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Success of Deep Learning

State-of-the-art models in various domains (images, speech, language, biology, ...)

What can | help
you with?

ENGLISH - DETECTED ENGLISH C v g FRENCH CHINESE (TRADITIONAL) v
where is the train station? X ou est la gare? © W
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Success of Deep Learning

State-of-the-art models in various domains (images, speech, language, biology, ...)

F(x) = Wy (Wiy - o(Wix) - --)

Recipe: huge models + lots of data + compute + simple algorithms
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Success of Deep Learning

State-of-the-art models in various domains (images, speech, language, biology, ...)

F(x) = Wy (Wiy - o(Wix) - --)

Recipe: huge models + lots of data + compute + simple algorithms

Q: Why do they work?
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Exploiting Data Structure through Architectures

Low-Level Mid-Level| [High-Level Trainable
L . L)
Feature Feature Feature Classifier
4 A\

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Convolutional networks (CNNs)
o Model local information at different scales, hierarchically
o Provide some invariance through pooling

o Useful inductive biases for learning efficiently on structured data
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Exploiting Data Structure through Architectures

G3: 1, maps 16@10x10
INPUT %ziga&uare maps S4: 1. maps 16@5x5

a2z 52:1. maps CB:layer g, OUTPUT
|r PR o %

B@T 414

| |
| Full connection | Gaussian connections

Canvelutions Subsampling Canvolutians. Full

(LeCun et al., 1998)

Convolutional networks (CNNs)
o Model local information at different scales, hierarchically
o Provide some invariance through pooling

o Useful inductive biases for learning efficiently on structured data
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Exploiting Data Structure through Architectures

a3 conv, 256, /2

34-layer residual

(He et al., 2016)

Convolutional networks (CNNs)
o Model local information at different scales, hierarchically
o Provide some invariance through pooling
o Useful inductive biases for learning efficiently on structured data
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Understanding Deep Learning

The challenge of deep learning theory
o Over-parameterized (millions of parameters)

©

Expressive (can approximate any function)
Complex architectures for exploiting problem structure
Yet, easy to optimize to zero training error with (stochastic) gradient descent!

©

©
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Understanding Deep Learning

The challenge of deep learning theory
o Over-parameterized (millions of parameters)

©

Expressive (can approximate any function)

©

Complex architectures for exploiting problem structure
Yet, easy to optimize to zero training error with (stochastic) gradient descent!

©

A functional viewpoint
o View deep networks as functions in some functional space
o Non-parametric models, natural measures of complexity (e.g., norms)

o Optimization performs implicit regularization towards

mfinQ(f) st. yi=f(x), i=1,...,n
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Understanding Deep Learning

The challenge of deep learning theory
o Over-parameterized (millions of parameters)

©

Expressive (can approximate any function)

©

Complex architectures for exploiting problem structure
Yet, easy to optimize to zero training error with (stochastic) gradient descent!

©

A functional viewpoint
o View deep networks as functions in some functional space
o Non-parametric models, natural measures of complexity (e.g., norms)

o Optimization performs implicit regularization towards

mfinQ(f) st. yi=f(x), i=1,...,n

Q: What is an appropriate functional space / norm Q7?
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Kernels
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Kernels?
o Map data x € X' to high-dimensional space, ®(x) € H (H: “RKHS")
o Functions f € H are linear in features: f(x) = (f,®(x))x
o Learning with a positive definite kernel K(x,x") = (®(x), P(x’))x

» H can be infinite-dimensional! (kernel trick)
» Use a kernel matrix K = [K(x;, x;)];; € RV*N or its approximations

(f can be non-linear in x!)
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Why Kernels?

Clean and well-developed theory
o Tractable (convex) optimization algorithms

o Statistical and approximation properties are well understood for many kernels
» e.g., Sobolev spaces, interaction splines (Wahba, 1990; Caponnetto and De Vito, 2007)

o Related to over-parameterized networks in certain regimes (Neal, 1996; Jacot et al., 2018)
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Why Kernels?

Clean and well-developed theory
o Tractable (convex) optimization algorithms

o Statistical and approximation properties are well understood for many kernels
» e.g., Sobolev spaces, interaction splines (Wahba, 1990; Caponnetto and De Vito, 2007)

©

Related to over-parameterized networks in certain regimes (Neal, 1996; Jacot et al., 2018)

©

Guarantees for optimization, statistics, and approximation together are rare in deep
learning! e.g.:
» Benefits of depth (e.g., Eldan and Shamir, 2016; Mhaskar and Poggio, 2016): no algorithms
» Optimization landscape (e.g., Soltanolkotabi et al., 2018): no universal approximation
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Why Kernels?

Clean and well-developed theory
o Tractable (convex) optimization algorithms

o Statistical and approximation properties are well understood for many kernels
» e.g., Sobolev spaces, interaction splines (Wahba, 1990; Caponnetto and De Vito, 2007)

o Related to over-parameterized networks in certain regimes (Neal, 1996; Jacot et al., 2018)

o Guarantees for optimization, statistics, and approximation together are rare in deep
learning! e.g.:
» Benefits of depth (e.g., Eldan and Shamir, 2016; Mhaskar and Poggio, 2016): no algorithms
» Optimization landscape (e.g., Soltanolkotabi et al., 2018): no universal approximation

This talk: kernels for convolutional models (B. and Mairal, 2019a,b; B. et al., 2021; B., 2022)
o Formal study of convolutional kernels and their RKHS

o Benefits of (deep) convolutional structure
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Kernels for Deep Models: Infinite-Width Networks

1 -
f(x)—ﬁgv,p(wi x), m — 0o

o Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): w; ~ N(0, /), v; trained

Krr(x,x") = Ey[p(w' x)p(w' x)] = k,(x"x") when x,x" € S771
p
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Kernels for Deep Models: Infinite-Width Networks

1 m
flx)= —— o(w,'
(%) \/>,-E:1VIO(W' x), m — 00

o Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): w; ~ N(0, /), v; trained

Kre(x,x') = Ey[p(w x)p(w'x")] = k,(x " x") when x,x" € S91

o Neural Tangent Kernel (NTK, Jacot et al., 2018): both w; and v; trained in linearized
model near initialization 6y = (wp, vo) (“lazy training”, Chizat et al., 2019)

K (x,x") = Eg,[(Vof (x), Vof (x))]
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Kernels for Deep Models: Infinite-Width Networks

1 m
flx)= — o(w;"
(%) \/E;V"O(W' x), m — 00
o Random Features (RF, Neal, 1996; Rahimi and Recht, 2007): w; ~ N(0, /), v; trained
Kre(x,x') = Ey[p(w x)p(w'x")] = k,(x " x") when x,x" € S91

o Neural Tangent Kernel (NTK, Jacot et al., 2018): both w; and v; trained in linearized
model near initialization 6y = (wp, vo) (“lazy training”, Chizat et al., 2019)

K (x,x") = Eg,[(Vof (x), Vof (x))]

o RF and NTK extend to deep convolutional architectures (Arora et al., 2019; B. and Mairal,
2019b; Garriga-Alonso et al., 2019; Novak et al., 2019; Yang, 2019)
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Kernels for Deep Models: Hierarchical and Convolutional Kernels

Hierarchical kernels (Cho and Saul, 2009)

o Kernels can be constructed hierarchically
K(x,x') = (®(x), ®(x')) with ®(x) = @a(1(x))
o e.g., dot-product kernels on the sphere

K(x,x") = ra({1(x), 91(x))) = ra(r1(x " X))

o For k,, corresponds to infinite-width limit of deep fully-connected net
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Kernels for Deep Models: Hierarchical and Convolutional Kernels

Hierarchical kernels (Cho and Saul, 2009)

o Kernels can be constructed hierarchically

K(x, x") = (®(x), ®(x")) with &(x) = 2(p1(x))

©

e.g., dot-product kernels on the sphere

K(x,x") = ra({1(x), 91(x))) = ra(r1(x " X))

©

For k,, corresponds to infinite-width limit of deep fully-connected net
B. and Bach (2021); Chen and Xu (2021): deep = shallow, same RKHS!
=—> More structure is needed

()

©
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Kernels for Deep Models: Hierarchical and Convolutional Kernels

Convolutional kernels for images (Mairal et al., 2014; Mairal, 2016)

xp = Ap My Prxg 1 0 Q — Hy zp(w) = AgMy Pyxyy (w) € Hy

linear pooling

My Py = 2 — Hy My Pywg-1(v) = o (Prap-1(v)) € Hy

non-linear mapping

Pyxy1(v) € Pr (patch extraction)

Tp1(u) € Hi Tpo1 Q= Hi

o Good performance on standard vision tasks (Mairal, 2016; Shankar et al., 2020; B., 2022)
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Kernels for Deep Models: Hierarchical and Convolutional Kernels

Convolutional kernels for images (Mairal et al., 2014; Mairal, 2016)

Ty = A My Py 10 Q — Hy z(w) = Ag My Pray 1 (w) € Hy,

linear pooling

MyPywp1 - Q= Hy, My Pry1(v) = pr(Pevg-1(v)) € Hi

(v) € Pr (patch extraction)
Zp1(u) € Hia

Tpoq 0 Q= Hp

o Good performance on standard vision tasks (Mairal, 2016; Shankar et al., 2020; B., 2022)

Q: What are the provable benefits of convolutional kernels?
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Outline

(@ Invariance and Stability to Deformations (B. and Mairal, 2019a,b)
(@ Generalization Benefits under Invariance and Stability (B. et al., 2021)
(@ Benefits of Locality and Depth (B., 2022)

(@ Concluding Remarks
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Outline

(@ Invariance and Stability to Deformations (B. and Mairal, 2019a,b)
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Folklore Properties of Convolutional Models

C1: feature maps
INEUT A
F2x32 28128 52:f. maps
GE14x14

|
| Full connectian Gaussian connections

Canvalutions Subsampling Convolutions  Subsampling Full connection

Convolutional architectures:
o Capture multi-scale structure in natural signals

o Provide some translation invariance
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Folklore Properties of Convolutional Models

C1: feature maps
INEUT A
F2x32 28128 52:f. maps
GE14x14

|
| Full connectian Gaussian connections

Canvalutions Subsampling Convolutions  Subsampling Full connection

Convolutional architectures:
o Capture multi-scale structure in natural signals

o Provide some translation invariance

Q: Beyond translation invariance?
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Stability to Deformations

Deformations
o 7:Q — Q: smooth vector field
o 7-x(u) = x(u— 7(u)): deformation operator

o Much richer group of transformations than translations

FUHY Y ahy gy
555555556 ¢
77772717777
3355¢48¢C8 4

o Studied for fixed wavelet-based scattering transform (Mallat, 2012; Bruna and Mallat, 2013)
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Stability to Deformations

Deformations
o 7:Q — Q: smooth vector field
o 7-x(u) = x(u— 7(u)): deformation operator

o Much richer group of transformations than translations

Definition of stability
o Representation ®(-) is stable (Mallat, 2012) if:

[8(7 - x) = ®(x)[| < (G1[|[VTloo + Gl ][0 [Ix]]

0 |V7|loo = sup, ||V7(u)| controls deformation
0 ||7]|co = sup, |7(u)| controls translation

o ( — 0: translation invariance
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Stability to Deformations

Deformations
o 7:Q — Q: smooth vector field
o 7-x(u) = x(u— 7(u)): deformation operator

o Much richer group of transformations than translations

Definition of stability
o Representation ®(-) is stable (Mallat, 2012) if:
[8(7 - x) = ®(x)[| < (G1[|[VTloo + Gl ][0 [Ix]]

0 |V7|loo = sup, ||V7(u)| controls deformation
0 ||7]|co = sup, |7(u)| controls translation

o ( — 0: translation invariance

Q: Can we achieve this along with approximation using kernels?
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Deformation Stability with Kernels (B. and Mairal, 2019a)

Geometry of the kernel mapping: f(x) = (f, ®(x))xn

[F(x) = O < 1l - [ D(x) = (X1

o ||f]|3 controls complexity of the model

o ®(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)
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Convolutional Kernel Construction (B. and Mairal, 2019a)

Continuous initial signal x(u)

At each layer k:

o Pj: Extract patches of size |Sk|

Pyay1(v) € Py (patch extraction)

rr-1(u) € Hiy Tpq 0 Q= Hiq
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Convolutional Kernel Construction (B. and Mairal, 2019a)

Continuous initial signal x(u)

At each layer k:

MiePre : @ = My M P (v) = or( P (v)) € Hi

son-lincar mapping o Pj: Extract patches of size |Sk|
P (v) € Py o My: Apply kernel map ¢, to patches

21 Q= Hipa
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Convolutional Kernel Construction (B. and Mairal, 2019a)

Continuous initial signal x(u)

2k = AMy Py 2 Q — Hy, vr(w) = A My Pray 1 (w) € Hy

linear pooling At each Iayer k:
P 0 e o Py: Extract patches of size |Sk|

o My: Apply kernel map ¢, to patches

o Ag: Gaussian pooling at scale o
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Convolutional Kernel Construction (B. and Mairal, 2019a)

Continuous initial signal x(u)

2k = My Py 2 Q — Hy, vr(w) = A My Pray 1 (w) € Hy

linear pooling At each |ayer k:
o Py: Extract patches of size |Sk|

My Py 0 Q— My My, Py, 1 (v) = ox(Prag1(v)) € Hy,
non-linear mapping

o My: Apply kernel map ¢, to patches

Py (v) € Py, (patch extraction)

o Ag: Gaussian pooling at scale o

vy 1 (u) € Hy p1 Q= Hiy
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Convolutional Kernel Construction (B. and Mairal, 2019a)

Continuous initial signal x(u)

2k = My Py 2 Q — Hy, vr(w) = A My Pyay 1 (w) € H,

linear pooling ' At each |ayer k:
o Py: Extract patches of size |Sk|

My Py 0 Q— My My, Py, 1 (v) = ox(Prag1(v)) € Hy,

non-linear mapping

o My: Apply kernel map ¢, to patches

Py (v) € Py, (patch extraction)

o Ag: Gaussian pooling at scale o

rh-1(u) € Hi 1t Q= Hia

Multi-layer construction
(D(X) = A MpP A1 Mp_1Pp_1 -+ AtM1P1x
o |Sk|, ok typically exponential in k, fixed “patch size" [ := |Sx|/ok-1

o In practice, discretize with subsampling < patch size to preserve information
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Stability of Convolutional Kernels

Theorem (Stability of Convolutional Kernel (B. and Mairal, 2019a))

Let ® be a n-layer conv kernel with initial anti-aliasing at og. If |VT||c < 1/2,

07 %) = S0 < (G (1+ 1) 197w + Zlrllc ) 1]

n

©

Translation invariance: large o,

()

Patch size: =~ ox11/0k

©

Signal preservation/universal approximation: subsampling factor &~ patch size
Exponential benefits of depth for stability:

» Shallow: n=1, 8~ 0,/00 = O((cn/00)?)

> Deep: §= O(1), n=~ log(c,/00)/log B = O(log(c,/00))

©

Alberto Bietti Benefits of Convolutional Models UMN, Feb 2, 2022

15/30



Stability of Convolutional Kernels

Theorem (Stability of Convolutional Kernel (B. and Mairal, 2019a))

Let ® be a n-layer conv kernel with initial anti-aliasing at og. If |VT||c < 1/2,

07 %) = S0 < (G (1+ 1) 197w + Zlrllc ) 1]

n

©

Translation invariance: large o,

()

Patch size: =~ ox11/0k

©

Signal preservation/universal approximation: subsampling factor &~ patch size
Exponential benefits of depth for stability:
» Shallow: n=1, 8~ 0,/00 = O((cn/00)?)
> Deep: §= O(1), n=~ log(c,/00)/log B = O(log(c,/00))
o Achieved by controlling operator norm of a commutator [L,, Py Ax_1]
» Extend result by Mallat (2012) for controlling ||[L., A]||, need |Sk| < Bok-

©
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Stability of Convolutional Kernels

Theorem (Stability of Convolutional Kernel (B. and Mairal, 2019a))

Let ® be a n-layer conv kernel with initial anti-aliasing at og. If |VT||c < 1/2,

G
167 - x) = dC)| < ( GB* (n+ 1) [IV7loo + —I7lloo ) Ix]
On

©

Translation invariance: large o,

()

Patch size: =~ ox11/0k

©

Signal preservation/universal approximation: subsampling factor &~ patch size
Exponential benefits of depth for stability:
» Shallow: n=1, 8~ 0,/00 = O((cn/00)?)
> Deep: §= O(1), n=~ log(c,/00)/log B = O(log(c,/00))
o Achieved by controlling operator norm of a commutator [L,, Py Ax_1]
» Extend result by Mallat (2012) for controlling ||[L., A]||, need |Sk| < Bok-

©

o Extensions to other transformation groups, e.g., roto-translations (B. and Mairal, 2019a)
Similar stability results hold for convolutional NTK (B. and Mairal, 2019b)

©
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Outline

(@ Generalization Benefits under Invariance and Stability (B. et al., 2021)
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Non-parametric Regression on the Sphere

Problem setup
o Goal: bound on the excess risk R(f) — R(f*) = Ex [(F(x) — F*(x))]
o f*(x) := E[y|x] and x ~ 7: uniform distribution on the sphere S7~1
o Kernel ridge regression estimator for some kernel K on data {(x;,yi)}":
n

Z . . 1 2 2
ficn := arg min — ;(y, f(xi))? + Al |5,

Alberto Bietti Benefits of Convolutional Models UMN, Feb 2, 2022

17/30



Non-parametric Regression on the Sphere

Problem setup
o Goal: bound on the excess risk R(f) — R(f*) = Ey.[(F(x) — F*(x))?]
o f*(x) := E[y|x] and x ~ 7: uniform distribution on the sphere S7~1

o Kernel ridge regression estimator for some kernel K on data {(x;,yi)}":

n

Z . . 1 2 2
ficn = arg min — ;(y, f(xi))? + Al |5,

Harmonic analysis on the sphere
o L2(7) basis of spherical harmonics Y ;

~
o N(d, k) harmonics of degree k, form a basis of Vj -
o Diagonalizes dot-product kernels K(x, x") = ((x, x')) ®

o Assume f* is smooth <> decay of coefficients of *
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Non-parametric Regression on the Sphere

Problem setup
o Goal: bound on the excess risk R(f) — R(f*) = Ey.[(F(x) — F*(x))?]
o f*(x) := E[y|x] and x ~ 7: uniform distribution on the sphere S7~1

o Kernel ridge regression estimator for some kernel K on data {(x;,yi)}":

n

Z . . 1 2 2
ficn = arg min — ;(y: f(xi))? + Al |5,

Harmonic analysis on the sphere
o L2(7) basis of spherical harmonics Y ;

~
o N(d, k) harmonics of degree k, form a basis of Vj -
t 1

[
wHSS

®

o Diagonalizes dot-product kernels K(x, x") = ((x, x')) *,.:
o Assume f* is smooth <> decay of coefficients of * * ®
Q: How can we encode invariance and stability?
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Geometric Priors

@ A
A == N
] ®

Functions f : X — R that are “smooth” along known transformations of input x
o e.g., translations, rotations, permutations, deformations
o We consider: permutations ¢ € G

(0 -x)[u] = x[o ™} (u)]
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Geometric Priors

@ A
A == N
] ®

Functions f : X — R that are “smooth” along known transformations of input x
o e.g., translations, rotations, permutations, deformations
o We consider: permutations ¢ € G

(0 - x)[u] = x[o™(u)]

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

flo-x)=1f(x), c€G
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Geometric Priors

@ A
A == N
] ®

Functions f : X — R that are “smooth” along known transformations of input x
o e.g., translations, rotations, permutations, deformations
o We consider: permutations ¢ € G

(0 - x)[u] = x[o™(u)]

Group invariance: If G is a group (e.g., cyclic shifts, all permutations), we want

flo-x)=Ff(x), c€G

Geometric stability: For other sets G (e.g., local shifts, deformations), we want
flo-x)=f(x), c€G
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Geometric Priors: Pooling Operator

Sef(x) ::%Z:Gif(a-x) 3

\

© AbereBiei Bencfits of Convolutional Models UMN, Feb 2, 2022 1930



Geometric Priors: Pooling Operator

L

Sef(x) = Gl

Z f(o-x) @ ﬁ/—
B
¢
Invariant spherical harmonics, when G is a group (Meyer, 1954; Mei et al., 2021)
o S¢ acts as a projection operator
o N(d, k) invariant harmonics of degree k, form a basis of Vs = S¢ Vi«
o f*is G-invariant <+ f* = S¢f*
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Geometric Priors: Pooling Operator

Sef(x) = — Zf(a x) @;/ﬂ/—

UEG

e’ §

®

Invariant spherical harmonics, when G is a group (Meyer, 1954; Mei et al., 2021)
o S¢ acts as a projection operator
o N(d, k) invariant harmonics of degree k, form a basis of Vs = S¢ Vi«
o f*is G-invariant <+ f* = S¢f*

Invariant kernels with pooling (Haasdonk and Burkhardt, 2007; Mroueh et al., 2015)

K(x,x") = k({x,x")), Ke(x Z (o x,x")
crEG

o If kK = k), corresponds to CNN with pooling f(x) = I%?I Y ovcG ﬁ Y vip({wi, o - x))
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Generalization Benefits of Pooling
K(x,x") = r({x,x")), Ka( Z (o x,x")
oceG

Theorem (Benefits of pooling (B., Venturi, and Bruna, 2021))

Assume f* is invariant to a group G and smooth of order s.
Ridge regression with kernel K¢ vs K achieves

2s

2s
E R(fis,n) — R(F*) < Ca <Vd,5n)> T ow E R(fic,n) — R(f*) < Cq (i) o

with vg(n) = |1| + o(1).
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Generalization Benefits of Pooling
K(x,x") = r({x,x")), Ke(x Z (o x,x")
oceG

Theorem (Benefits of pooling (B., Venturi, and Bruna, 2021))

Assume f* is invariant to a group G and smooth of order s.
Ridge regression with kernel K¢ vs K achieves

2s 2s
E R(fis,n) — R(F*) < Ca <ydr(7n)> T ow E R(fic,n) — R(f*) < Cq (i) o

with vg(n) = |1| + o(1).

= asymptotic gains by a factor |G| in sample complexity.
o |G| can be exponential in d!
o Rate and constant C4 are minimax optimal: curse of dimensionality
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Ingredients: Counting Invariant Harmonics

Proposition ((B., Venturi, and Bruna, 2021))
As k — 0o, we have

(k) = e = rer + O(k%),

where x is the maximal number of cycles of any permutation o € G \ {ld}.
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Ingredients: Counting Invariant Harmonics

Proposition ((B., Venturi, and Bruna, 2021))

As k — oo, we have

(k) = e = rer + O(k%),

where x is the maximal number of cycles of any permutation o € G \ {ld}.

o Asymptotic rate of improvement can be quantified in terms of

o Relies on singularity analysis of density of (o - x, x) (Saldanha and Tomei, 1996)
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Ingredients: Counting Invariant Harmonics

Proposition ((B., Venturi, and Bruna, 2021))
As k — 0o, we have

(k) = e = rer + O(k%),

where x is the maximal number of cycles of any permutation o € G \ {ld}.

o Asymptotic rate of improvement can be quantified in terms of

o Relies on singularity analysis of density of (o - x, x) (Saldanha and Tomei, 1996)
o Related to Mei et al. (2021), but different regimes

» They study d — oo with fixed k (v4(k) = ©4(d~?)), gains at most polynomial in d
» We study k — oo with fixed d, gain |G| can be exponential in d.
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Extension to Stability and Discussion

Extension to geometric stability (G is not a group)
o Pooling operator S¢ is no longer a projection, has eigenvalues A ; € [0,1]
o Different assumption: f* = S¢g for some g and r > 0
o Leads to similar bounds with effective sample size n|G| instead of n

o |G| is exponential in d for a simple model of deformations!
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Extension to Stability and Discussion

Extension to geometric stability (G is not a group)
o Pooling operator S¢ is no longer a projection, has eigenvalues A ; € [0,1]
o Different assumption: f* = S¢g for some g and r > 0
o Leads to similar bounds with effective sample size n|G| instead of n

o |G| is exponential in d for a simple model of deformations!

Curse of dimensionality

o If the target f* is non-smooth, e.g., only Lipschitz, the rate is cursed! (and unimprovable)

R(F) — F(F*) S oo
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Extension to Stability and Discussion

Extension to geometric stability (G is not a group)
o Pooling operator S¢ is no longer a projection, has eigenvalues A ; € [0,1]
o Different assumption: f* = S¢g for some g and r > 0
o Leads to similar bounds with effective sample size n|G| instead of n

o |G| is exponential in d for a simple model of deformations!

Curse of dimensionality

o If the target f* is non-smooth, e.g., only Lipschitz, the rate is cursed! (and unimprovable)

R(F) — F(F*) S oo

Q: How can we break this curse?
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QOutline

1) Invariance and Stability to Deformations (B. and Mairal, 2019a,b)

2) Generalization Benefits under Invariance and Stability (B. et al., 2021)

(3 Benefits of Locality and Depth (B., 2022)

4) Concluding Remarks



One-layer Convolutional Kernels on Patches

Kn(x,x") = Z k(xy, x!,)

ueR
One-layer local convolutional kernel
o 1D signal x[u], u € Q, localized patches x, = (x[u], ..., x[u+ s]) € RP
o RKHS H contains functions f(x) = > ,cq 8u(Xxu) With g, € H

Alberto Bietti Benefits of Convolutional Models UMN, Feb 2, 2022

24 /30



One-layer Convolutional Kernels on Patches

S I |

x

Kn(x,x") = Z Z hlu — v]h[u — V']k(xy, x.)

ueQ v,v' e

One-layer local convolutional kernel

©

1D signal x[u], u € Q, localized patches x, = (x[u], ..., x[u+ s]) € RP
o RKHS H contains functions f(x) = >",cq gu(xu) with g, € Hy
Pooling filter h with >, h[u] =1

Pooling: same functions, RKHS norm encourages similarities between the g,

©

()
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One-layer Convolutional Kernels on Patches

Kn(x,x") = Z Z hlu — v]h[u — V']k(xy, x.)

uEQ v,V EN
One-layer local convolutional kernel
o 1D signal x[u], u € Q, localized patches x, = (x[u],...,x[u+ s]) € RP
o RKHS H contains functions f(x) = >",cq gu(xu) with g, € Hy
o Pooling filter h with >, h[u] =1

o Pooling: same functions, RKHS norm encourages similarities between the g,

©

Global pooling (h[u] =1/|Q2|): all the g, must be equal (translation invariance)
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Benefits of Locality and Pooling

o Assume non-overlapping patches x, uniform on the sphere SP~1
o Assume invariant target f*(x) =3 ,cq &% (xu)
o No pooling (h = 0) vs global pooling (h = 1)

Theorem (Generalization with one-layer (B., 2022))

Assume g* smooth of order s. Kernel ridge regression with K, yields

2s 2s
~ 1\ 2s+p—1 . Q|\ m7p=1
ER(f,) — R(F) < Gy () s ER() - R(F) < G, (y\) ;
n n
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Benefits of Locality and Pooling

o Assume non-overlapping patches x, uniform on the sphere SP~1
o Assume invariant target f*(x) =3 ,cq &% (xu)
o No pooling (h = 0) vs global pooling (h = 1)

Theorem (Generalization with one-layer (B., 2022))

Assume g* smooth of order s. Kernel ridge regression with K, yields

1

2s 2s
ERGia) - R <G (3)T w ERGa) R <6 ()7

n

o Breaks the curse of dimensionality! p instead of d = p|Q] in the rate
o With localized pooling, we can also learn f*(x) = 3" ,cq 8u(xu) with different g,
o For overlapping patches see (Favero et al., 2021; Misiakiewicz and Mei, 2021)
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Benefits of Locality and Pooling

o Assume non-overlapping patches x, uniform on the sphere SP~1
o Assume invariant target f*(x) =3 ,cq &% (xu)
o No pooling (h = 0) vs global pooling (h = 1)

Theorem (Generalization with one-layer (B., 2022))

Assume g* smooth of order s. Kernel ridge regression with K, yields

1

2s 2s
ERGia) - R <G (3)T w ERGa) R <6 ()7

n

o Breaks the curse of dimensionality! p instead of d = p|Q] in the rate
o With localized pooling, we can also learn f*(x) = 3" ,cq 8u(xu) with different g,
o For overlapping patches see (Favero et al., 2021; Misiakiewicz and Mei, 2021)

Q: How can we capture long-range interactions?
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Two-layer Convolutional Kernels

my o Captures interactions between different patches
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Two-layer Convolutional Kernels

©

Captures interactions between different patches

©

If k2(u) = u?, RKHS contains functions

@, (x) , i f*(X) = Z gu,v(XUaXv)

luvi<r

©

8uyv € Hk & ,Hk
« [T 1] | o Receptive field r depends on h; and S,
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Experiments on Cifar10

2-layers, 3x3 patches,

pooling/downsampling sizes (2,5). Patch kernels k1, ka.

K1 K2 Test acc.
Gauss Gauss 87.9%
Gauss Poly3 87.7%
Gauss Poly2 86.9%
Gauss | Polyl (Linear) | 80.9%
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2-layers, 3x3 patches,

Alberto Bietti

K1 K2 Test acc.
Gauss Gauss 87.9%
Gauss Poly3 87.7%
Gauss Poly2 86.9%
Gauss | Polyl (Linear) | 80.9%

Polynomial kernels suffice at second layer!
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Experiments on Cifar10

2-layers, 3x3 patches, pooling/downsampling sizes (2,5). Patch kernels k1, k».

K1 K2 Test acc.
Gauss Gauss 87.9%
Gauss Poly3 87.7%
Gauss Poly2 86.9%
Gauss | Polyl (Linear) | 80.9%

Polynomial kernels suffice at second layer!

Best performance (B., 2022): 88.3% (2 layers, larger patches at 2nd layer).
Shankar et al. (2020): 88.2% (10 layers). 90% with data augmentation (= AlexNet)

Alberto Bietti Benefits of Convolutional Models UMN, Feb 2, 2022

27 /30



Generalization Benefits with Two Layers

o Consider f*(x) =>_, ,ca & (Xu, xv)
o Assume E,[k(xy, Xy )k(xy, xp/)] < eif u#u or v#V
o Compare different pooling layers (h1, hp € {d,1}) and patch sizes (|S2]):
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Generalization Benefits with Two Layers

o Consider f*(x) =>_, ,ca & (Xu, xv)
o Assume E,[k(xy, Xy )k(xy, xp/)] < eif u#u or v#V

o Compare different pooling layers (h1, hp € {d,1}) and patch sizes (|S2]):

Generalization bound: when g* € H; ® Hy, we have

m| h 1S R(F) — R(F) (for e — 0)
5| 0 Q| le*[[12*>/+/n

6| 1 19 lg* 111212 /+/n
L1 1Q 8= [182]/+/n
1]dorl| 1 lg*[l/v/n
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Generalization Benefits with Two Layers

o Consider f*(x) =>_, ,ca & (Xu, xv)
o Assume E,[k(xy, Xy )k(xy, xp/)] < eif u#u or v#V
o Compare different pooling layers (h1, hp € {d,1}) and patch sizes (|S2]):

Generalization bound: when g* € H; ® Hy, we have

m| h 1S R(F) — R(F) (for e — 0)
5| 0 Q| le*[[12*>/+/n

6| 1 19 le*[l12[?//n
L1 1Q 8= [182]/+/n
1]dorl| 1 lg*[l/v/n

Polynomial gains in |Q2| when using the right architecture!
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QOutline

1) Invariance and Stability to Deformations (B. and Mairal, 2019a,b)

2) Generalization Benefits under Invariance and Stability (B. et al., 2021)

3) Benefits of Locality and Depth (B., 2022)

@ Concluding Remarks



Concluding Remarks

Benefits of deep convolutional models
o Depth improves deformation stability in convolutional models
o Pooling improves generalization under invariance and stability

o Locality + depth + pooling capture structured interaction models with symmetries
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Concluding Remarks

Benefits of deep convolutional models
o Depth improves deformation stability in convolutional models
o Pooling improves generalization under invariance and stability

o Locality + depth + pooling capture structured interaction models with symmetries

Kernels can help us understand deep learning architectures
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Concluding Remarks

Benefits of deep convolutional models
o Depth improves deformation stability in convolutional models
o Pooling improves generalization under invariance and stability

o Locality + depth + pooling capture structured interaction models with symmetries

Kernels can help us understand deep learning architectures

Future directions
o Convolutional networks beyond kernels (data-adaptive filters, interaction terms)
» e.g., mean-field regimes (Chizat and Bach, 2018; Mei et al., 2019)
o Extensions to other architectures
» e.g., GNNs, Transformers
o Role of architecture beyond supervised learning
» e.g., generative models, self-supervised learning
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Concluding Remarks

Benefits of deep convolutional models
o Depth improves deformation stability in convolutional models
o Pooling improves generalization under invariance and stability

o Locality + depth + pooling capture structured interaction models with symmetries

Kernels can help us understand deep learning architectures

Future directions
o Convolutional networks beyond kernels (data-adaptive filters, interaction terms)
» e.g., mean-field regimes (Chizat and Bach, 2018; Mei et al., 2019)
o Extensions to other architectures
» e.g., GNNs, Transformers
o Role of architecture beyond supervised learning
» e.g., generative models, self-supervised learning

Thanks!

Alberto Bietti Benefits of Convolutional Models UMN, Feb 2, 2022

30/30



References |

S. Arora, S. S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang. On exact computation with an
infinitely wide neural net. In Advances in Neural Information Processing Systems (NeurlPS), 2019.

A. B. Approximation and learning with deep convolutional models: a kernel perspective. In Proceedings
of the International Conference on Learning Representations (ICLR), 2022.

A. B. and F. Bach. Deep equals shallow for relu networks in kernel regimes. In Proceedings of the
International Conference on Learning Representations (ICLR), 2021.

A. B. and J. Mairal. Group invariance, stability to deformations, and complexity of deep convolutional
representations. Journal of Machine Learning Research (JMLR), 20(25):1-49, 2019a.

A. B. and J. Mairal. On the inductive bias of neural tangent kernels. In Advances in Neural Information
Processing Systems (NeurlPS), 2019b.

A. B., L. Venturi, and J. Bruna. On the sample complexity of learning with geometric stability. In
Advances in Neural Information Processing Systems (NeurlPS), 2021.

J. Bruna and S. Mallat. Invariant scattering convolution networks. |[EEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 35(8):1872-1886, 2013.

A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm. Foundations
of Computational Mathematics, 7(3):331-368, 2007.

Alberto Bietti Benefits of Convolutional Models UMN, Feb 2, 2022 31/30



References |l

L. Chen and S. Xu. Deep neural tangent kernel and laplace kernel have the same rkhs. In Proceedings
of the International Conference on Learning Representations (ICLR), 2021.

L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized models
using optimal transport. In Advances in Neural Information Processing Systems (NeurlPS), 2018.

L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. In Advances in
Neural Information Processing Systems (NeurlPS), 2019.

Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in Neural Information
Processing Systems (NIPS), 2009.

R. Eldan and O. Shamir. The power of depth for feedforward neural networks. In Conference on
Learning Theory (COLT), 2016.

A. Favero, F. Cagnetta, and M. Wyart. Locality defeats the curse of dimensionality in convolutional
teacher-student scenarios. arXiv preprint arXiv:2106.08619, 2021.

A. Garriga-Alonso, L. Aitchison, and C. E. Rasmussen. Deep convolutional networks as shallow gaussian
processes. In Proceedings of the International Conference on Learning Representations (ICLR), 2019.

B. Haasdonk and H. Burkhardt. Invariant kernel functions for pattern analysis and machine learning.
Machine learning, 68(1):35-61, 2007.

Alberto Bietti Benefits of Convolutional Models UMN, Feb 2, 2022 32/30



References 1l

K.

A.

Y.

He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. In Advances in Neural Information Processing Systems (NeurlPS), 2018.

LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks. In Advances in

Neural Information Processing Systems (NIPS), 2016.

. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. Convolutional kernel networks. In Advances in

Neural Information Processing Systems (NIPS), 2014.

. Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics, 65(10):

1331-1398, 2012.

. Mei, T. Misiakiewicz, and A. Montanari. Mean-field theory of two-layers neural networks:

dimension-free bounds and kernel limit. In Conference on Learning Theory (COLT), 2019.

. Mei, T. Misiakiewicz, and A. Montanari. Learning with invariances in random features and kernel

models. In Conference on Learning Theory (COLT), 2021.

Alberto Bietti Benefits of Convolutional Models UMN, Feb 2, 2022 33/30



References IV

B. Meyer. On the symmetries of spherical harmonics. Canadian Journal of Mathematics, 6:135-157,
1954,

H. N. Mhaskar and T. Poggio. Deep vs. shallow networks: An approximation theory perspective.
Analysis and Applications, 14(06):829-848, 2016.

T. Misiakiewicz and S. Mei. Learning with convolution and pooling operations in kernel methods. In
Conference on Learning Theory (COLT), 2021.

Y. Mroueh, S. Voinea, and T. A. Poggio. Learning with group invariant features: A kernel perspective.
In Advances in Neural Information Processing Systems (NIPS), 2015.

R. M. Neal. Bayesian learning for neural networks. Springer, 1996.

R. Novak, L. Xiao, Y. Bahri, J. Lee, G. Yang, J. Hron, D. A. Abolafia, J. Pennington, and
J. Sohl-Dickstein. Bayesian deep convolutional networks with many channels are gaussian processes.
In Proceedings of the International Conference on Learning Representations (ICLR), 2019.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural
Information Processing Systems (NIPS), 2007.

N. C. Saldanha and C. Tomei. The accumulated distribution of quadratic forms on the sphere. Linear
algebra and its applications, 245:335-351, 1996.

Alberto Bietti Benefits of Convolutional Models UMN, Feb 2, 2022 34 /30



References V

V. Shankar, A. Fang, W. Guo, S. Fridovich-Keil, L. Schmidt, J. Ragan-Kelley, and B. Recht. Neural
kernels without tangents. arXiv preprint arXiv:2003.02237, 2020.

M. Soltanolkotabi, A. Javanmard, and J. D. Lee. Theoretical insights into the optimization landscape
of over-parameterized shallow neural networks. I[EEE Transactions on Information Theory, 65(2):
742-769, 2018.

G. Wahba. Spline models for observational data, volume 59. Siam, 1990.

G. Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760, 2019.

Alberto Bietti Benefits of Convolutional Models UMN, Feb 2, 2022 35/30



	Introduction
	Invariance and Stability to Deformations bietti2019group,bietti2019inductive
	Generalization Benefits under Invariance and Stability bietti2021sample
	Benefits of Locality and Depth bietti2021approximation
	Concluding Remarks
	References

