(f^*) \leq C_p\left(\frac{1}{n}\right)^{\frac{2s}{2s+p-1}} \quad \textit{vs} \quad \mathbb{E}\,R(\hat{f}_{\delta,n}) - R(f^*) \leq C_p\left(\frac{|\Omega|}{n}\right)^{\frac{2s}{2s+p-1}}$$

- Breaks the curse of dimensionality! p instead of $d = p|\Omega|$ in the rate
- With localized pooling, we can also learn $f^*(x) = \sum_{u \in \Omega} g_u(x_u)$ with different g_u
- For overlapping patches see (Favero et al., 2021; Misiakiewicz and Mei, 2021)

Benefits of Locality and Pooling

- Assume non-overlapping patches x_u uniform on the sphere \mathbb{S}^{p-1}
- Assume invariant target $f^*(x) = \sum_{u \in \Omega} g^*(x_u)$
- No pooling $(h = \delta)$ vs global pooling (h = 1)

Theorem (Generalization with one-layer (B., 2022)) Assume g^* smooth of order s. Kernel ridge regression with K_h yields

$$\mathbb{E}\,R(\hat{f}_{1,n}) - R(f^*) \leq C_p\left(\frac{1}{n}\right)^{\frac{2s}{2s+p-1}} \quad \textit{vs} \quad \mathbb{E}\,R(\hat{f}_{\delta,n}) - R(f^*) \leq C_p\left(\frac{|\Omega|}{n}\right)^{\frac{2s}{2s+p-1}}$$

- Breaks the curse of dimensionality! p instead of $d = p|\Omega|$ in the rate
- With localized pooling, we can also learn $f^*(x) = \sum_{u \in \Omega} g_u(x_u)$ with different g_u
- For overlapping patches see (Favero et al., 2021; Misiakiewicz and Mei, 2021)

Q: How can we capture long-range interactions?

Two-layer Convolutional Kernels

• Captures interactions between different patches

Two-layer Convolutional Kernels

Captures interactions between different patches
 If κ₂(u) = u², RKHS contains functions

$$f^*(x) = \sum_{|u-v| \leq r} g_{u,v}(x_u, x_v)$$

• $g_{u,v} \in \mathcal{H}_k \otimes \mathcal{H}_k$

• Receptive field r depends on h_1 and S_2

Experiments on Cifar10

κ_1	κ_2	Test acc.
Gauss	Gauss	87.9%
Gauss	Poly3	87.7%
Gauss	Poly2	86.9%
Gauss	Poly1 (Linear)	80.9%

2-layers, 3x3 patches, pooling/downsampling sizes (2,5). Patch kernels κ_1 , κ_2 .

Experiments on Cifar10

2-layers, 3x3	patches, pooling	g/downsampling	sizes (2,5).	Patch kernels	κ_1 , κ_2 .
			· · ·		

κ_1	κ_2	Test acc.
Gauss	Gauss	87.9%
Gauss	Poly3	87.7%
Gauss	Poly2	86.9%
Gauss	Poly1 (Linear)	80.9%

Polynomial kernels suffice at second layer!

Experiments on Cifar10

2-layers, 3x3 pate	ches, pooling _/	downsampling sizes/	(2,5).	Patch	kernels	κ1,	κ2.
--------------------	----------------------------	---------------------	--------	-------	---------	-----	-----

κ_1	κ_2	Test acc.
Gauss	Gauss	87.9%
Gauss	Poly3	87.7%
Gauss	Poly2	86.9%
Gauss	Poly1 (Linear)	80.9%

Polynomial kernels suffice at second layer!

Best performance (B., 2022): **88.3%** (2 layers, larger patches at 2nd layer). Shankar et al. (2020): 88.2% (10 layers). 90% with data augmentation (\approx AlexNet)

Generalization Benefits with Two Layers

• Consider
$$f^*(x) = \sum_{u,v \in \Omega} g^*(x_u, x_v)$$

- Assume $\mathbb{E}_{x}[k(x_{u}, x_{u'})k(x_{v}, x_{v'})] \leq \epsilon$ if $u \neq u'$ or $v \neq v'$
- Compare different pooling layers $(h_1, h_2 \in \{\delta, 1\})$ and patch sizes $(|S_2|)$:

Generalization Benefits with Two Layers

• Consider
$$f^*(x) = \sum_{u,v \in \Omega} g^*(x_u, x_v)$$

- Assume $\mathbb{E}_{x}[k(x_{u}, x_{u'})k(x_{v}, x_{v'})] \leq \epsilon$ if $u \neq u'$ or $v \neq v'$
- Compare different pooling layers $(h_1, h_2 \in \{\delta, 1\})$ and patch sizes $(|S_2|)$:

Generalization bound: when $g^* \in \mathcal{H}_k \otimes \mathcal{H}_k$, we have

h_1	h ₂	$ S_2 $	$R(\hat{f}_n) - R(f^*) \text{ (for } \epsilon \to 0)$
δ	δ	$ \Omega $	$\ g^*\ \Omega ^{2.5}/\sqrt{n}$
δ	1	$ \Omega $	$\ g^*\ \Omega ^2/\sqrt{n}$
1	1	$ \Omega $	$\ g^*\ \Omega /\sqrt{n}$
1	δ or ${f 1}$	1	$\ g^*\ /\sqrt{n}$

Generalization Benefits with Two Layers

• Consider
$$f^*(x) = \sum_{u,v \in \Omega} g^*(x_u, x_v)$$

- Assume $\mathbb{E}_{x}[k(x_{u}, x_{u'})k(x_{v}, x_{v'})] \leq \epsilon$ if $u \neq u'$ or $v \neq v'$
- Compare different pooling layers $(h_1, h_2 \in \{\delta, 1\})$ and patch sizes $(|S_2|)$:

Generalization bound: when $g^* \in \mathcal{H}_k \otimes \mathcal{H}_k$, we have

h_1	<i>h</i> ₂	$ S_2 $	$R(\hat{f}_n) - R(f^*) \text{ (for } \epsilon \to 0)$
δ	δ	$ \Omega $	$\ g^*\ \Omega ^{2.5}/\sqrt{n}$
δ	1	$ \Omega $	$\ g^*\ \Omega ^2/\sqrt{n}$
1	1	$ \Omega $	$\ g^*\ \Omega /\sqrt{n}$
1	δ or ${f 1}$	1	$\ g^*\ /\sqrt{n}$

Polynomial gains in $|\Omega|$ when using the right architecture!

Outline

1 Invariance and Stability to Deformations (B. and Mairal, 2019a,b)

2 Generalization Benefits under Invariance and Stability (B. et al., 2021)

3 Benefits of Locality and Depth (B., 2022)

4 Concluding Remarks

Concluding Remarks

Benefits of deep convolutional models

- Depth improves deformation stability in convolutional models
- Pooling improves generalization under invariance and stability
- Locality + depth + pooling capture structured interaction models with symmetries
Concluding Remarks

Benefits of deep convolutional models

- Depth improves deformation stability in convolutional models
- Pooling improves generalization under invariance and stability
- Locality + depth + pooling capture structured interaction models with symmetries

Kernels can help us understand deep learning architectures

Concluding Remarks

Benefits of deep convolutional models

- Depth improves deformation stability in convolutional models
- Pooling improves generalization under invariance and stability
- Locality + depth + pooling capture structured interaction models with symmetries

Kernels can help us understand deep learning architectures

Future directions

- Convolutional networks beyond kernels (data-adaptive filters, interaction terms)
 - ▶ e.g., mean-field regimes (Chizat and Bach, 2018; Mei et al., 2019)
- Extensions to other architectures
 - *e.g.*, GNNs, Transformers
- Role of architecture beyond supervised learning
 - ► e.g., generative models, self-supervised learning

Concluding Remarks

Benefits of deep convolutional models

- Depth improves deformation stability in convolutional models
- Pooling improves generalization under invariance and stability
- Locality + depth + pooling capture structured interaction models with symmetries

Kernels can help us understand deep learning architectures

Future directions

- Convolutional networks beyond kernels (data-adaptive filters, interaction terms)
 - ▶ e.g., mean-field regimes (Chizat and Bach, 2018; Mei et al., 2019)
- Extensions to other architectures
 - *e.g.*, GNNs, Transformers
- Role of architecture beyond supervised learning
 - ► e.g., generative models, self-supervised learning

Thanks!

References I

- S. Arora, S. S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang. On exact computation with an infinitely wide neural net. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2019.
- A. B. Approximation and learning with deep convolutional models: a kernel perspective. In *Proceedings* of the International Conference on Learning Representations (ICLR), 2022.
- A. B. and F. Bach. Deep equals shallow for relu networks in kernel regimes. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021.
- A. B. and J. Mairal. Group invariance, stability to deformations, and complexity of deep convolutional representations. *Journal of Machine Learning Research (JMLR)*, 20(25):1–49, 2019a.
- A. B. and J. Mairal. On the inductive bias of neural tangent kernels. In Advances in Neural Information Processing Systems (NeurIPS), 2019b.
- A. B., L. Venturi, and J. Bruna. On the sample complexity of learning with geometric stability. In Advances in Neural Information Processing Systems (NeurIPS), 2021.
- J. Bruna and S. Mallat. Invariant scattering convolution networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)*, 35(8):1872–1886, 2013.
- A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm. *Foundations of Computational Mathematics*, 7(3):331–368, 2007.

References II

- L. Chen and S. Xu. Deep neural tangent kernel and laplace kernel have the same rkhs. In *Proceedings* of the International Conference on Learning Representations (ICLR), 2021.
- L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. In Advances in Neural Information Processing Systems (NeurIPS), 2018.
- L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. In Advances in Neural Information Processing Systems (NeurIPS), 2019.
- Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in Neural Information Processing Systems (NIPS), 2009.
- R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In *Conference on Learning Theory (COLT)*, 2016.
- A. Favero, F. Cagnetta, and M. Wyart. Locality defeats the curse of dimensionality in convolutional teacher-student scenarios. *arXiv preprint arXiv:2106.08619*, 2021.
- A. Garriga-Alonso, L. Aitchison, and C. E. Rasmussen. Deep convolutional networks as shallow gaussian processes. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2019.
- B. Haasdonk and H. Burkhardt. Invariant kernel functions for pattern analysis and machine learning. *Machine learning*, 68(1):35–61, 2007.

References III

- K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.
- A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2018.
- Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
- J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks. In Advances in Neural Information Processing Systems (NIPS), 2016.
- J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. Convolutional kernel networks. In Advances in Neural Information Processing Systems (NIPS), 2014.
- S. Mallat. Group invariant scattering. *Communications on Pure and Applied Mathematics*, 65(10): 1331–1398, 2012.
- S. Mei, T. Misiakiewicz, and A. Montanari. Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit. In *Conference on Learning Theory (COLT)*, 2019.
- S. Mei, T. Misiakiewicz, and A. Montanari. Learning with invariances in random features and kernel models. In *Conference on Learning Theory (COLT)*, 2021.

References IV

- B. Meyer. On the symmetries of spherical harmonics. *Canadian Journal of Mathematics*, 6:135–157, 1954.
- H. N. Mhaskar and T. Poggio. Deep vs. shallow networks: An approximation theory perspective. *Analysis and Applications*, 14(06):829–848, 2016.
- T. Misiakiewicz and S. Mei. Learning with convolution and pooling operations in kernel methods. In *Conference on Learning Theory (COLT)*, 2021.
- Y. Mroueh, S. Voinea, and T. A. Poggio. Learning with group invariant features: A kernel perspective. In Advances in Neural Information Processing Systems (NIPS), 2015.
- R. M. Neal. Bayesian learning for neural networks. Springer, 1996.
- R. Novak, L. Xiao, Y. Bahri, J. Lee, G. Yang, J. Hron, D. A. Abolafia, J. Pennington, and
 J. Sohl-Dickstein. Bayesian deep convolutional networks with many channels are gaussian processes.
 In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2019.
- A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural Information Processing Systems (NIPS), 2007.
- N. C. Saldanha and C. Tomei. The accumulated distribution of quadratic forms on the sphere. *Linear algebra and its applications*, 245:335–351, 1996.

References V

- V. Shankar, A. Fang, W. Guo, S. Fridovich-Keil, L. Schmidt, J. Ragan-Kelley, and B. Recht. Neural kernels without tangents. *arXiv preprint arXiv:2003.02237*, 2020.
- M. Soltanolkotabi, A. Javanmard, and J. D. Lee. Theoretical insights into the optimization landscape of over-parameterized shallow neural networks. *IEEE Transactions on Information Theory*, 65(2): 742–769, 2018.
- G. Wahba. Spline models for observational data, volume 59. Siam, 1990.
- G. Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. *arXiv preprint arXiv:1902.04760*, 2019.